STORMWATER MANAGEMENT REPORT 51 TECHNOLOGY PARK ROAD STURBRIDGE, MASSACHUSETTS September 5, 2019

Prepared for:
DILEO GAS
630 SUNDERLAND ROAD
WORCESTER, MASSACHUSETTS 01604

Prepared by: **J.M. GRENIER ASSOCIATES INC.**

787 HARTFORD TURNPIKE SHREWSBURY, MA 01545

Project Number: G-565 Sturbridge, Massachusetts

TABLE OF CONTENTS

DRAINAGE NARRATIVE

DRAINAGE ANALYSIS SUMMARY

LOCUS MAP

2-YEAR STORM EVENT DATA

10-YEAR STORM EVENT DATA

25-YEAR STORM EVENT DATA

100-YEAR STORM EVENT DATA

STORMWATER MANAGEMENT FORM

OPERATION AND MAINTENANCE PLAN

SOIL SURVEY DATA FOR LOCUS SITE

PRE AND POST DEVELOPMENT DRAINAGE PLANS

DRAINAGE NARRATIVE

Design Methods and Objectives

The following drainage analysis has been prepared in accordance with the most current rules and regulations of the Town of Sturbridge, Massachusetts. Watershed areas were calculated for both the pre-development and post-development conditions. Existing and proposed ground cover conditions as well as tourain slopes were evaluated. Based upon the increased peak runoff from pre-development to the post development, storm water management systems were designed to attenuate the post development peak flows and runoff to be less than or equal to the pre-development rates of runoff. These calculations were performed using Hydrocad Stormwater Modeling Software for determining peak runoff and sizing detention/infiltration facilities for the 2, 10, 25 and 100 year storm event frequencies. Runoff hydrographs are calculated using the SCS Runoff equation and the SCS unitless hydrograph.

Existing Site Conditions

The existing site conditions were analyzed to determine tributary site runoff areas, flow patterns, space including wooded areas, as well as existing soil types. The drainage area that was analyzed includes the site at 51 Technology Park Road to be developed. The existing study area includes wooded area. The total tributary drainage area is 3.50 acres. The existing slopes on site range from 5-30%. The site currently drains to the north.

Existing soils located on site were determined to be Chatfield-Hollis-Rock outcrop complex, Paxton fine sandy loam and Woodbridge fine sandy loam. Chatfield-Hollis-Rock outcrop complex is classified as Hydrologic Group C and has a drainage class rating of "well drained". Paxton is classified as Hydrologic Group C and has a drainage class rating of "well drained". Woodbridge is classified as Hydrologic Group C and has a drainage class rating of "moderately well drained".

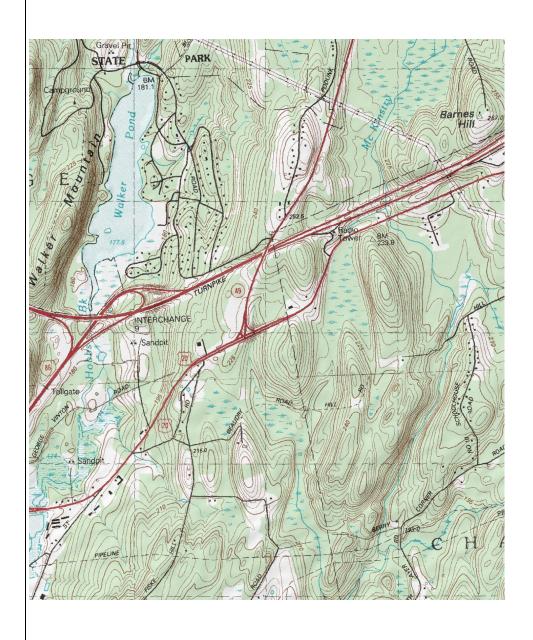
Proposed Site Conditions

In the post development condition, the property is proposed to be developed with a 10,000 sq.ft. industrial building, parking area and stormwater management facilities. The total impervious area in the post development condition is 1.03 acres. The total percentage of impervious area in the post development condition is 36.2%. The remaining portion of the site not developed is to remain in the existing condition.

The proposed site drainage is separated into five subcatchment drainage areas. These subcatchments are physically separate in the post development condition through the use of a sediment forebays, grass channels and an infiltration basin. These methods are used in order to reduce peak runoff rates and treat runoff from redeveloped paved areas in order to meet TSS removal requirements.

- "Subcatchment P1" includes the southern parking area and adjacent lawn. The runoff form paved areas is directed via sediment forebay 1 and a grass channel into the infiltration basin. The infiltration basin provides 80% TSS removal.
- "Subcatchment P2" includes the northern parking area and adjacent lawn. The runoff form paved areas is directed via sediment forebay 2 and a grass channel into the infiltration basin. The infiltration basin provides 80% TSS removal.
- "Subcatchment P3" includes the proposed building. This clean runoff is directed into the infiltration basin to reduce peak rates of runoff.
- "Subcatchment P4" includes lawn area directly tributary to the infiltration basin.
- "Subcatchment P5" includes undetained lawn and woods. This clean runoff is flows to the north as it does in the existing condition.

The proposed drainage design for this redevelopment meets or exceeds all requirements by the Town of Sturbridge and the Department of Environmental Protection. As the calculations demonstrate the proposed drainage design provides attenuation of peak rates of runoff and improves the quality of site runoff that flows toward offsite areas and by achieving a minimum of 80% TSS removal for new paved areas.

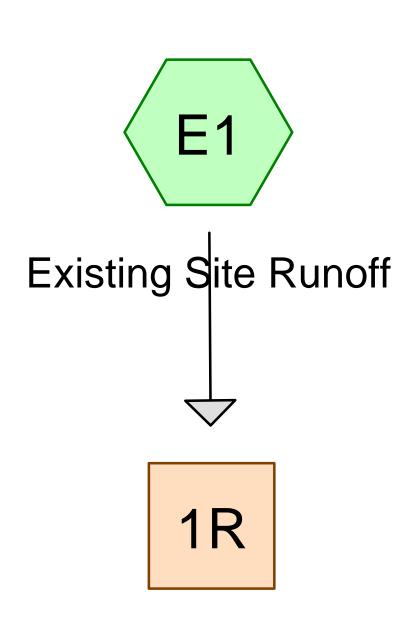

Drainage Analysis Summary

Pre-Development Drainage Reach (1R) – Existing Conditions Runoff to North (E1)

Post-Development Drainage Reach (1R) – Combined Post Development Runoff to North (P1, P2, P3, P4, P5)

Note: (Peak Flow Rate in cfs)

,	2 Year	10 Year	25 Year	<u>100 Year</u>
Storm Intensity	3.0 inches	4.5 inches	5.3 inches	6.5 inches
Pre-Development (E1)	2.85	6.11	8.00	10.90
Pre-Development (1R) To North	2.85	6.11	8.00	10.90
Post-Development (P1, P2, P3, P4 Routed Through Basin)	0.70	2.74	3.92	6.25
Post-Development (P5)	1.27	2.73	3.57	4.86
Post-Development (1R) To North	1.27	4.81	6.93	10.44
Reduction From Pre-Development to Post-Development	-1.58	-1.30	-1.07	-0.46


LOCUS PLAN

Source: USGS Quadrangles for East Brookfield, MA

7.5 x 15 minute series (metric)

Scale: 1:25,000 or 1" = 2083.33'

51 Technology Park Road Sturbridge, Massachusetts

G-565-PRE

Prepared by J.M. Grenier Associates Inc. HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC Printed 9/12/2019 Page 2

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
0.080	98	Ledge (E1)
3.420	77	Woods, Poor, HSG C (E1)
3.500	77	TOTAL AREA

Page 3

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: Existing Site Runoff

Runoff Area=3.500 ac 2.29% Impervious Runoff Depth>0.98" Flow Length=517' Tc=19.6 min CN=77 Runoff=2.85 cfs 0.284 af

Reach 1R: North Property Line

Inflow=2.85 cfs 0.284 af Outflow=2.85 cfs 0.284 af

Total Runoff Area = 3.500 ac Runoff Volume = 0.284 af Average Runoff Depth = 0.98" 97.71% Pervious = 3.420 ac 2.29% Impervious = 0.080 ac

Page 4

Summary for Subcatchment E1: Existing Site Runoff

Runoff = 2.85 cfs @ 12.29 hrs, Volume= 0.284 af, Depth> 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

	Area	(ac) (CN	Desc	ription		
*	0.	080	98	Ledg	е		
	3.	420	77	Woo	ds, Poor, I	HSG C	
	3.	500	77	Weig	hted Aver	age	
	3.	420		97.7	1% Pervio	us Area	
	0.	080		2.29°	% Impervi	ous Area	
	Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.8	50	0.0	0300	0.08		Sheet Flow, Segment 1
	8.8	467	0.0	0310	0.88		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Segment 2 Woodland Kv= 5.0 fps
	19.6	517	To	otal			

Summary for Reach 1R: North Property Line

Inflow Area = 3.500 ac, 2.29% Impervious, Inflow Depth > 0.98" for 2-YR event

Inflow = 2.85 cfs @ 12.29 hrs, Volume= 0.284 af

Outflow = 2.85 cfs @ 12.29 hrs, Volume= 0.284 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Page 5

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: Existing Site Runoff

Runoff Area=3.500 ac 2.29% Impervious Runoff Depth>2.04" Flow Length=517' Tc=19.6 min CN=77 Runoff=6.11 cfs 0.595 af

Reach 1R: North Property Line

Inflow=6.11 cfs 0.595 af Outflow=6.11 cfs 0.595 af

Total Runoff Area = 3.500 ac Runoff Volume = 0.595 af Average Runoff Depth = 2.04" 97.71% Pervious = 3.420 ac 2.29% Impervious = 0.080 ac

Page 6

Summary for Subcatchment E1: Existing Site Runoff

Runoff = 6.11 cfs @ 12.28 hrs, Volume= 0.595 af, Depth> 2.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.50"

	Area	(ac) (ON D	escrip	otion		
*	0.	080	98 Le	edge			
	3.	420	77 W	oods.	, Poor, I	HSG C	
	3.	500	77 W	eight	ted Aver	age	
	3.	420	97	7.71%	6 Pervio	us Area	
	0.	080	2.	29% I	Impervio	ous Area	
	Tc (min)	Length (feet)			/elocity (ft/sec)	Capacity (cfs)	Description
	10.8	50	0.030	00	0.08		Sheet Flow, Segment 1
	8.8	467	0.03′	0	0.88		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Segment 2 Woodland Kv= 5.0 fps
	19.6	517	Total				

Summary for Reach 1R: North Property Line

Inflow Area = 3.500 ac, 2.29% Impervious, Inflow Depth > 2.04" for 10-YR event

Inflow = 6.11 cfs @ 12.28 hrs, Volume= 0.595 af

Outflow = 6.11 cfs @ 12.28 hrs, Volume= 0.595 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

G-565-PRE

Type III 24-hr 25-YR Rainfall=5.30"

Prepared by J.M. Grenier Associates Inc. HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 7

Printed 9/12/2019

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: Existing Site Runoff

Runoff Area=3.500 ac 2.29% Impervious Runoff Depth>2.67" Flow Length=517' Tc=19.6 min CN=77 Runoff=8.00 cfs 0.778 af

Reach 1R: North Property Line

Inflow=8.00 cfs 0.778 af Outflow=8.00 cfs 0.778 af

Total Runoff Area = 3.500 ac Runoff Volume = 0.778 af Average Runoff Depth = 2.67" 97.71% Pervious = 3.420 ac 2.29% Impervious = 0.080 ac

Printed 9/12/2019

Page 8

Summary for Subcatchment E1: Existing Site Runoff

Runoff = 8.00 cfs @ 12.27 hrs, Volume= 0.778 af, Depth> 2.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.30"

	Area	(ac) (CN	Desc	ription		
*	0.	080	98	Ledg	е		
	3.	420	77	Woo	ds, Poor, I	HSG C	
	3.	500	77	Weig	hted Aver	age	
	3.	420		97.7	1% Pervio	us Area	
	0.	080		2.29°	% Impervi	ous Area	
	Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.8	50	0.0	0300	0.08		Sheet Flow, Segment 1
	8.8	467	0.0	0310	0.88		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Segment 2 Woodland Kv= 5.0 fps
	19.6	517	To	otal			

Summary for Reach 1R: North Property Line

Inflow Area = 3.500 ac, 2.29% Impervious, Inflow Depth > 2.67" for 25-YR event

Inflow = 8.00 cfs @ 12.27 hrs, Volume= 0.778 af

Outflow = 8.00 cfs @ 12.27 hrs, Volume= 0.778 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

G-565-PRE

Type III 24-hr 100-YR Rainfall=6.50"

Prepared by J.M. Grenier Associates Inc. HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Printed 9/12/2019

Page 9

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: Existing Site Runoff

Runoff Area=3.500 ac 2.29% Impervious Runoff Depth>3.65" Flow Length=517' Tc=19.6 min CN=77 Runoff=10.90 cfs 1.065 af

Reach 1R: North Property Line

Inflow=10.90 cfs 1.065 af Outflow=10.90 cfs 1.065 af

Total Runoff Area = 3.500 ac Runoff Volume = 1.065 af Average Runoff Depth = 3.65" 97.71% Pervious = 3.420 ac 2.29% Impervious = 0.080 ac Prepared by J.M. Grenier Associates Inc.

Printed 9/12/2019

Page 10

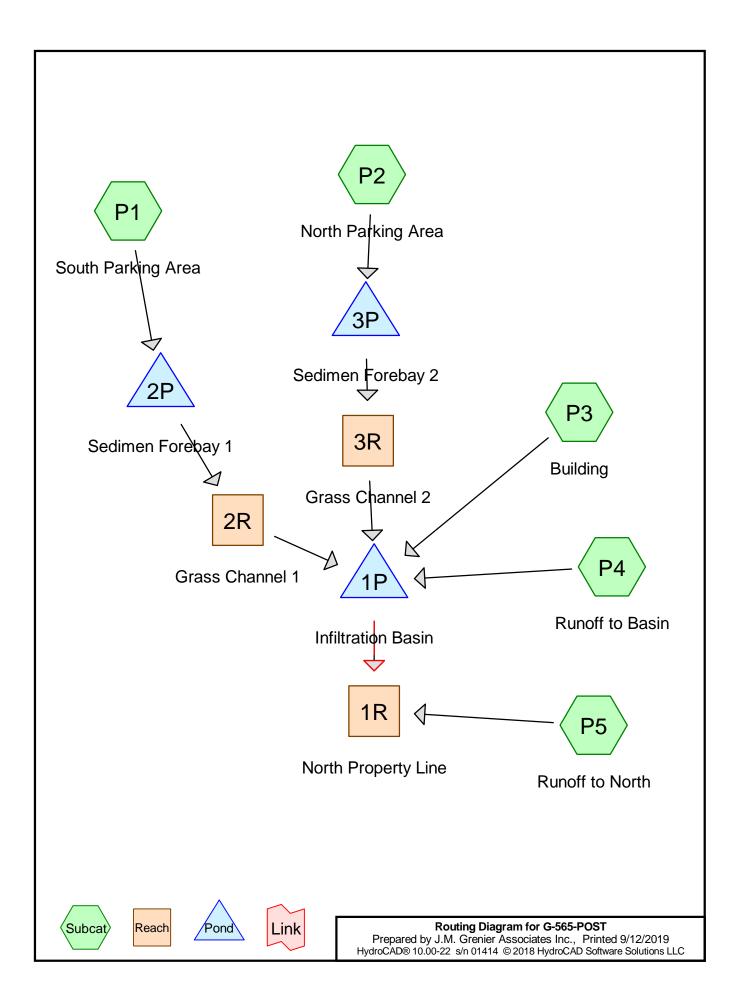
HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: Existing Site Runoff

Runoff = 10.90 cfs @ 12.27 hrs, Volume= 1.065 af, Depth> 3.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=6.50"

Area	(ac) C	N Desc	cription		
0.	080	8 Ledg	je		
3.	420 7	7 Woo	ds, Poor, I	HSG C	
3.	500 7	77 Weig	ghted Aver	age	
3.	420	97.7	1% Pervio	us Area	
0.	080	2.29	% Impervi	ous Area	
Tc	•		,		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.8	50	0.0300	0.08		Sheet Flow, Segment 1
					Woods: Light underbrush n= 0.400 P2= 3.00"
8.8	467	0.0310	0.88		Shallow Concentrated Flow, Segment 2
					Woodland Kv= 5.0 fps
19.6	517	Total			
	0. 3. 3. 0. Tc (min) 10.8 8.8	0.080 9 3.420 7 3.500 7 3.420 0.080 Tc Length (min) (feet) 10.8 50 8.8 467	0.080 98 Ledg 3.420 77 Wood 3.500 77 Weig 3.420 97.7 0.080 2.29 Tc Length Slope (min) (feet) (ft/ft) 10.8 50 0.0300 8.8 467 0.0310	0.080 98 Ledge 3.420 77 Woods, Poor, I 3.500 77 Weighted Aver 3.420 97.71% Pervio 0.080 2.29% Impervio Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 10.8 50 0.0300 0.08 8.8 467 0.0310 0.88	0.080 98 Ledge 3.420 77 Woods, Poor, HSG C 3.500 77 Weighted Average 3.420 97.71% Pervious Area 0.080 2.29% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 10.8 50 0.0300 0.08 8.8 467 0.0310 0.88


Summary for Reach 1R: North Property Line

Inflow Area = 3.500 ac, 2.29% Impervious, Inflow Depth > 3.65" for 100-YR event

Inflow = 10.90 cfs @ 12.27 hrs, Volume= 1.065 af

Outflow = 10.90 cfs @ 12.27 hrs, Volume= 1.065 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Printed 9/12/2019 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.050	89	Gravel, HSG C (P2)
1.270	98	Impervious (P1, P2, P3, P5)
1.230	74	Lawn, Good, HSG C (P1, P2, P4, P5)
0.030	98	Ledge (P1, P5)
0.920	77	Woods, Poor, HSG C (P1, P5)
3.500	84	TOTAL AREA

Page 3

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P1: South Parking Area	Runoff Area=0.730 ac 46.58% Impervious Runoff Depth>1.48" Flow Length=185' Tc=6.0 min CN=85 Runoff=1.33 cfs 0.090 af
Subcatchment P2: North Parking Area	Runoff Area=0.900 ac 74.44% Impervious Runoff Depth>2.13" Flow Length=283' Tc=6.0 min CN=93 Runoff=2.26 cfs 0.160 af
Subcatchment P3: Building	Runoff Area=0.230 ac 100.00% Impervious Runoff Depth>2.59" Flow Length=357' Tc=6.0 min CN=98 Runoff=0.65 cfs 0.050 af
Subcatchment P4: Runoff to Basin	Runoff Area=0.260 ac 0.00% Impervious Runoff Depth>0.83" Flow Length=55' Tc=6.0 min CN=74 Runoff=0.25 cfs 0.018 af
Subcatchment P5: Runoff to North	Runoff Area=1.380 ac 4.35% Impervious Runoff Depth>0.98" Flow Length=173' Tc=14.3 min CN=77 Runoff=1.27 cfs 0.112 af
Reach 1R: North Property Line	Inflow=1.27 cfs 0.256 af Outflow=1.27 cfs 0.256 af
Reach 2R: Grass Channel 1	Avg. Flow Depth=0.16' Max Vel=1.11 fps Inflow=1.28 cfs 0.078 af =300.0' S=0.0065 '/' Capacity=29.15 cfs Outflow=1.12 cfs 0.078 af
Reach 3R: Grass Channel 2	Avg. Flow Depth=0.19' Max Vel=1.34 fps Inflow=2.18 cfs 0.145 af =120.0' S=0.0077 '/' Capacity=40.01 cfs Outflow=2.07 cfs 0.145 af
Pond 1P: Infiltration Basin Discarded=0.03 cfs 0.029 af Primary=0.70 cf	Peak Elev=725.46' Storage=6,719 cf Inflow=3.62 cfs 0.290 af s 0.143 af Secondary=0.00 cfs 0.000 af Outflow=0.73 cfs 0.173 af
Pond 2P: Sedimen Forebay 1 Discarded=0.01	Peak Elev=731.19' Storage=472 cf Inflow=1.33 cfs 0.090 af I cfs 0.004 af Primary=1.28 cfs 0.078 af Outflow=1.28 cfs 0.082 af
Pond 3P: Sedimen Forebay 2 Discarded=0.01	Peak Elev=729.03' Storage=528 cf Inflow=2.26 cfs 0.160 af I cfs 0.007 af Primary=2.18 cfs 0.145 af Outflow=2.19 cfs 0.153 af

Total Runoff Area = 3.500 ac Runoff Volume = 0.429 af Average Runoff Depth = 1.47" 62.86% Pervious = 2.200 ac 37.14% Impervious = 1.300 ac

Printed 9/12/2019

Page 4

Summary for Subcatchment P1: South Parking Area

Runoff = 1.33 cfs @ 12.09 hrs, Volume= 0.090 af, Depth> 1.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

	Area	(ac)	CN	Desc	cription		
*	0.	020	98	Ledg	je		
*	0.	320	98	Impe	ervious		
	0.	020	77	Woo	ds, Poor, I	HSG C	
*	0.	370	74	Lawr	n, Good, H	ISG C	
	0.	730	85	Weig	ghted Aver	age	
	0.	390		53.42	2% Pervio	us Area	
	0.	340		46.58	8% Imperv	vious Area	
	Tc	Leng	ıth	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0	18	35		0.51		Direct Entry, Segment 1

Summary for Subcatchment P2: North Parking Area

Runoff = 2.26 cfs @ 12.09 hrs, Volume= 0.160 af, Depth> 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

	Area	(ac)	CN	Desc	cription		
*	0.	670	98	Impe	ervious		
	0.	050	89	Grav	el, HSG C	;	
*	0.	180	74	Lawr	n, Good, H	SG C	
	0.	900	93	Weig	hted Aver	age	
	0.	230		25.5	5% Pervio	us Area	
	0.	670		74.4	4% Imperv	vious Area	
	Tc	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0	28	33		0.79		Direct Entry, Segment 1

Summary for Subcatchment P3: Building

Runoff = 0.65 cfs @ 12.09 hrs, Volume= 0.050 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

Prepared by J.M. Grenier Associates Inc.

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Printed 9/12/2019

ŀ	٠,	а	g	е	,

	Area	(ac)	CN	Desc	cription		
*	0.	230	98	Impe	ervious		
	0.230 100.00% Impervious Area				00% Impe	rvious Area	l
	Tc (min)	Leng		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0	35		(1010)	0.99	(010)	Direct Entry, Segment 1

Summary for Subcatchment P4: Runoff to Basin

Runoff = 0.25 cfs @ 12.10 hrs, Volume= 0.018 af, Depth> 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

_	Area	(ac)	CN	Desc	cription		
*	0.	260	74	Lawr	n, Good, H	ISG C	
	0.	260		100.0	00% Pervi	ous Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0	5	5		0.15		Direct Entry, Segment 1

Summary for Subcatchment P5: Runoff to North

Runoff = 1.27 cfs @ 12.21 hrs, Volume= 0.112 af, Depth> 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

	Area	(ac)	CN	l Desc	cription				
*	0.	010	98	Ledg	je				
*	0.	050	98	3 Impe	ervious				
	0.	900	77	' Woo	ds, Poor, I	HSG C			
*	0.	420	74	Law	n, Good, H	ISG C			
	1.380 77 Weighted Average								
	1.	320		95.6	5% Pervio	us Area			
	0.	060		4.35	% Impervi	ous Area			
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	12.7	5	50	0.0200	0.07		Sheet Flow, Segment 1		
	1.6	12	23	0.0330	1.27		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Segment 2 Short Grass Pasture Kv= 7.0 fps		
	14.3	17	73	Total					

Prepared by J.M. Grenier Associates Inc.

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 6

Summary for Reach 1R: North Property Line

Inflow Area = 3.500 ac, 37.14% Impervious, Inflow Depth > 0.88" for 2-YR event

Inflow = 1.27 cfs @ 12.21 hrs, Volume= 0.256 af

Outflow = 1.27 cfs @ 12.21 hrs, Volume= 0.256 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Grass Channel 1

Inflow Area = 0.730 ac, 46.58% Impervious, Inflow Depth > 1.29" for 2-YR event

Inflow = 1.28 cfs @ 12.12 hrs, Volume= 0.078 af

Outflow = 1.12 cfs @ 12.25 hrs, Volume= 0.078 af, Atten= 12%, Lag= 7.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.11 fps, Min. Travel Time= 4.5 min Avg. Velocity = 0.39 fps, Avg. Travel Time= 12.8 min

Peak Storage= 310 cf @ 12.17 hrs Average Depth at Peak Storage= 0.16'

Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 29.15 cfs

6.00' x 1.00' deep channel, n= 0.030

Side Slope Z-value= 3.0 '/' Top Width= 12.00'

Length= 300.0' Slope= 0.0065 '/'

Inlet Invert= 731.00', Outlet Invert= 729.05'

Summary for Reach 3R: Grass Channel 2

Inflow Area = 0.900 ac, 74.44% Impervious, Inflow Depth > 1.94" for 2-YR event

Inflow = 2.18 cfs @ 12.11 hrs, Volume= 0.145 af

Outflow = 2.07 cfs @ 12.16 hrs, Volume= 0.145 af, Atten= 5%, Lag= 2.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.34 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.43 fps, Avg. Travel Time= 4.6 min

Peak Storage= 190 cf @ 12.13 hrs Average Depth at Peak Storage= 0.19'

Bank-Full Depth= 1.00' Flow Area= 11.0 sf, Capacity= 40.01 cfs

#5

Secondary

726.55'

Prepared by J.M. Grenier Associates Inc.

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 7

8.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 3.0 '/' Top Width= 14.00' Length= 120.0' Slope= 0.0077 '/' Inlet Invert= 728.80', Outlet Invert= 727.88'

Summary for Pond 1P: Infiltration Basin

2.120 ac, 58.49% Impervious, Inflow Depth > 1.64" for 2-YR event Inflow Area = 3.62 cfs @ 12.16 hrs, Volume= Inflow 0.290 af Outflow 0.73 cfs @ 12.71 hrs, Volume= 0.173 af, Atten= 80%, Lag= 33.1 min Discarded = 0.03 cfs @ 12.71 hrs, Volume= 0.029 af 0.70 cfs @ 12.71 hrs, Volume= 0.143 af Primary = 5.00 hrs, Volume= Secondary = 0.00 cfs @ 0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 725.46' @ 12.71 hrs Surf.Area= 5,432 sf Storage= 6,719 cf

Plug-Flow detention time= 157.2 min calculated for 0.172 af (59% of inflow) Center-of-Mass det. time= 84.9 min (870.4 - 785.4)

Volume	Invert	Avail.Stor	age Storage [Description		
#1	724.00	20,39	4 cf Custom S	Stage Data (P	rismatic) l	_isted below (Recalc)
Elevation	on Si	urf.Area	Inc.Store	Cum.Store)	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	<u>.</u>	
724.0	00	3,790	0	0)	
725.0	00	4,882	4,336	4,336	;	
726.0	00	6,072	5,477	9,813	3	
727.0	00	7,373	6,723	16,536	;	
727.5	50	8,062	3,859	20,394	<u> </u>	
Dovice	Douting	Invert	Outlet Devices			
Device	Routing	Invert				
#1	Discarded	724.00'	0.270 in/hr Exf	filtration over	· Horizonta	al area
#2	Primary	723.00'	18.0" Round (Culvert		
	-		L= 40.0' RCP	, square edge	e headwall	, Ke= 0.500
			Inlet / Outlet In	vert= 723.00'	/ 722.30'	S= 0.0175 '/' Cc= 0.900
			n= 0.013, Flov	w Area= 1.77	sf	
#3	Device 2	725.10'	12.0" W x 16.2	" H Vert. Orifi	ice/Grate	C= 0.600
#4	Device 2	726.45'	48.0" Horiz. O	rifice/Grate	C = 0.600	Limited to weir flow at low heads

10.0' long x 15.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Prepared by J.M. Grenier Associates Inc.

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 8

Discarded OutFlow Max=0.03 cfs @ 12.71 hrs HW=725.46' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.70 cfs @ 12.71 hrs HW=725.46' (Free Discharge)

-2=Culvert (Passes 0.70 cfs of 11.13 cfs potential flow)

3=Orifice/Grate (Orifice Controls 0.70 cfs @ 1.93 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=724.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2P: Sedimen Forebay 1

Inflow Area =	0.730 ac, 46.58% Impervious, Inflow	Depth > 1.48" for 2-YR event
Inflow =	1.33 cfs @ 12.09 hrs, Volume=	0.090 af
Outflow =	1.28 cfs @ 12.12 hrs, Volume=	0.082 af, Atten= 4%, Lag= 1.4 min
Discarded =	0.01 cfs @ 12.12 hrs, Volume=	0.004 af
Primary =	1.28 cfs @ 12.12 hrs, Volume=	0.078 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 731.19' @ 12.12 hrs Surf.Area= 838 sf Storage= 472 cf

Plug-Flow detention time= 42.8 min calculated for 0.082 af (91% of inflow) Center-of-Mass det. time= 14.9 min (807.7 - 792.9)

Volume	Invert	Avail.Sto	rage Storage D	Description	
#1	730.50'	76	64 cf Custom S	Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (fee		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
730.5	50	606	0	0	
731.0	00	690	324	324	
731.5	50	1,071	440	764	
Device	Routing	Invert	Outlet Devices		
#1	Discarded	730.50'	0.270 in/hr Exf	iltration over F	łorizontal area
#2	Primary	731.00'	Head (feet) 0.2	20 0.40 0.60	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.69 2.68 2.69 2.67 2.64

Discarded OutFlow Max=0.01 cfs @ 12.12 hrs HW=731.19' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=1.24 cfs @ 12.12 hrs HW=731.19' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 1.24 cfs @ 1.09 fps)

Page 9

Summary for Pond 3P: Sedimen Forebay 2

Inflow Area = 0.900 ac, 74.44% Impervious, Inflow Depth > 2.13" for 2-YR event Inflow = 2.26 cfs @ 12.09 hrs, Volume= 0.160 af Outflow = 2.19 cfs @ 12.11 hrs, Volume= 0.153 af, Atten= 3%, Lag= 1.3 min Discarded = 0.01 cfs @ 12.11 hrs, Volume= 0.007 af Primary = 2.18 cfs @ 12.11 hrs, Volume= 0.145 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 729.03' @ 12.11 hrs Surf.Area= 1,165 sf Storage= 528 cf

Plug-Flow detention time= 29.6 min calculated for 0.153 af (96% of inflow) Center-of-Mass det. time= 13.3 min (777.6 - 764.3)

Volume	Invert	Avail.Stor	age Storag	e Description			
#1	728.50'	1,15	9 cf Custo	Custom Stage Data (Prismatic) Listed below (Recalc)			
Elevatio (fee 728.5 728.8 729.5	t) 60 60	rf.Area (sq-ft) 876 999 1,509	Inc.Store (cubic-feet) 0 281 878	Cum.Store (cubic-feet) 0 281 1,159			
Device	Routing	Invert	Outlet Device	,			
#1 #2	Discarded Primary	728.50' 728.80'	8.0' long x Head (feet)	0.20 0.40 0.60 0.80	rested Rectangular Weir		

Discarded OutFlow Max=0.01 cfs @ 12.11 hrs HW=729.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=2.13 cfs @ 12.11 hrs HW=729.02' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 2.13 cfs @ 1.18 fps)

Page 10

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P1: South Parking Area	Runoff Area=0.730 ac 46.58% Impervious Runoff Depth>2.73" Flow Length=185' Tc=6.0 min CN=85 Runoff=2.42 cfs 0.166 af
Subcatchment P2: North Parking Area	Runoff Area=0.900 ac 74.44% Impervious Runoff Depth>3.50" Flow Length=283' Tc=6.0 min CN=93 Runoff=3.62 cfs 0.263 af
Subcatchment P3: Building	Runoff Area=0.230 ac 100.00% Impervious Runoff Depth>3.96" Flow Length=357' Tc=6.0 min CN=98 Runoff=0.99 cfs 0.076 af
Subcatchment P4: Runoff to Basin	Runoff Area=0.260 ac 0.00% Impervious Runoff Depth>1.82" Flow Length=55' Tc=6.0 min CN=74 Runoff=0.58 cfs 0.039 af
Subcatchment P5: Runoff to North	Runoff Area=1.380 ac 4.35% Impervious Runoff Depth>2.05" Flow Length=173' Tc=14.3 min CN=77 Runoff=2.73 cfs 0.235 af
Reach 1R: North Property Line	Inflow=4.81 cfs 0.597 af Outflow=4.81 cfs 0.597 af
Reach 2R: Grass Channel 1	Avg. Flow Depth=0.23' Max Vel=1.40 fps Inflow=2.35 cfs 0.154 af =300.0' S=0.0065 '/' Capacity=29.15 cfs Outflow=2.14 cfs 0.153 af
Reach 3R: Grass Channel 2	Avg. Flow Depth=0.25' Max Vel=1.59 fps Inflow=3.53 cfs 0.248 af =120.0' S=0.0077 '/' Capacity=40.01 cfs Outflow=3.35 cfs 0.248 af
Pond 1P: Infiltration Basin Discarded=0.04 cfs 0.032 af Primary=2.74 cfs	Peak Elev=726.00' Storage=9,812 cf Inflow=6.43 cfs 0.516 af s 0.362 af Secondary=0.00 cfs 0.000 af Outflow=2.78 cfs 0.394 af
Pond 2P: Sedimen Forebay 1 Discarded=0.01	Peak Elev=731.29' Storage=555 cf Inflow=2.42 cfs 0.166 af cfs 0.005 af Primary=2.35 cfs 0.154 af Outflow=2.36 cfs 0.158 af
Pond 3P: Sedimen Forebay 2 Discarded=0.01	Peak Elev=729.11' Storage=629 cf Inflow=3.62 cfs 0.263 af cfs 0.008 af Primary=3.53 cfs 0.248 af Outflow=3.54 cfs 0.256 af

Total Runoff Area = 3.500 ac Runoff Volume = 0.779 af Average Runoff Depth = 2.67" 62.86% Pervious = 2.200 ac 37.14% Impervious = 1.300 ac

Printed 9/12/2019

Page 11

Summary for Subcatchment P1: South Parking Area

Runoff = 2.42 cfs @ 12.09 hrs, Volume= 0.166 af, Depth> 2.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.50"

	Area	(ac)	CN	Desc	cription		
*	0.	020	98	Ledg	je		
*	0.	320	98	Impe	ervious		
	0.	020	77	Woo	ds, Poor, I	HSG C	
*	0.	370	74	Lawr	ո, Good, H	SG C	
	0.	0.730 85 Weighted Average					
	0.390 53.42% Pervious Are			2% Pervio	us Area		
	0.	340		46.58% Impervious Area			
	Tc	Leng	jth	Slope	Velocity	Capacity	Description
	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0 18		85		0.51		Direct Entry, Segment 1

Summary for Subcatchment P2: North Parking Area

Runoff = 3.62 cfs @ 12.09 hrs, Volume= 0.263 af, Depth> 3.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.50"

	Area (ac)	CN	Desc	cription		
*	0.0	670	98	Impe	ervious		
	0.0	050	89	Grav	el, HSG C	;	
*	0.	180	74	Lawr	n, Good, H	ISG C	
	0.900 93 Weighted Average						
	0.230 25.56% Pervious Area				6% Pervio	us Area	
	0.0	670		74.4	4% Imperv	ious Area	
	Tc	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0	28	33		0.79		Direct Entry, Segment 1

Summary for Subcatchment P3: Building

Runoff = 0.99 cfs @ 12.09 hrs, Volume= 0.076 af, Depth> 3.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.50"

Prepared by J.M. Grenier Associates Inc.

Printed 9/12/2019

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 12

_	Area (ac) CN Description				cription		
*	0.	230	98	Impe	ervious		
	0.230			100.0	00% Impe	rvious Area	ı
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	6.0	35		(IVII)	0.99	(615)	Direct Entry, Segment 1

Summary for Subcatchment P4: Runoff to Basin

Runoff = 0.58 cfs @ 12.10 hrs, Volume= 0.039 af, Depth> 1.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.50"

_	Area	(ac)	CN	Desc	cription		
*	0.	260	74	Lawr	n, Good, H	ISG C	
	0.	260		100.0	00% Pervi	ous Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0	5	5		0.15		Direct Entry, Segment 1

Summary for Subcatchment P5: Runoff to North

Runoff = 2.73 cfs @ 12.20 hrs, Volume= 0.235 af, Depth> 2.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.50"

	Area	(ac)	CN	Desc	cription		
*	0.	010	98	Ledg	ie		
*	0.	050	98	Impe	rvious		
	0.	900	77	Woo	ds, Poor, I	HSG C	
*	0.	420	74	Lawr	n, Good, H	ISG C	
	1.	380	77	Weig	hted Aver	age	
	1.	320		95.6	5% Pervio	us Area	
	0.060 4.35% Impervious Area						
	Тс	Lengt	:h	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	12.7	5	0 (0.0200	0.07		Sheet Flow, Segment 1
							Woods: Light underbrush n= 0.400 P2= 3.00"
	1.6	12	3 (0.0330	1.27		Shallow Concentrated Flow, Segment 2
_							Short Grass Pasture Kv= 7.0 fps
	14.3	17	3	Total			

Page 13

Summary for Reach 1R: North Property Line

Inflow Area = 3.500 ac, 37.14% Impervious, Inflow Depth > 2.05" for 10-YR event

Inflow = 4.81 cfs @ 12.28 hrs, Volume= 0.597 af

Outflow = 4.81 cfs @ 12.28 hrs, Volume= 0.597 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Grass Channel 1

Inflow Area = 0.730 ac, 46.58% Impervious, Inflow Depth > 2.53" for 10-YR event

Inflow = 2.35 cfs @ 12.11 hrs, Volume= 0.154 af

Outflow = 2.14 cfs @ 12.21 hrs, Volume= 0.153 af, Atten= 9%, Lag= 6.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.40 fps, Min. Travel Time= 3.6 min Avg. Velocity = 0.48 fps, Avg. Travel Time= 10.4 min

Peak Storage= 465 cf @ 12.15 hrs Average Depth at Peak Storage= 0.23'

Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 29.15 cfs

6.00' x 1.00' deep channel, n= 0.030

Side Slope Z-value= 3.0 '/' Top Width= 12.00'

Length= 300.0' Slope= 0.0065 '/'

Inlet Invert= 731.00', Outlet Invert= 729.05'

Summary for Reach 3R: Grass Channel 2

Inflow Area = 0.900 ac, 74.44% Impervious, Inflow Depth > 3.31" for 10-YR event

Inflow = 3.53 cfs @ 12.11 hrs. Volume= 0.248 af

Outflow = 3.35 cfs @ 12.15 hrs, Volume= 0.248 af, Atten= 5%, Lag= 2.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.59 fps, Min. Travel Time= 1.3 min Avg. Velocity = 0.50 fps, Avg. Travel Time= 4.0 min

Peak Storage= 259 cf @ 12.12 hrs Average Depth at Peak Storage= 0.25'

Bank-Full Depth= 1.00' Flow Area= 11.0 sf, Capacity= 40.01 cfs

#5

Secondary

726.55

Prepared by J.M. Grenier Associates Inc.

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 14

8.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 3.0 '/' Top Width= 14.00' Length= 120.0' Slope= 0.0077 '/' Inlet Invert= 728.80', Outlet Invert= 727.88'

Summary for Pond 1P: Infiltration Basin

2.120 ac, 58.49% Impervious, Inflow Depth > 2.92" for 10-YR event Inflow Area = 6.43 cfs @ 12.15 hrs, Volume= Inflow 0.516 af Outflow 2.78 cfs @ 12.43 hrs, Volume= 0.394 af, Atten= 57%, Lag= 16.9 min Discarded = 0.04 cfs @ 12.43 hrs, Volume= 0.032 af 2.74 cfs @ 12.43 hrs, Volume= 0.362 af Primary 5.00 hrs, Volume= Secondary = 0.00 cfs @ 0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 726.00' @ 12.43 hrs Surf.Area= 6,072 sf Storage= 9,812 cf

Plug-Flow detention time= 116.5 min calculated for 0.394 af (76% of inflow) Center-of-Mass det. time= 59.8 min (834.7 - 774.8)

Volume	Invert	Avail.Stor	age Storage D	Storage Description		
#1	724.00'	20,39	4 cf Custom S	stage Data (I	Prismatic)	_isted below (Recalc)
	_					
Elevation	on Su	ırf.Area	Inc.Store	Cum.Stor	_	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet	<u>:)</u>	
724.0	00	3,790	0		0	
725.0	00	4,882	4,336	4,33	6	
726.0	00	6,072	5,477	9,81	3	
727.0	00	7,373	6,723	16,53	6	
727.5	50	8,062	3,859	20,39	4	
Davisa	Davidaa	las cant	Outlet Devices			
Device	Routing	Invert	Outlet Devices			
#1	Discarded	724.00'	0.270 in/hr Exfi	Itration ove	r Horizonta	al area
#2	Primary	723.00'	18.0" Round C	Culvert		
			L= 40.0' RCP,	square edg	e headwall	, Ke= 0.500
			Inlet / Outlet Inv	ert= 723.00	' / 722.30'	S= 0.0175 '/' Cc= 0.900
			n= 0.013, Flow	Area= 1.77	sf	
#3	Device 2	725.10'	12.0" W x 16.2"	H Vert. Ori	fice/Grate	C= 0.600
#4	Device 2	726.45'	48.0" Horiz. Or	ifice/Grate	C = 0.600	Limited to weir flow at low heads

10.0' long x 15.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63

Page 15

Discarded OutFlow Max=0.04 cfs @ 12.43 hrs HW=726.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=2.73 cfs @ 12.43 hrs HW=726.00' (Free Discharge)

-2=Culvert (Passes 2.73 cfs of 12.76 cfs potential flow)

3=Orifice/Grate (Orifice Controls 2.73 cfs @ 3.04 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=724.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2P: Sedimen Forebay 1

Inflow Area =	0.730 ac, 46.58% Impervious, Inflow	Depth > 2.73" for 10-YR event
Inflow =	2.42 cfs @ 12.09 hrs, Volume=	0.166 af
Outflow =	2.36 cfs @ 12.11 hrs, Volume=	0.158 af, Atten= 3%, Lag= 1.2 min
Discarded =	0.01 cfs @ 12.11 hrs, Volume=	0.005 af
Primary =	2.35 cfs @ 12.11 hrs, Volume=	0.154 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 731.29' @ 12.11 hrs Surf.Area= 910 sf Storage= 555 cf

Plug-Flow detention time= 29.4 min calculated for 0.158 af (95% of inflow) Center-of-Mass det. time= 12.0 min (790.7 - 778.6)

Volume	Invert	Avail.Sto	rage Storage D	escription			
#1	730.50'	76	64 cf Custom S	Stage Data (Pri	smatic) Listed below (Recalc)		
Elevatio	t)	rf.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet)				
730.5	50	606	0	0			
731.0	00	690	324	324			
731.5	50	1,071	440	764			
Device	Routing	Invert	Outlet Devices				
#1	Discarded	730.50'	0.270 in/hr Exfiltration over Horizontal area				
#2	Primary	731.00'	6.0' long x 10.0' breadth Broad-Crested Rectangular Weir				
·			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64				

Discarded OutFlow Max=0.01 cfs @ 12.11 hrs HW=731.28' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=2.30 cfs @ 12.11 hrs HW=731.28' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 2.30 cfs @ 1.34 fps)

Page 16

Summary for Pond 3P: Sedimen Forebay 2

Inflow Area = 0.900 ac, 74.44% Impervious, Inflow Depth > 3.50" for 10-YR event Inflow = 3.62 cfs @ 12.09 hrs, Volume= 0.263 af Outflow = 3.54 cfs @ 12.11 hrs, Volume= 0.256 af, Atten= 2%, Lag= 1.2 min Discarded = 0.01 cfs @ 12.11 hrs, Volume= 0.008 af Primary = 3.53 cfs @ 12.11 hrs, Volume= 0.248 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 729.11' @ 12.11 hrs Surf.Area= 1,226 sf Storage= 629 cf

Plug-Flow detention time= 21.7 min calculated for 0.256 af (97% of inflow) Center-of-Mass det. time= 10.8 min (764.6 - 753.7)

Volume	Invert	Avail.Stor	rage Storage D	Description				
#1	728.50'	1,15	59 cf Custom S	f Custom Stage Data (Prismatic) Listed below (Recalc)				
Elevatio		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
728.5	0	876	0	0				
728.8	0	999	281	281				
729.5	0	1,509	878	1,159				
Device	Routing	Invert	Outlet Devices					
#1	Discarded	728.50'	0.270 in/hr Exfiltration over Horizontal area					
#2	Primary	728.80'	8.0' long x 10.	8.0' long x 10.0' breadth Broad-Crested Rectangular Weir				
•			Head (feet) 0.2	20 0.40 0.60	0.80 1.00 1.20 1.40 1.60			
			Coef. (English)	2.49 2.56 2.	70 2.69 2.68 2.69 2.67 2.64			

Discarded OutFlow Max=0.01 cfs @ 12.11 hrs HW=729.11' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=3.46 cfs @ 12.11 hrs HW=729.11' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 3.46 cfs @ 1.40 fps)

Page 17

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P1: South Parking Area	Runoff Area=0.730 ac 46.58% Impervious Runoff Depth>3.43" Flow Length=185' Tc=6.0 min CN=85 Runoff=3.01 cfs 0.209 af
Subcatchment P2: North Parking Area	Runoff Area=0.900 ac 74.44% Impervious Runoff Depth>4.24" Flow Length=283' Tc=6.0 min CN=93 Runoff=4.34 cfs 0.318 af
Subcatchment P3: Building	Runoff Area=0.230 ac 100.00% Impervious Runoff Depth>4.69" Flow Length=357' Tc=6.0 min CN=98 Runoff=1.17 cfs 0.090 af
Subcatchment P4: Runoff to Basin	Runoff Area=0.260 ac 0.00% Impervious Runoff Depth>2.42" Flow Length=55' Tc=6.0 min CN=74 Runoff=0.78 cfs 0.052 af
Subcatchment P5: Runoff to North	Runoff Area=1.380 ac 4.35% Impervious Runoff Depth>2.67" Flow Length=173' Tc=14.3 min CN=77 Runoff=3.57 cfs 0.307 af
Reach 1R: North Property Line	Inflow=6.93 cfs 0.790 af Outflow=6.93 cfs 0.790 af
Reach 2R: Grass Channel 1	Avg. Flow Depth=0.26' Max Vel=1.52 fps Inflow=2.94 cfs 0.196 af =300.0' S=0.0065 '/' Capacity=29.15 cfs Outflow=2.71 cfs 0.195 af
Reach 3R: Grass Channel 2	Avg. Flow Depth=0.28' Max Vel=1.70 fps Inflow=4.24 cfs 0.303 af =120.0' S=0.0077'/ Capacity=40.01 cfs Outflow=4.03 cfs 0.303 af
Pond 1P: Infiltration Basin Discarded=0.04 cfs 0.034 af Primary=3.92 c	Peak Elev=726.24' Storage=11,328 cf Inflow=7.96 cfs 0.640 af fs 0.483 af Secondary=0.00 cfs 0.000 af Outflow=3.96 cfs 0.516 af
Pond 2P: Sedimen Forebay 1 Discarded=0.0	Peak Elev=731.33' Storage=597 cf Inflow=3.01 cfs 0.209 af 1 cfs 0.005 af Primary=2.94 cfs 0.196 af Outflow=2.94 cfs 0.201 af
Pond 3P: Sedimen Forebay 2	Peak Elev=729.15' Storage=677 cf Inflow=4.34 cfs 0.318 af

Total Runoff Area = 3.500 ac Runoff Volume = 0.976 af Average Runoff Depth = 3.35" 62.86% Pervious = 2.200 ac 37.14% Impervious = 1.300 ac

Discarded=0.01 cfs 0.008 af Primary=4.24 cfs 0.303 af Outflow=4.25 cfs 0.311 af

Printed 9/12/2019

Page 18

Summary for Subcatchment P1: South Parking Area

Runoff = 3.01 cfs @ 12.09 hrs, Volume= 0.209 af, Depth> 3.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.30"

_	Area	(ac)	CN	Desc	cription				
*	0.	020	98	Ledg	je				
*	0.	320	98	Impe	Impervious				
	0.	020	77	Woo	ds, Poor, I	HSG C			
*	0.	370	74	Lawr	ո, Good, H	ISG C			
	0.	730	85	Weig	ghted Aver	age			
	0.390 53.42% Pervious Area					us Area			
	0.340 46.58% Impervious Area			8% Imperv	ious Area				
	Tc	Leng	jth	Slope	Velocity	Capacity	Description		
_	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)			
	6.0 185 0.5		0.51		Direct Entry, Segment 1				

Summary for Subcatchment P2: North Parking Area

Runoff = 4.34 cfs @ 12.09 hrs, Volume= 0.318 af, Depth> 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.30"

	Area ((ac)	CN	Desc	cription		
*	0.0	670	98	Impe	ervious		
	0.0	050	89	Grav	el, HSG C	;	
*	0.	180	74	Lawr	n, Good, H	SG C	
	0.9	900	93	Weig	ghted Aver	age	
	0.230 25.56% Pervious Area					us Area	
	0.670 74.44% Impervious Area			4% Imperv	vious Area		
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0	28	33		0.79		Direct Entry, Segment 1

Summary for Subcatchment P3: Building

Runoff = 1.17 cfs @ 12.09 hrs, Volume= 0.090 af, Depth> 4.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.30"

Prepared by J.M. Grenier Associates Inc.

Printed 9/12/2019

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 19

_	Area (ac) CN Description			cription			
4	0.	.230	98	Impe	ervious		
_	0.230 100.00% Impervious Area						
	Tc	- 0		Slope	,	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
-	6.0	3	57		0.99		Direct Entry, Segment 1

Summary for Subcatchment P4: Runoff to Basin

Runoff = 0.78 cfs @ 12.09 hrs, Volume= 0.052 af, Depth> 2.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.30"

	Area	(ac)	CN	Desc	cription		
*	0.	260	74	Lawr	n, Good, H	ISG C	
0.260 100.00% Pervious Area						ous Area	
	Tc	Lengt	th S	Slope	Velocity	Capacity	Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	
_	6.0	5	5		0.15		Direct Entry, Segment 1

Summary for Subcatchment P5: Runoff to North

Runoff = 3.57 cfs @ 12.20 hrs, Volume= 0.307 af, Depth> 2.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.30"

	Area	(ac)	CN	Desc	cription		
*	0.	010	98	Ledg	je		
*	0.	050	98	Impe	rvious		
	0.	900	77	Woo	ds, Poor, I	HSG C	
*	0.	420	74	Lawı	n, Good, H	ISG C	
	1.	380	77	Weig	hted Aver	age	
	1.	320		95.6	5% Pervio	us Area	
	0.	060		4.35	% Impervi	ous Area	
	Тс	Lengt	h	Slope	Velocity	Capacity	Description
_	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)	
	12.7	5	0 0	0.0200	0.07		Sheet Flow, Segment 1
							Woods: Light underbrush n= 0.400 P2= 3.00"
	1.6	12	3 0	0.0330	1.27		Shallow Concentrated Flow, Segment 2
_							Short Grass Pasture Kv= 7.0 fps
	14.3	17	3 T	Total -			

Prepared by J.M. Grenier Associates Inc.

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Printed 9/12/2019 Page 20

Summary for Reach 1R: North Property Line

Inflow Area = 3.500 ac. 37.14% Impervious. Inflow Depth > 2.71" for 25-YR event

Inflow 6.93 cfs @ 12.26 hrs. Volume= 0.790 af

Outflow 6.93 cfs @ 12.26 hrs, Volume= 0.790 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Grass Channel 1

Inflow Area = 0.730 ac, 46.58% Impervious, Inflow Depth > 3.22" for 25-YR event

Inflow 2.94 cfs @ 12.11 hrs, Volume= 0.196 af

Outflow 2.71 cfs @ 12.20 hrs, Volume= 0.195 af, Atten= 8%, Lag= 5.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.52 fps, Min. Travel Time= 3.3 min Avg. Velocity = 0.52 fps, Avg. Travel Time= 9.7 min

Peak Storage= 540 cf @ 12.15 hrs Average Depth at Peak Storage= 0.26'

Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 29.15 cfs

6.00' x 1.00' deep channel, n= 0.030

Side Slope Z-value= 3.0 '/' Top Width= 12.00'

Length= 300.0' Slope= 0.0065 '/'

Inlet Invert= 731.00'. Outlet Invert= 729.05'

‡ Summary for Reach 3R: Grass Channel 2

Inflow Area = 0.900 ac, 74.44% Impervious, Inflow Depth > 4.04" for 25-YR event

Inflow 4.24 cfs @ 12.11 hrs. Volume= 0.303 af

4.03 cfs @ 12.14 hrs, Volume= Outflow 0.303 af, Atten= 5%, Lag= 2.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.70 fps, Min. Travel Time= 1.2 min Avg. Velocity = 0.54 fps, Avg. Travel Time= 3.7 min

Peak Storage= 291 cf @ 12.12 hrs Average Depth at Peak Storage= 0.28'

Bank-Full Depth= 1.00' Flow Area= 11.0 sf, Capacity= 40.01 cfs

#5

Secondary

726.55'

Prepared by J.M. Grenier Associates Inc.

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Printed 9/12/2019 Page 21

8.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 3.0 '/' Top Width= 14.00' Length= 120.0' Slope= 0.0077 '/' Inlet Invert= 728.80', Outlet Invert= 727.88'

Summary for Pond 1P: Infiltration Basin

2.120 ac, 58.49% Impervious, Inflow Depth > 3.62" for 25-YR event Inflow Area = 7.96 cfs @ 12.15 hrs, Volume= Inflow 0.640 af Outflow 3.96 cfs @ 12.37 hrs, Volume= 0.516 af, Atten= 50%, Lag= 13.4 min Discarded = 0.04 cfs @ 12.37 hrs, Volume= 0.034 af 3.92 cfs @ 12.37 hrs, Volume= 0.483 af Primary = 0.00 cfs @ 5.00 hrs, Volume= Secondary = 0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 726.24' @ 12.37 hrs Surf.Area= 6,388 sf Storage= 11,328 cf

Plug-Flow detention time= 105.2 min calculated for 0.515 af (80% of inflow) Center-of-Mass det. time= 55.4 min (826.0 - 770.6)

Volume	Invert	Avail.Stor	age Storage	Description		
#1	724.00'	20,39	4 cf Custom	Stage Data (P	rismatic) l	isted below (Recalc)
Elevation	on Su	ırf.Area	Inc.Store	Cum.Store	;	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
724.0	00	3,790	0	0		
725.0	00	4,882	4,336	4,336	;	
726.0	00	6,072	5,477	9,813		
727.0	00	7,373	6,723	16,536	;	
727.5	50	8,062	3,859	20,394	•	
Device	Routing	Invert	Outlet Devices	2		
#1	Discarded	724.00'	0.270 in/hr Ex		Horizonta	al area
#1 #2	Primary	724.00 723.00'	18.0" Round		11011201118	ii aica
#2	Filliary	123.00	L= 40.0' RCF		hoodwall	Ko- 0 500
						S= 0.0175 '/' Cc= 0.900
						S= 0.0175 / CC= 0.900
			n= 0.013, Flo			
#3	Device 2	725.10'	12.0" W x 16.2	2" H Vert. Orifi	ice/Grate	C = 0.600
#4	Device 2	726.45'	48.0" Horiz. O	rifice/Grate	C = 0.600	Limited to weir flow at low heads

10.0' long x 15.0' breadth Broad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63

Prepared by J.M. Grenier Associates Inc. HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 22

Discarded OutFlow Max=0.04 cfs @ 12.37 hrs HW=726.24' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=3.91 cfs @ 12.37 hrs HW=726.24' (Free Discharge)

-2=Culvert (Passes 3.91 cfs of 13.43 cfs potential flow)

3=Orifice/Grate (Orifice Controls 3.91 cfs @ 3.43 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=724.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2P: Sedimen Forebay 1

Inflow Area =	0.730 ac, 46.58% Impervious, Inflow	v Depth > 3.43" for 25-YR event
Inflow =	3.01 cfs @ 12.09 hrs, Volume=	0.209 af
Outflow =	2.94 cfs @ 12.11 hrs, Volume=	0.201 af, Atten= 2%, Lag= 1.2 min
Discarded =	0.01 cfs @ 12.11 hrs, Volume=	0.005 af
Primary =	2.94 cfs @ 12.11 hrs, Volume=	0.196 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 731.33' @ 12.11 hrs Surf.Area= 945 sf Storage= 597 cf

Plug-Flow detention time= 25.2 min calculated for 0.200 af (96% of inflow) Center-of-Mass det. time= 11.1 min (784.3 - 773.2)

Volume	Invert	Avail.Sto	rage Storage I	Description	
#1	730.50'	76	64 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio	et)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
730.5	50	606	0	0	
731.0	00	690	324	324	
731.5	50	1,071	440	764	
Device	Routing	Invert	Outlet Devices	3	
#1	Discarded	730.50'	0.270 in/hr Ex	filtration over H	lorizontal area
#2	Primary	731.00'	Head (feet) 0.	.20 0.40 0.60	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.69 2.68 2.69 2.67 2.64

Discarded OutFlow Max=0.01 cfs @ 12.11 hrs HW=731.33' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=2.87 cfs @ 12.11 hrs HW=731.33' (Free Discharge) —2=Broad-Crested Rectangular Weir (Weir Controls 2.87 cfs @ 1.45 fps)

Prepared by J.M. Grenier Associates Inc. HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 23

Summary for Pond 3P: Sedimen Forebay 2

Inflow Area = 0.900 ac, 74.44% Impervious, Inflow Depth > 4.24" for 25-YR event Inflow = 4.34 cfs @ 12.09 hrs, Volume= 0.318 af Outflow = 4.25 cfs @ 12.11 hrs, Volume= 0.311 af, Atten= 2%, Lag= 1.1 min Discarded = 0.01 cfs @ 12.11 hrs, Volume= 0.008 af Primary = 4.24 cfs @ 12.11 hrs, Volume= 0.303 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 729.15' @ 12.11 hrs Surf.Area= 1,255 sf Storage= 677 cf

Plug-Flow detention time= 19.0 min calculated for 0.311 af (98% of inflow) Center-of-Mass det. time= 9.7 min (760.0 - 750.3)

Volume	Invert	Avail.Sto	rage Storage L	Description	
#1	728.50'	1,15	59 cf Custom S	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee	7.	ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
728.5 728.8 729.5	80	876 999 1,509	0 281 878	281 1,159	
Device	Routing	Invert	Outlet Devices		
#1	Discarded	728.50'	0.270 in/hr Exf	iltration over H	lorizontal area
#2	Primary	728.80'	Head (feet) 0.2	20 0.40 0.60 (ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.69 2.68 2.69 2.67 2.64

Discarded OutFlow Max=0.01 cfs @ 12.11 hrs HW=729.15' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=4.17 cfs @ 12.11 hrs HW=729.15' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 4.17 cfs @ 1.50 fps)

Flow Length=173' Tc=14.3 min CN=77 Runoff=4.86 cfs 0.421 af

Prepared by J.M. Grenier Associates Inc.

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Printed 9/12/2019 Page 24

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P1: South Parking Area	Runoff Area=0.730 ac 46.58% Impervious Runoff Depth>4.51" Flow Length=185' Tc=6.0 min CN=85 Runoff=3.90 cfs 0.274 af
Subcatchment P2: North Parking Area	Runoff Area=0.900 ac 74.44% Impervious Runoff Depth>5.35" Flow Length=283' Tc=6.0 min CN=93 Runoff=5.41 cfs 0.401 af
Subcatchment P3: Building	Runoff Area=0.230 ac 100.00% Impervious Runoff Depth>5.78" Flow Length=357' Tc=6.0 min CN=98 Runoff=1.43 cfs 0.111 af
Subcatchment P4: Runoff to Basin	Runoff Area=0.260 ac 0.00% Impervious Runoff Depth>3.37" Flow Length=55' Tc=6.0 min CN=74 Runoff=1.08 cfs 0.073 af
Subcatchment P5: Runoff to North	Runoff Area=1.380 ac 4.35% Impervious Runoff Depth>3.66"

Reach 1R: North Property LineInflow=10.44 cfs 1.088 af
Outflow=10.44 cfs 1.088 af

Reach 2R: Grass Channel 1Avg. Flow Depth=0.31' Max Vel=1.67 fps Inflow=3.82 cfs 0.261 af n=0.030 L=300.0' S=0.0065 '/' Capacity=29.15 cfs Outflow=3.58 cfs 0.260 af

Reach 3R: Grass Channel 2Avg. Flow Depth=0.31' Max Vel=1.85 fps Inflow=5.30 cfs 0.386 af n=0.030 L=120.0' S=0.0077'/' Capacity=40.01 cfs Outflow=5.04 cfs 0.386 af

Pond 1P: Infiltration BasinPeak Elev=726.53' Storage=13,182 cf Inflow=10.29 cfs 0.829 af Discarded=0.04 cfs 0.035 af Primary=6.25 cfs 0.668 af Secondary=0.00 cfs 0.000 af Outflow=6.29 cfs 0.703 af

Pond 2P: Sedimen Forebay 1 Peak Elev=731.40' Storage=657 cf Inflow=3.90 cfs 0.274 af Discarded=0.01 cfs 0.005 af Primary=3.82 cfs 0.261 af Outflow=3.82 cfs 0.266 af

Pond 3P: Sedimen Forebay 2 Peak Elev=729.21' Storage=747 cf Inflow=5.41 cfs 0.401 af Discarded=0.01 cfs 0.008 af Primary=5.30 cfs 0.386 af Outflow=5.31 cfs 0.394 af

Total Runoff Area = 3.500 ac Runoff Volume = 1.280 af Average Runoff Depth = 4.39" 62.86% Pervious = 2.200 ac 37.14% Impervious = 1.300 ac

Printed 9/12/2019

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 25

Summary for Subcatchment P1: South Parking Area

Runoff = 3.90 cfs @ 12.09 hrs, Volume= 0.274 af, Depth> 4.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=6.50"

_	Area	(ac)	CN	Desc	cription		
*	0.	020	98	Ledg	e		
*	0.	320	98	Impe	ervious		
	0.	020	77	Woo	ds, Poor, I	HSG C	
*	0.	370	74	Lawr	n, Good, H	ISG C	
	0.	730	85	Weig	ghted Aver	age	
	0.	390		53.4	2% Pervio	us Area	
	0.	340		46.5	3% Imperv	ious Area	
	Tc	Leng	gth	Slope	Velocity	Capacity	Description
_	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0	1	85		0.51		Direct Entry, Segment 1

Summary for Subcatchment P2: North Parking Area

Runoff = 5.41 cfs @ 12.09 hrs, Volume= 0.401 af, Depth> 5.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=6.50"

	Area (ac)	CN	Desc	cription		
*	0.0	670	98	Impe	ervious		
	0.0	050	89	Grav	el, HSG C	;	
*	0.	180	74	Lawı	n, Good, H	ISG C	
	0.9	900	93	Weig	ghted Aver	age	
	0.2	230		25.5	6% Pervio	us Area	
	0.0	670		74.4	4% Imperv	ious Area	
	Tc	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0	28	33		0.79		Direct Entry, Segment 1

Summary for Subcatchment P3: Building

Runoff = 1.43 cfs @ 12.09 hrs, Volume= 0.111 af, Depth> 5.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=6.50"

Printed 9/12/2019

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 26

_	Area	(ac)	CN	Desc	cription		
*	0.	230	98	Impe	ervious		
	0.	230		100.0	00% Impe	rvious Area	ı
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0	35		, ,	0.99	()	Direct Entry, Segment 1

Summary for Subcatchment P4: Runoff to Basin

Runoff = 1.08 cfs @ 12.09 hrs, Volume= 0.073 af, Depth> 3.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=6.50"

	Area	(ac)	CN	Desc	cription		
*	0.	260	74	Lawr	n, Good, H	ISG C	
	0.	260		100.0	00% Pervi	ous Area	
	Tc	Lengt	th S	Slope	Velocity	Capacity	Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	
_	6.0	5	5		0.15		Direct Entry, Segment 1

Summary for Subcatchment P5: Runoff to North

Runoff = 4.86 cfs @ 12.20 hrs, Volume= 0.421 af, Depth> 3.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=6.50"

	Area	(ac)	CN	Desc	cription		
*	0.	010	98	Ledg	je		
*	0.	050	98	Impe	rvious		
	0.	900	77	Woo	ds, Poor, I	HSG C	
*	0.	420	74	Lawr	n, Good, H	SG C	
	1.	380	77	Weig	ghted Aver	age	
	1.	320		95.6	5% Pervio	us Area	
	0.	060		4.35	% Impervi	ous Area	
	То	Longs	·h	Clono	Volocity	Conneity	Description
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_						(CIS)	Shoot Flaw Sagment 1
	12.7	5	0 0	0.0200	0.07		Sheet Flow, Segment 1
	1.6	12	2 (0.0330	1.27		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Segment 2
	1.0	12	.S ().0330	1.27		Short Grass Pasture Kv= 7.0 fps
_	440						Short Grass Pasture NV= 1.0 IPS
	14.3	17	3 1	Fotal			

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Printed 9/12/2019 Page 27

Summary for Reach 1R: North Property Line

Inflow Area = 3.500 ac, 37.14% Impervious, Inflow Depth > 3.73" for 100-YR event

Inflow = 10.44 cfs @ 12.27 hrs, Volume= 1.088 af

Outflow = 10.44 cfs @ 12.27 hrs, Volume= 1.088 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 2R: Grass Channel 1

Inflow Area = 0.730 ac, 46.58% Impervious, Inflow Depth > 4.29" for 100-YR event

Inflow = 3.82 cfs @ 12.11 hrs, Volume= 0.261 af

Outflow = 3.58 cfs @ 12.19 hrs, Volume= 0.260 af, Atten= 6%, Lag= 5.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.67 fps, Min. Travel Time= 3.0 min Avg. Velocity = 0.56 fps, Avg. Travel Time= 8.9 min

Peak Storage= 644 cf @ 12.14 hrs Average Depth at Peak Storage= 0.31'

Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 29.15 cfs

6.00' x 1.00' deep channel, n= 0.030

Side Slope Z-value= 3.0 '/' Top Width= 12.00'

Length= 300.0' Slope= 0.0065 '/'

‡

Inlet Invert= 731.00', Outlet Invert= 729.05'

Summary for Reach 3R: Grass Channel 2

Inflow Area = 0.900 ac, 74.44% Impervious, Inflow Depth > 5.15" for 100-YR event

Inflow = 5.30 cfs @ 12.11 hrs, Volume= 0.386 af

Outflow = 5.04 cfs @ 12.14 hrs, Volume= 0.386 af, Atten= 5%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.85 fps, Min. Travel Time= 1.1 min Avg. Velocity = 0.58 fps, Avg. Travel Time= 3.5 min

Peak Storage= 337 cf @ 12.12 hrs Average Depth at Peak Storage= 0.31'

Bank-Full Depth= 1.00' Flow Area= 11.0 sf, Capacity= 40.01 cfs

G-565-POST

Volume

Invert

Prepared by J.M. Grenier Associates Inc.

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Printed 9/12/2019 Page 28

8.00' x 1.00' deep channel, n= 0.030 Side Slope Z-value= 3.0 '/' Top Width= 14.00' Length= 120.0' Slope= 0.0077 '/' Inlet Invert= 728.80', Outlet Invert= 727.88'

Summary for Pond 1P: Infiltration Basin

2.120 ac, 58.49% Impervious, Inflow Depth > 4.69" for 100-YR event Inflow Area = 10.29 cfs @ 12.14 hrs, Volume= Inflow 0.829 af Outflow 6.29 cfs @ 12.30 hrs, Volume= 0.703 af, Atten= 39%, Lag= 9.6 min Discarded = 0.04 cfs @ 12.30 hrs, Volume= 0.035 af Primary = 6.25 cfs @ 12.30 hrs, Volume= 0.668 af 5.00 hrs, Volume= Secondary = 0.00 cfs @ 0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 726.53' @ 12.30 hrs Surf.Area= 6,755 sf Storage= 13,182 cf

Plug-Flow detention time= 95.0 min calculated for 0.703 af (85% of inflow) Center-of-Mass det. time= 51.3 min (816.9 - 765.6)

Avail.Storage Storage Description

#1	724.00'	20,39	94 cf Custom	Stage Data (Pris	matic) Listed below (Recalc)
Elevation		rf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
724.0	00	3,790	0	0	
725.0	00	4,882	4,336	4,336	
726.0	00	6,072	5,477	9,813	
727.0	00	7,373	6,723	16,536	
727.5	50	8,062	3,859	20,394	
Device	Routing	Invert	Outlet Devices	3	
#1	Discarded	724.00'	0.270 in/hr Ex	filtration over Ho	orizontal area
#2	Primary	723.00'	18.0" Round	Culvert	
			L= 40.0' RCF	P, square edge he	eadwall, Ke= 0.500
			Inlet / Outlet In	nvert= 723.00' / 7	22.30' S= 0.0175 '/' Cc= 0.900
			n= 0.013, Flo	w Area= 1.77 sf	
#3	Device 2	725.10'	12.0" W x 16.2	2" H Vert. Orifice	'Grate C= 0.600
#4	Device 2	726.45'			0.600 Limited to weir flow at low heads
#5	Secondary	726.55'	Head (feet) 0.	.20 0.40 0.60 0.	ad-Crested Rectangular Weir 80 1.00 1.20 1.40 1.60 0 2.64 2.63 2.64 2.64 2.63

Prepared by J.M. Grenier Associates Inc. HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Printed 9/12/2019

Page 29

Discarded OutFlow Max=0.04 cfs @ 12.30 hrs HW=726.52' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=6.21 cfs @ 12.30 hrs HW=726.52' (Free Discharge)

-2=Culvert (Passes 6.21 cfs of 14.17 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 5.39 cfs @ 3.99 fps)

-4=Orifice/Grate (Weir Controls 0.82 cfs @ 0.89 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=724.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2P: Sedimen Forebay 1

Inflow Area =	0.730 ac, 46.58% Impervious, Inflow	Depth > 4.51" for 100-YR event
Inflow =	3.90 cfs @ 12.09 hrs, Volume=	0.274 af
Outflow =	3.82 cfs @ 12.11 hrs, Volume=	0.266 af, Atten= 2%, Lag= 1.1 min
Discarded =	0.01 cfs @ 12.11 hrs, Volume=	0.005 af
Primary =	3.82 cfs @ 12.11 hrs, Volume=	0.261 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 731.40' @ 12.11 hrs Surf.Area= 991 sf Storage= 657 cf

Plug-Flow detention time= 21.2 min calculated for 0.265 af (97% of inflow) Center-of-Mass det. time= 10.0 min (776.6 - 766.7)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	730.50'	76	64 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee	t)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
730.5	0	606	0	0	
731.0	0	690	324	324	
731.5	0	1,071	440	764	
Device	Routing	Invert	Outlet Device	S	
#1	Discarded	730.50'	0.270 in/hr Ex	filtration over l	Horizontal area
#2	Primary	731.00'			pad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60

Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Discarded OutFlow Max=0.01 cfs @ 12.11 hrs HW=731.39' (Free Discharge) 1=**Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=3.75 cfs @ 12.11 hrs HW=731.39' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 3.75 cfs @ 1.60 fps)

Printed 9/12/2019

HydroCAD® 10.00-22 s/n 01414 © 2018 HydroCAD Software Solutions LLC

Page 30

Summary for Pond 3P: Sedimen Forebay 2

Inflow Area = 0.900 ac, 74.44% Impervious, Inflow Depth > 5.35" for 100-YR event Inflow = 5.41 cfs @ 12.09 hrs, Volume= 0.401 af Outflow = 5.31 cfs @ 12.11 hrs, Volume= 0.394 af, Atten= 2%, Lag= 1.1 min Discarded = 0.01 cfs @ 12.11 hrs, Volume= 0.008 af Primary = 5.30 cfs @ 12.11 hrs, Volume= 0.386 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 729.21' @ 12.11 hrs Surf.Area= 1,295 sf Storage= 747 cf

Plug-Flow detention time= 16.0 min calculated for 0.394 af (98% of inflow) Center-of-Mass det. time= 8.4 min (754.9 - 746.5)

<u>Volume</u>	Invert	Avail.Sto	rage Storage L	escription		
#1	728.50'	1,15	59 cf Custom \$	tage Data (Prismatic) Liste	ed below (Recalc)	
Elevatio		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
728.5 728.8 729.5	30	876 999 1,509	0 281 878	0 281 1,159		
Device	Routing	Invert	Outlet Devices			
#1 #2	Discarded Primary	728.50' 728.80'	8.0' long x 10 Head (feet) 0.	Itration over Horizontal ar O' breadth Broad-Crested 20 0.40 0.60 0.80 1.00 1 2.49 2.56 2.70 2.69 2.6	Rectangular Weir .20 1.40 1.60	_

Discarded OutFlow Max=0.01 cfs @ 12.11 hrs HW=729.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=5.23 cfs @ 12.11 hrs HW=729.20' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 5.23 cfs @ 1.62 fps)

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

nformation presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.				
Registered Professional Engineer Block and Signature				
Signature and Date				
Checklist				
Project Type: Is the application for new development, redevelopment, or a mix of new and edevelopment?				
New development				
Redevelopment				
Mix of New Development and Redevelopment				

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	☐ Credit 1
	☐ Credit 2
	☐ Credit 3
\boxtimes	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
\boxtimes	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges
\boxtimes	No new untreated discharges
	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes	Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cł	hecklist (continued)				
Sta	andard 2: Peak Rate Atte	nuation			
	Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.				
	Calculations provided to show that post-development peak discharge rates do not exceed pre- development rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24- hour storm.				
Sta	andard 3: Recharge				
\boxtimes	Soil Analysis provided.				
\boxtimes	Required Recharge Volu	me calculation provided.			
	Required Recharge volur	ne reduced through use o	f the LID site Design Credits.		
\boxtimes	Sizing the infiltration, BM	Ps is based on the following	ng method: Check the method used.		
	⊠ Static □ S	imple Dynamic	☐ Dynamic Field ¹		
\boxtimes	Runoff from all imperviou	s areas at the site dischar	ging to the infiltration BMP.		
	Runoff from all impervious areas at the site is <i>not</i> discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.				
\boxtimes	Recharge BMPs have be	en sized to infiltrate the R	equired Recharge Volume.		
	Recharge BMPs have been sized to infiltrate the Required Recharge Volume <i>only</i> to the maximum extent practicable for the following reason:				
	☐ Site is comprised sole	ely of C and D soils and/or	r bedrock at the land surface		
	☐ M.G.L. c. 21E sites p	ursuant to 310 CMR 40.00	000		
	☐ Solid Waste Landfill p	oursuant to 310 CMR 19.0	000		
	Project is otherwise s practicable.	ubject to Stormwater Man	agement Standards only to the maximum extent		
\boxtimes	Calculations showing tha	the infiltration BMPs will	drain in 72 hours are provided.		
	Property includes a M.G.	c. 21E site or a solid wa	aste landfill and a mounding analysis is included.		

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

	•
CI	hecklist (continued)
Sta	andard 3: Recharge (continued)
	The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
	Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.
Sta	andard 4: Water Quality
The	e Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan. A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge: is within the Zone II or Interim Wellhead Protection Area is near or to other critical areas is near or to other critical areas

involves runoff from land uses with higher potential pollutant loads.

applicable, the 44% TSS removal pretreatment requirement, are provided.

☐ The Required Water Quality Volume is reduced through use of the LID site Design Credits.

☐ Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program

Checklist (continued)

Checklist for Stormwater Report

	` '
Sta	andard 4: Water Quality (continued)
\boxtimes	The BMP is sized (and calculations provided) based on:
	☐ The ½" or 1" Water Quality Volume or
	☐ The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prio</i> to the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	ndard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
	Critical areas and BMPs are identified in the Stormwater Report.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

andard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum tent practicable
The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
☐ Limited Project
 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
☐ Bike Path and/or Foot Path
☐ Redevelopment Project
Redevelopment portion of mix of new and redevelopment.
Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures:
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

	andard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control ntinued)
	The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be submitted <i>before</i> land disturbance begins.
	The project is <i>not</i> covered by a NPDES Construction General Permit.
	The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
	The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.
Sta	ndard 9: Operation and Maintenance Plan
	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
	Name of the stormwater management system owners;
	☑ Party responsible for operation and maintenance;
	Schedule for implementation of routine and non-routine maintenance tasks;
	☑ Plan showing the location of all stormwater BMPs maintenance access areas;
	☐ Description and delineation of public safety features;
	☐ Estimated operation and maintenance budget; and
	☐ Operation and Maintenance Log Form.
	The responsible party is <i>not</i> the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
	A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.
Sta	ndard 10: Prohibition of Illicit Discharges
	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
	An Illicit Discharge Compliance Statement is attached;
	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of any stormwater to post-construction BMPs.

STORMWATER MANAGEMENT CALCULATIONS

Total Impervious Area

Pavement: 45,260 sq.ft. /1.039 ac. Buildings: 10,000 sq.ft. /0.230 ac. Total 55,260 sq.ft. / 1.269 ac.

Standard #3: Recharge to Groundwater

Recharge Required: $(0.25^{\circ}/12)^*$ 55,260 sq. ft. "C" impervious = 1,151 cu.ft.

Recharge Provided: 4,830 cu. ft. @ elev. 725.10 in infiltration basin

Drawdown within 72 hours

Time: (4,830 cu.ft./(0.27"/hr*(1'/12")*5,001 sq.ft.)) = 42.9 hours in infiltration basin

Standard #4: Water Quality

Treatment Volume Required: (0.5"/12)*45,260 sq. ft. new pavement area = 1,886 cu. ft.

Treatment Volume Provided: 4,830 cu. ft. @ elev. 725.10 in infiltration basin

Forebay Sizing

Forebay 1: Forebay Treatment Volume Required: (0.1"/12)*14,000 sq. ft. = 117 cu. ft.

Forebay Treatment Volume Provided: 325 cu. ft. @ elev. 731.0 in forebay 1

Forebay 2: Forebay Treatment Volume Required: (0.1"/12)*29,120 sq. ft. = 243 cu. ft.

Forebay Treatment Volume Provided: 3264cu. ft. @ elev. 728.88 in forebay 2

STORMWATER NARRATIVE

Design Methods and Objectives

The design of this industrial site has been prepared in accordance with Stormwater Management Standards to the maximum extent practical as outlined in the Stormwater Management Handbook. In particular, the site has been designed to ensure:

- 1. No new stormwater conveyances will discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth. All new pavement runoff from impervious area is routed through an infiltration basin.
- 2. Stormwater management systems are designed so that the post-development peak discharge rated does not exceed pre-development peak discharge rates. Drainage calculations demonstrate that the peak rate of runoff is reduced in the post development condition through the use of an infiltration basin.
- 3. Loss of annual recharge to ground water is minimized through the use of an infiltration basin. The basin and ras designed will provide 4,830 cu.ft. of storage volume which is greater than the required recharge volume required for "C" soils, 1,151 cu.ft.
- 4. Stormwater management systems are designed to remove a minimum of 80% TSS. The use of an infiltration basin provides a minimum of 80% TSS removal for new parking areas.
- 5. The use of the site for a office/general industrial use is not a risk for producing higher pollutant loads. Notwithstanding, the treatment of runoff from this portion of the site will ensure treatment of any potential pollutants.
- 6. This site is not within a Zone II or interim wellhead protection area.
- 7. This project is a new development and stormwater management guidelines are met.
- 8. For construction related activities, an operation and maintenance plan has been incorporated into the Stormwater Management Report to ensure that a protocol for runoff control is in place prior to any construction activities.
- 9. The operation and maintenance plan as provided provides a protocol to ensure that the stormwater management system will function as designed.
- 10. Prior to any construction related activities taking place, a certification regarding illicit discharges will be submitted.

INSTRUCTIONS:

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: 51 Technology Park Road, Sturbridge

	В	С	D	E	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
پ					
moval Worksheet	Infiltration Basin	0.80	1.00	0.80	0.20
al Ks					
o o		0.00	0.20	0.00	0.20
S C		0.00	0.20	0.00	0.20
TSS Removal Calculation Works		0.00	0.20	0.00	0.20
<u> </u>		0.00	0.20	0.00	0.20
ပိ		0.00	0.20	0.00	0.20
					Separate Form Needs to
		Total T	SS Removal =	80%	be Completed for Each Outlet or BMP Train
	Project:	G-565			=
	Prepared By:			*Equals remaining load fro	m previous BMP (E)
	Date:	9/5/2019		which enters the BMP	

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

OPERATION AND MAINTENANCE PLAN

51 Technology Park Road, Sturbridge September 5, 2019

The following are operation and maintenance instructions for both construction and post-development stormwater controls. The goal of these plans is to ensure that the stormwater system, as designed, will function properly during construction and for the future of the site. The developer of the parcel is Dileo Gas. Paul Dileo, Jr. is the contact person for work related to this project, and can be contacted at the following number: (508) 797-5878.

Construction Operation and Maintenance Plan:

- 1. All erosion and sediment control devices installed prior to construction shall be inspected on a daily basis. Any deficiencies in the siltation fence shall be corrected immediately. Any accumulated silt shall be removed manually from the silt fence. Silt barrier should be inspected daily to ensure that there is no accumulation of sediments.
- 2. The most important aspects of controlling erosion and sedimentation are limiting the extent of disturbance and stabilizing surfaces as soon as possible. Of secondary importance in erosion control is limiting the size and length of the tributary drainage area within the work site and drainage structures. These fundamental principles shall be the key factor in the control of erosion on the site.
- 3. All disturbed surfaces shall be stabilized a minimum of 14 days after construction in any portion of the site has ceased or is temporarily halted unless additional construction is intended to be initiated within 21 days.
- 4. Hydroseeding and hay mulching shall be performed immediately after construction to minimize erosion damage. Newly seeded slopes shall be inspected every two weeks for the first few months to ensure that revegatation has occurred. Repairs and reseeding shall be performed immediately as the need arises.
- 5. As noted on the site plans, a temporary settling basin shall be used to capture runoff from up-gradient areas during construction.
- 6. At no time shall silt laden water be allowed to enter sensitive areas (wetlands, and off-site areas). Any runoff from disturbed surfaces shall be directed through settling basins and erosion control barriers prior to entering any sensitive areas.
- 7. At the completion of construction all areas are to be loamed and seeded to ensure that the site is stabilized.

Post Development Operation and Maintenance Plan:

- 1. Seeding and repairs shall be performed as required. Sediment and debris shall be removed at least once a year, typically in early spring prior to the commencement of the growing season.
- 2. The drop inlet on the site shall be inspected annually. Unit shall be cleaned when accumulated sediments reach a depth of 6 inches. Accumulated sediment must be disposed of in accordance with applicable local state, and federal guidelines and regulations. The contractor will be responsible for the maintenance of the unit until such time as the site work is complete. The maintenance will then be the responsibility of the owner(s).
- 3. A contract with a licensed hauler shall be in place for maintenance of drainage structures to ensure the long term performance of the drainage system.
- 4. The infiltration basin and sediment forebays shall be inspected after every major storm for the first 3 months and on a semi-annual basis after to ensure that it is functioning properly and that the vegetation is adequately established. It shall be inspected for the following: slope integrity, soil moisture, vegetative health, soil stability, soil compaction, soil erosion, ponding, and sediment. Regular maintenance shall include: regular mowing (not shorter than 4").
- 5. The drainage swales shall be inspected at least twice annually. Weeds and other vegetation shall be removed as necessary. The outlets shall be inspected twice annually and kept clear of debris. Sediment and debris shall be removed once a year. Grass height shall be between 3 and 6 inches.
- 6. The contractor will be responsible for the maintenance of all drainage structures and until such time as the site work is complete. The maintenance will then be the responsibility of the property owners.

LONG TERM POLLUTION PREVENTION PLAN

51 Technology Park Road, Sturbridge September 5, 2019

This plan was developed in compliance with the Massachusetts Department of Environmental Protection Stormwater Requirements

Good Housekeeping

The proposed site is designed to maintain high quality water treatment for all runoff. A general maintenance plan has been prepared and will be followed in a strict and complete manner as required.

Spill Prevention Plan

No hazardous materials will be stored on site. However the flowing spill prevention plan will be incorporated into the Long Term Pollution Prevention Plan

- 1. Manufacturers recommended methods for spill cleanup will be clearly posted. Site personnel will be made aware of the procedures and location of the information and cleanup supplies.
- 2. Materials and equipment necessary for spill cleanup will be kept in the materials storage area. Equipment and materials will include, but is not limited to, brooms dust pans, mops, rags, gloves, sand and trash containers specifically for this purpose.
- 3. All spills will be cleaned up immediately after discovery.
- 4. The spill area will be kept will ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with a hazardous substance.
- 5. Spills of toxic or hazardous material will be reported, regardless of size, to the Massachusetts Department of Environmental Protection (888) 304-1133
- 6. Should a spill occur, the spill prevention plan will be adjusted to include measures to prevent another spill and to cleanup the spill should another occur. A description of the spill along with the causes and cleanup measures will be included in the updated pollution prevention plan.
- 7. The construction superintendant responsible for daily operation on the site will be the spill prevention and cleanup coordinator. The superintendant will designate at least three site personnel to receive spill prevention cleanup training. The names of the responsible spill personnel will be posted in the material storage area.

Construction Inspection & Maintenance Schedule

- 1. Haybales and silt fence shall be inspected weekly and after storm events for damage and excessive silting. Damaged fence shall be replaced immediately.
- 2. Temporary construction entrance shall be inspected weekly and after heavy storm events or heavy use. The entrance shall be maintained in a condition that will prevent sediment tracking offsite. All sediment tracked onto Technology Park Road shall be swept up immediately
- 3. Stockpiled sediment shall be mulched if they are to remain for more than three weeks. The stockpiles shall be inspected weekly and after storm events for erosion damage. Additional mulch shall be added if needed.
- 4. Loamed and seeded area shall be inspected after final grading for areas that need to be reseeded of restabilized.
- 5. Temporary diversion swales shall be inspected weekly and after storm events for erosion damage and excessive silting. Silt shall be removed if necessary. Any erosion damage shall be repaired immediately.
- **6.** The temporary construction basin shall be inspected weekly and after storm events for erosion damage and excessive silting.

Stormwater BMP Maintenance

A full BMP maintenance plan has been prepared (see Operation & Maintenance Plan) in order to ensure that the stormwater management system will function properly and as designed.

Landscape and Lawn Maintenance

Routine mowing and associated maintenance of all landscape features will occur weekly or as needed to prevent excessive growth of vegetation on site.

Fertilizers, Herbicides & Pesticides

Fertilizer, herbicide & pesticide use will be limited to that typically associated with commercial lawns. All fertilizer, herbicide & pesticide use will comply with local, state and federal requirements.

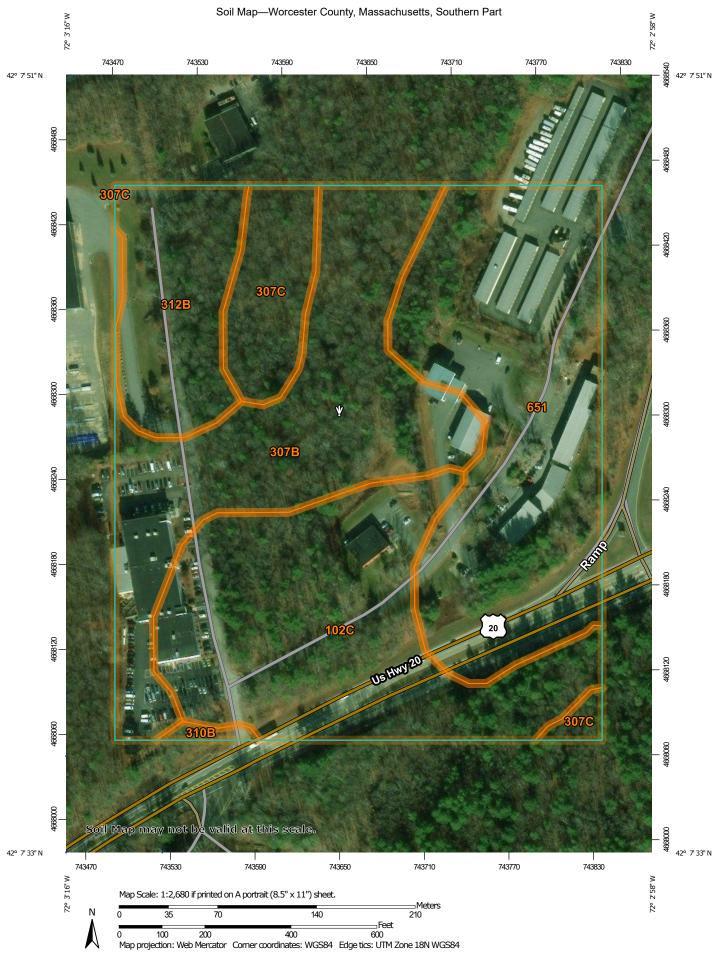
Solid Waste Maintenance

Solid waste is handled on site and will comply with all local, state and federal requirements.

Snow Disposal

Snow disposal areas are shown on the site plan. Snow disposal shall not be directed toward wetland resource areas.

Winter Salt & Sand Use


All winter salt and/or sand will comply with all local, state and federal requirements.

Training of Staff

All personnel on site will be briefed on all requirements for implementing the Long Term Pollution Prevention Plan

Emergency Contact for Long Term Pollution Prevention Plan

J.M. Grenier Associates, Inc. 787 Hartford Turnpike Shrewsbury, MA 01545 (508) 845-2500

MAP LEGEND

â

00

Δ

Water Features

Transportation

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

→ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:25.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Worcester County, Massachusetts, Southern Part

Survey Area Data: Version 11, Sep 11, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 14, 2011—Aug 27, 2016

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
102C	Chatfield-Hollis-Rock outcrop complex, 0 to 15 percent slopes	9.0	27.0%
307B	Paxton fine sandy loam, 0 to 8 percent slopes, extremely stony	8.4	25.1%
307C	Paxton fine sandy loam, 8 to 15 percent slopes, extremely stony	2.2	6.7%
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	0.2	0.5%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	3.5	10.4%
651	Udorthents, smoothed	10.2	30.4%
Totals for Area of Interest	1	33.6	100.0%