STORMWATER MANAGEMENT REPORT

"55+ MANUFACTURED HOUSING COMMUNITY" LOT 3 BERRY FARMS ROAD STURBRIDGE, MA 01566

Prepared for:
Justin Stelmok
557 Southwest Cutoff
Worcester, MA 01607

Rev. 2 April 28, 2023
Rev. 3 June 26, 2023

McCLURE

ENGINEERING, INC

Table of Contents

List of Sections

I. Introduction

A. Scope of Analysis
B. Site Description
C. Proposed Development

II. Hydrologic Analysis

A. Purpose
B. Methodology
C. Selection of Storm Events
D. Soils Classification
E. Pre-Development Model Summary
F. Post-Development Model Summary
G. Summary of Peak Stormwater Discharge Rates

III: Compliance with Stormwater Standards
A. Standard 1 - Computations to Show That Discharge Does Not Cause Scour or Erosion
B. Standard 2 - Peak Rate Attenuation
C. Standard 3 - Recharge
D. Standard 4 - Required Water Quality
E. Standard 5 - Land Uses with Higher Pollutant Loads
F. Standard 6 - Critical Areas
G. Standard 7 - Redevelopment
H. Standard 8 - Construction Period Controls
I. Standard 9 - Operation and Maintenance Plan
J. Standard 10 - Illicit Discharges to Drainage System

List of Tables

1 Pre vs. Post-Development Stormwater Runoff and Volume Summary
2 Standard 3 \& 4 Recharge \& Water Quality Volume Calculations
3 Stormwater Management Calculations - TSS Removal

List of Appendices

A. MA-DEP Stormwater Checklist
B. Figures 1.1 and 1.2-USGS Site Maps
C. Figure 2 - Ortho Imagery

FEMA FIRM - Flood Plain Mapping
NCRS Soil Mapping
Rawls Table
NOAA Rainfall Data
D. Pre-Development HydroCAD Drainage Calculations
E. Post-Development HydroCAD Drainage Calculations
F. Additional Drainage Calculation Worksheets
G. Construction Period Stormwater Pollution Prevention Plan \& Weekly Inspection Form
H. Stormwater Management System Long-Term Operation \& Maintenance (O \& M) Plan

A. Scope of Analysis

The project Applicant, Justin Stelmok, retained McClure Engineering, Inc. (McClure) to prepare this engineering analysis of pre and post-development drainage runoff conditions for the proposed "55+ Manufactured Housing Community" Plan for the property located at Lot 3 Berry Farms Road, Sturbridge, MA (Site).

This Stormwater Management Report provides the required analysis of the proposed stormwater system for compliance with the Town of Sturbridge Bylaw requirements, and the Massachusetts 310 CMR 10.00 Wetland Protection Regulations as promulgated by the Commissioner of the Massachusetts Department of Environmental Protection (MassDEP) pursuant to the authority granted under the Wetland Protection Act, M.G.L. c. 131 sec .40 (WPA). The analysis includes pre- and post- conditions hydrologic modeling, and hydraulic sizing of the conveyance systems, sizing and analysis of Stormwater Best Management Practices (BMPs) of structural or nonstructural techniques for managing stormwater to prevent or reduce non-point source pollutants from entering surface waters or ground waters. This report will demonstrate that the stormwater management system as designed and laid out at Lot 3 Berry Farms Road, Sturbridge, MA, complies with the referenced regulations.

A copy of the "MA-DEP Checklist for Stormwater Report" is included as Appendix A.

B. Site Description

The subject site consists of approximately 41.5 acres. The property lies on the northern side of Main Street and along the Southbridge Town Line. The property is shown as Lot 3 of the Berry Farms Road Definitive Subdivision. The site is located within the Town of Sturbridge Rural Residential zoning district. The existing site consists of mostly wooded area, as well as wetlands. The site has previously been logged and some existing logging trails still exist throughout the property. The site topography slopes generally in a westerly direction towards a valley containing wetlands. The site is surrounded by wetlands on the western boundary, as well as (3) vernal pools as determined by LEC Environmental.

The site is located within an area of minimal flood hazard (Zone X) per Flood Insurance Rate Map (FIRM) Worcester County Massachusetts (All Jurisdictions), Map Number 25027C0933E, effective on 07/04/2011 (see Appendix C).

C. Proposed Construction

The proposed site layout is for the construction of a $55+$ Manufactured Housing Community. The community is proposed with (4) 20^{\prime} wide private roads, (3) cul-de-sacs, (1) emergency access drive through the Town of Southbridge, a common clubhouse and active open space area, and (63) total units. The community will be serviced by municipal water and sewer through Berry Farms Road. The stormwater management system for the site consists of country style drainage, including swales and rain gardens with minimal structures for conveyance. Rain gardens will be placed between all units, and will act as a stormwater structure, but also on-site landscaping and yard separation/privacy barrier. Other than a single deep sump and hooded catch basin in the parking lot for the club house, all stormwater will be conveyed on the surface to rain gardens. These rain gardens will provide for peak flow attenuation, water quality treatment, and groundwater recharge. A total of (71) rain gardens are proposed, with the majority being smaller rain gardens positioned between units which will detain and treat runoff from the units, roads, and driveway. A few larger secondary rain gardens are also proposed. A single large infiltration basin is proposed within an existing natural depression. Interception trenches are proposed behind the units on Roads A and D to convey clean runoff from the undeveloped portions of the property towards the existing discharge points of the property.

The "Special Permit and Site Plan, Blueberry Hill Estates, 55+ Manufactured Housing Community, Lot 3 Berry Farms Road, Sturbridge, MA" Plan Set prepared by McClure Engineering, Inc., dated 4/28/23 provides details of the complete stormwater management system design.

[^0]
A. Purpose

The purpose of this analysis is to determine the peak rate of stormwater runoff leaving the site and to design a stormwater management system that will prevent offsite flooding impacts. MassDEP Stormwater Management Policy, Standard No. 2, requires that post-development peak stormwater discharge rates shall not exceed predevelopment levels.

B. Methodology

The pre- and post-development stormwater runoff has been analyzed using HydroCAD, a stormwater modeling computer program. HydroCAD is a collection of techniques for the generation and routing of hydrographs, including Soil Conservation Service (SCS) Technical Release No. 20 (TR-20) and SCS Technical Release 55 (TR-55), Urban Hydrology for Small Watersheds. The analysis routes completely through one node at a time determining each outflow hydrograph before considering the next node.

The subcatchments have been modeled using SCS methods. Curve numbers, which are based upon the type of development and soil classifications, coupled with the time of concentration have been used to generate the peak storm flow for each area. The detailed information and results are provided in this report.

Hydrology

Computer Model:

Hydrologic Methodology:
HydroCAD 10.0 © 2013 Applied Microcomputer Systems, drainage modeling software;

Watershed Areas:
TR-55 Methodology is used for analysis of peak flow and infiltration basin sizing.
Watershed areas are calculated using AutoCAD software based on the subcatchment areas delineated on topographic mapping included as "PreDevelopment Drainage" and "Post-Development Drainage". The areas shown, times of concentration and runoff coefficients are all consistent with the TR-55 drainage calculation method.

C. Selection of Storm Events

The intensity for each storm event was determined from the National Oceanic and Atmospheric Administration National Weather Service Atlas 14 Point Precipitation Frequency Estimates (See Appendix C). Evaluations were based upon a Type III, 24-hour storm. Rainfall frequency and intensity used in this analysis are as follows:

Design Storm Event	Rainfall Intensity
${ } }$	3.24 inches
10 year	5.05 inches
25 year	6.18 inches
100 year	7.93 inches

D. Soils Classification

Site soils classifications were obtained from the following sources:
1.) Advanced soil mapping performed by the U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS), "Soil Survey of Worcester County, Massachusetts, Southern Part." (See Appendix C for detailed soil information).
"55+ Manufactured Housing Community", Lot 3 Berry Farms Road, Sturbridge, MA - Stormwater Management Report

The soils descriptions are mapped as follows:
71B - Ridgebury Fine Sandy Loam - "HSG D"
305C - Paxton Fine Sandy Loam - "HSG C"
307C - Paxton Fine Sandy Loam - "HSG C"
312B - Woodbridge Fine Sandy Loam - "HSG C"
2.) On site soil testing performed by Peter Engle, P.E. (SE\#14009) on 9/3/20 and 4/12/23

Testing pit locations and results are shown on the Existing Conditions Plans within the Plan Set.

Soil Permeability (k):

Design permeability (k) value:
$\mathrm{k}=2.41 \mathrm{in} / \mathrm{hr}$ (Rawls Rate for Loamy Sand based upon on-site soil testing)
$\mathrm{k}=1.02 \mathrm{in} / \mathrm{hr}$ (Rawls Rate for Sandy Loam based upon on-site soil testing)

E. Pre-Development Model Summary

The pre-development hydrologic model analyzes the existing stormwater runoff from the site to (8) analysis points. The analysis points are: Southbridge Parcel 019-048 (0 Cournoyer Blvd), Wetland Series A (Flags A5687), Wetland Series A (Flags A47-A56 and downstream Vernal Pool), Wetland Series A (Flags A32-A47), Wetland Series A (Flags A23-32 and upstream Vernal Pool), Wetland Series B (off-site), Wetland Series E (Vernal Pool), and Southbridge Parcel 032-092 Idlewood Street. The graphical presentation of the predevelopment model is shown in Appendix D.

F. Post-Development Model Summary

The configuration of the post development analysis points, sub-catchments, ponds and reaches are generally configured as the pre-model. The post-development subcatchment has been broken into several smaller subcatchments for the analysis, in order to properly size the proposed rain gardens, infiltration basin, pipe network, etc. The analysis points are the same as the pre-development model. The graphical presentation of the post-development model is shown in Appendix E. For ease of the model, areas of the proposed units have been modeled as Residential Development - $1 / 8$ acre lots with 65% impervious surface. The model should be considered conservative as the average lot is closer to 55% impervious surface as taken from the site plan. The unit sizes used in the analysis are also the largest units that will be made available to prospective buyers, and it is very unlikely all units will be this size.

G. Summary of Peak Stormwater Discharge Rates

The Pre- and Post-Analyses HydroCAD Reports of the 2, 10, 25 and 100 year frequency storms are provided in Appendix D and E respectively. The following summary table present results for the pre- and post-development analysis for the 2, 10, 25 and 100 year, 24 -hr storm events at the analysis point as previously described. The table shows that post peak rate of runoff is less than or equal to that of pre-existing peak rate of runoff for all the storms as studied.

Table No. 1
Analysis Point 1: Southbridge Parcel 019-048 (0 Cournoyer Blvd)

	Pre-Development (cfs)	Post-Development (cfs)
2 Year Storm	2.58	2.56
10 Year Storm	6.90	6.86
25 Year Storm	9.96	9.90
100 Year Storm	15.00	14.91

"55+ Manufactured Housing Community", Lot 3 Berry Farms Road, Sturbridge, MA - Stormwater Management Report

Table No. 2
Analysis Point 2: Wetland A (A56-A87)

	Pre-Development (cfs)	Post-Development (cfs)
2 Year Storm	7.95	7.92
10 Year Storm	22.72	20.93
25 Year Storm	33.38	31.68
100 Year Storm	51.05	47.25

Table No. 3
Analysis Point 3: Wetland (A47-A56 / downstream A series Vernal Pool)

	Pre-Development (cfs)	Post-Development (cfs)
2 Year Storm	0.34	0.33
10 Year Storm	2.55	2.07
25 Year Storm	4.48	3.58
100 Year Storm	7.93	6.69

Table No. 4
Analysis Point 4: Wetland Series A (A32-A47)

	Pre-Development (cfs)	Post-Development (cfs)
2 Year Storm	3.07	2.76
10 Year Storm	9.20	8.89
25 Year Storm	13.66	13.06
100 Year Storm	21.07	20.28

Table No. 5
Analysis Point 5: Wetland Series A (A23-A32/ Upstream Vernal Pool)

	Pre-Development (cfs)	Post-Development (cfs)
2 Year Storm	2.87	2.86
10 Year Storm	8.60	7.57
25 Year Storm	12.80	10.66
100 Year Storm	19.79	19.16

Table No. 6
Analysis Point 6: Wetland Series B

	Pre-Development (cfs)	Post-Development (cfs)
2 Year Storm	1.57	1.37
10 Year Storm	4.36	4.34
25 Year Storm	6.35	6.35
100 Year Storm	9.62	9.54

Table No. 7
Analysis Point 7: Wetland Series E

	Pre-Development (cfs)	Post-Development (cfs)
2 Year Storm	1.61	1.48
10 Year Storm	6.18	6.04
25 Year Storm	9.74	9.29
100 Year Storm	15.87	15.69

Table No. 8
Analysis Point 8: Southbridge Parcel 032-092 Idlewood Street

	Pre-Development (cfs)	Post-Development (cfs)
2 Year Storm	0.40	0.08
10 Year Storm	1.05	1.04
25 Year Storm	1.50	1.46
100 Year Storm	2.23	2.18

Section III - Stormwater Standards

A. Standard 1 - Computations to Show That Discharge Does Not Cause Scour or Erosion

No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

Proposed Full Compliance:

The site drainage system has been designed from calculations based upon the 100-year design storm event using the peak flows predicted by the HydroCAD 10 Dynamic Modelling Program. The Manning's Equation has been used to size the drainage system pipe runs.

Manning's Equation: $\quad \mathrm{Q}=\mathrm{A} 1.486 \mathrm{R} 2 / 3 \mathrm{~S} 1 / 2 / \mathrm{n}$
Where: $\mathrm{Q}=\mathrm{Flow}$ Discharge, cfs
A = Cross Sectional Area of Wetted Perimeter
$\mathrm{n}=$ Manning Coefficient of Channel Roughness
$R=$ Hydraulic Radius (A/WP)
WP = Wetted Perimeter
S = Slope of Energy Gradient
No new untreated discharges are proposed for the development. All stormwater discharges for the site will have been conveyed through water quality treatment BMPs which meet Standard 4 prior to discharge. All stormwater discharges will also be conveyed to either rip rap outfalls or perforated pipe level spreaders to reduce runoff velocities and to prevent erosion or sedimentation of downstream discharge points. Rip rap outfalls and level spreaders as shown on the site plans have been designed for the applicable flows and velocities directed towards them.

B. Standard 2 - Peak Rate Attenuation

Stormwater management systems must be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for land subject to coastal storm flowage.

Proposed Full Compliance:

The peak rate attenuation analyses and summaries have been reported in hydrologic analysis provided in Section D of this report documenting there is no increase to off-site peak flow rates. A review of FEMA Flood Insurance Rate Map (FIRM) \#25027C0933E (reduced scale provided in Appendix C) was reviewed for this site. The site is located in an area of minimal flood hazard (Zone X). The analysis as submitted indicates that there will be no increase in rate of runoff that would cause an increase of the flooding downstream.

C. Standard 3-Recharge

Loss of annual recharge to ground water shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development conditions based on soil type. This Standard is met when the storm water management system is design to infiltrate the required recharge volume as determined in accordance with the Massachusetts Storm water Handbook.

Proposed Full Compliance:

The majority of the stormwater runoff from the proposed impervious area will be directed to the proposed rain gardens. Rain gardens within areas of fill and which will meet the required separation to groundwater and bedrock will provide for groundwater recharge as well as peak flow attenuation and water quality treatment. Rain gardens in areas of cut which will not meet the required separation to groundwater or bedrock will be lined with a 10 mil

[^1]1. Required Recharge Volume
a. Impervious Area, as obtained from proposed Site Plan:

103,640 s.f. HSG B
219,110 s.f. HSG C
10,730 s.f. HSG D
b. Required recharge volume $R v=F x$ Impervious Area ($F=$ target depth factor) $R v=103,640 \mathrm{sf} \times 0.35 \mathrm{in} / \mathrm{sf}+219,110 \mathrm{sf} \times 0.25 \mathrm{in} / \mathrm{sf}+10,730 \mathrm{sf} \times 0.1 \mathrm{in} / \mathrm{sf}=7,678 \mathrm{c} . \mathrm{f}$.
2. Provided Recharge Volume
a. The proposed infiltration basin alone provides for 8,159 c.f. of storage volume below the lowest outlet (bottom of basin 704.00, orifice in outlet control structure at elevation 705.40), which is enough to meet the recharge volume requirement. According to the HydroCAD model, the basin infiltrates 18,906 c.f. during a two year storm event. The typical infiltrating rain garden between units provides for 265 c.f. of storage volume and provides for 840 c.f. of groundwater recharge during a two year storm event. Rain garden 2.1 provides for 3,865 c.f. of storage volume and provides for 10,643 c.f. of groundwater recharge during a two year storm event. Rain garden 3.1 provides for 1,156 c.f. of storage volume and provides for 2,277 c.f. of groundwater recharge during a two year storm event. Rain garden 4.1 provides for 2,992 c.f. of storage volume and provides for 6,434 c.f. of groundwater recharge during a two year storm event. Rain garden 4.2 provides for 1,920 c.f. of storage volume and provides for 4,076 c.f. of groundwater recharge during a two year storm event. Rain garden 5.1 provides for 1,526 c.f. of storage volume and provides for 994 c.f. of groundwater recharge during a two year storm event.
3. Drawdown within 72 hours:
$\mathrm{T}=12 \times$ Provided Recharge Volume / (Rawls Rate \times Basin Bottom Area)
Infiltration Basin T= 8.7 hours
Rain Garden 5.1 T = 8.2 hours
Rain Garden 4.1 T = 9.1 hours
Rain Garden 4.2 T = 9.9 hours
Rain Garden 3.1 T = 8.1 hours
Rain Garden $2.1 \mathrm{~T}=4.6$ hours
Typical between unit Rain Garden T= 4.4 hours

D. Standard 4 - Water Quality

Stormwater management systems must be designed to remove 80\% of the average annual post construction load of Total Suspended Solids (TSS). This standard is met when:
a. Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan and thereafter implemented and maintained;
b.

Stormwater BMPs are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
c.

Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

Proposed Full Compliance:

TSS removal percentage computations are provided in Appendix F for the BMP treatment train as designed. There are several treatment trains created for the proposed drainage system:
"55+ Manufactured Housing Community", Lot 3 Berry Farms Road, Sturbridge, MA - Stormwater Management Report
a. Runoff from pavement travels to an infiltrating rain garden with a sediment forebay and is discharged to a non-critical area. TSS removal equals 90%. The typical rain garden has an impervious area of 5,000 s.f. directed towards it, and therefore has a required water quality volume of 210 c.f. (0.5 " water quality depth). During a two year storm event, the typical rain garden has an inflow of 1,150 c.f., therefore meeting the water quality volume requirement.
b. Runoff from pavement travels to a lined rain garden with a sediment forebay and is discharged to a critical area (Vernal Pool). TSS removal equals 90%. The typical rain garden has an impervious area of 5,000 s.f. directed towards it, and therefore has a required water quality volume of 420 c.f. (1.0" water quality depth). During a two year storm event, the typical rain garden has an inflow of 1,150 c.f., therefore meeting the water quality volume requirement.
c. Runoff from pavement travels to an infiltrating rain garden with (2) sediment forebays (44\% pretreatment) and is discharged to a critical area (vernal pool). TSS removal equals 93%. The typical rain garden has an impervious area of 5,000 s.f. directed towards it, and therefore has a required water quality volume of 420 c.f. (1.0" water quality depth). During a two year storm event, the typical rain garden has an inflow of 1,150 c.f., therefore meeting the water quality volume requirement.
d. Runoff from pavement travels to an infiltrating rain garden with a sediment forebay and is discharged to an additional infiltrating rain garden prior to discharge to a non-critical area. TSS removal equals 99%. The typical rain garden has an impervious area of 5,000 s.f. directed towards it, and therefore has a required water quality volume of 210 c.f. (0.5 " water quality depth). During a two year storm event, the typical rain garden has an inflow of 1,150 c.f., therefore meeting the water quality volume requirement.
e. Runoff from pavement travels to a lined rain garden with a sediment forebay and is discharged to an infiltrating rain garden prior to discharge to a non-critical area. TSS removal equals 99%. The typical rain garden has an impervious area of 5,000 s.f. directed towards it, and therefore has a required water quality volume of 210 c.f. ($0.5^{\prime \prime}$ water quality depth). During a two year storm event, the typical rain garden has an inflow of 1,150 c.f., therefore meeting the water quality volume requirement.
f. Runoff from pavement travels to a lined rain garden with a sediment forebay (90% pretreatment) and is discharged to an infiltrating rain garden prior to discharge to a critical area (vernal pool). TSS removal equals 99%. The typical rain garden has an impervious area of 5,000 s.f. directed towards it, and therefore has a required water quality volume of 420 c.f. (1.0 " water quality depth). During a two year storm event, the typical rain garden has an inflow of 1,150 c.f., therefore meeting the water quality volume requirement.
g. Runoff from pavement travels to a rain garden with a Rain Guardian pretreatment device and is discharged to a non-critical area. TSS removal equals 90%. Rain garden 2.1 has an impervious area of 32,675 s.f. directed towards it, and therefore has a required water quality volume of 1,360 c.f. ($0.5^{\text {" }}$ water quality depth). During a two year storm event, rain garden 2.1 has an inflow of 12,150 c.f., therefore meeting the water quality volume requirement.
h. Runoff from pavement travels to a rain garden (lined or infiltrating) with a sediment forebay (90% pretreatment) and is discharged to an infiltration basin prior to discharge to a critical area (vernal pool). TSS removal equals 98%. The typical rain garden has an impervious area of 5,000 s.f. directed towards it, and therefore has a required water quality volume of 420 c.f. (1.0" water quality depth). During a two year storm event, the typical rain garden has an inflow of 1,150 c.f., therefore meeting the water quality volume requirement. The infiltration basin has an impervious area of 116,880 s.f. directed towards it, and therefore has a required water quality volume of 9,740 c.f. (1.0 " water quality depth). During a two year storm event, the infiltration basin has an inflow of 31,784 c.f., therefore meeting the water quality volume requirement.
i. Runoff from pavement travels to an infiltration basin with a sediment forebay from a deep sump and hooded catch basin (44% pretreatment) prior to discharge to a critical area (vernal pool). TSS removal equals 85%. The deep sump catch basin has an impervious area of 6,100 s.f. directed

[^2]towards it, and therefore has a required water quality volume of 510 c.f. (1.0" water quality depth). During a two year storm event, the deep sump catch basin has an inflow of 1,776 c.f., therefore meeting the water quality volume requirement. The infiltration basin has an impervious area of 116,880 s.f. directed towards it, and therefore has a required water quality volume of 9,740 c.f. (1.0" water quality depth). During a two year storm event, the infiltration basin has an inflow of 31,784 c.f., therefore meeting the water quality volume requirement.

All discharges from pavement are treated to a minimum of 85% TSS removal and all discharges to or near a critical area (Vernal Pools) are treated for 44% pretreatment prior to infiltration.

Rain gardens are proposed with outlet control devices which include orifices above full soil depth, however these are for control of large storm flows. No water quality flows bypass any rain gardens therefore meeting the requirements of Standard 4 and providing adequate water quality treatment:

	High Orifice Elev	WQ Event Peak	High Orifice Storm Event	Discharges To	Pretreatment \%	WQ Event Treat \%
RG1	674.00	672.58	2 year	RG5.1	25\%	90\%
RG2	676.00	674.44	10 year	RG5.1	25\%	90\%
RG3	678.00	676.66	2 year	RG5.1	25\%	90\%
RG6	676.00	673.50	10 year	RG4.1	25\%	90\%
RG7	677.50	675.00	10 year	RG4.1	25\%	90\%
RG8	678.00	675.50	10 year	RG4.1	25\%	90\%
RG9	679.50	677.00	10 year	RG4.1	25\%	90\%
RG10	681.50	679.00	10 year	RG4.1	25\%	90\%
RG11	684.00	681.50	10 year	RG4.1	25\%	90\%
RG12	688.50	687.47	2 year	RG4.2	25\%	90\%
RG13	697.00	696.10	2 year	RG4.2	25\%	90\%
RG14	703.75	702.82	2 year	RG2.1	25\%	90\%
RG15L	709.25	709.00	2 year	GW \& Inf. Basin	25\%	90\%
RG15H	718.00	717.60	2 year	GW \& Inf. Basin	25\%	90\%
RG16	732.75	732.31	2 year	GW \& Inf. Basin	25\%	90\%
RG17	734.50	732.90	10 year	Inf. Basin	25\%	90\%
RG18	732.00	730.40	10 year	Inf. Basin	25\%	90\%
RG19	728.50	726.90	10 year	Inf. Basin	25\%	90\%
RG20	726.50	724.90	10 year	Inf. Basin	25\%	90\%
RG22	727.25	726.75	10 year	Outfall VP E	44\%	90\%
RG23	728.75	727.25	10 year	Inf. Basin	25\%	90\%
RG24	733.25	731.75	10 year	Inf. Basin	25\%	90\%
RG25	734.25	732.75	10 year	Inf. Basin	25\%	90\%
RG26	746.00	744.50	2 year	Inf. Basin	25\%	90\%
RG27L	750.50	749.00	2 year	Inf. Basin	25\%	90\%
RG27H	757.00	756.30	2 year	Inf. Basin	25\%	90\%
RG28H	756.25	755.10	10 year	Inf. Basin	25\%	90\%
RG28L	748.50	747.33	2 year	Inf. Basin	25\%	90\%
RG29	742.00	740.82	2 year	Inf. Basin	25\%	90\%
RG30	730.00	728.52	10 year	Inf. Basin	25\%	90\%
RG31	731.00	730.10	10 year	RG2.1	25\%	90\%
RG32	733.50	731.60	10 year	RG2.1	25\%	90\%
RG33	735.50	733.60	10 year	RG2.1	25\%	90\%
RG34	738.50	736.60	10 year	RG2.1	25\%	90\%
RG35	740.00	738.10	10 year	RG2.1	25\%	90\%
RG36	739.00	737.10	10 year	Outfall Wet A	25\%	90\%
RG37	738.50	736.60	10 year	Outfall Wet A	25\%	90\%
RG38	736.50	734.60	10 year	Outfall Wet A	25\%	90\%
RG39	734.00	732.10	10 year	Outfall Wet A	25\%	90\%
RG40	732.00	731.00	2 year	Outfall North	25\%	90\%
RG41	731.00	730.40	2 year	Outfall North	25\%	90\%
RG42	731.00	730.34	2 year	GW \& Outfall Wet A	25\%	90\%
RG43	732.50	731.80	2 year	GW \& Outfall Wet A	25\%	90\%
RG44	736.00	735.30	2 year	GW \& Outfall Wet A	25\%	90\%
RG45	737.50	736.80	2 year	GW \& Outfall Wet A	25\%	90\%

"55+ Manufactured Housing Community", Lot 3 Berry Farms Road, Sturbridge, MA - Stormwater Management Report
$\left.\begin{array}{llllll} & & & & \begin{array}{r}\text { McClure Engineering, Inc. } \\ \text { March 31, 2022 }\end{array} \\ & & & & & \\ & & & & \text { Rev. November 10, 2022 } \\ \text { Rev. April } 28,2023\end{array}\right]$ Rev. June 26, 2023

Per the EPA Region 1 BMP Performance Extrapolation Tool and the MA Stormwater Handbook, all treatment trains will also provide for a minimum 60% phosphorous removal as well.

The TSS removal computations are provided in Appendix F.
A "Long Term Operation and Maintenance Plan" is being provided as Appendix H.

E. Standard 5 - Land Uses with Higher Potential Pollutant Loads

For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Storm water Handbook to eliminate or reduce the discharge of storm water runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention, all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, or storm water runoff, the proponent shall use the specific storm water BMP's determined by the Department to be suitable for such use as provided in the Massachusetts Storm water Handbook.

Proposed Full Compliance:

- Not applicable - the Site is not a Land Use with High Potential Pollutant Loads.

F. Standard 6-Critical Areas

Storm water discharges to a Zone II or Interim Wellhead Protection Area of a public water supply and storm water discharges near or any other critical area require the use of the specific storm water best management practices determined by the Department to be suitable for managing discharges to such area as provided in the Massachusetts Storm water Handbook.

Proposed Full Compliance:

- The site does discharge to or near critical areas: three on- and off-site vernal pools. All discharges from pavement are treated to a minimum of 85% TSS removal and all discharges to or near a critical area (vernal

[^3]pools) are treated for 44% pretreatment prior to infiltration. The 1" water quality depth was used to ensure the treatment BMPs treat the required water quality volumes.

G. Standard 7-Redevelopment

A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable; Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

Proposed Full Compliance:

- The Site is not considered a redevelopment, and all of the standards will be fully met.

H. Standard 8 - Construction Period Controls

A plan to control construction related impacts including erosion sedimentation and other pollution prevention sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) must be implemented.

Proposed Full Compliance:

- Draft - Weekly Construction Period Inspection Report is provided as Appendix G.
- Project will disturb > 1 Acre, therefore an EPA-NPDES Stormwater General Permit is required.
- The construction period erosion and sedimentation controls are outlined on the referenced site plans along with the sequence for implementation and construction phasing.

I. Standard 9 - Operation and Maintenance Plan

A long term operation and maintenance plan must be developed and implemented to ensure that storm water management systems function as designed.

Proposed Full Compliance:

- Long Term Operation and Maintenance Plan is included in the Stormwater Management Report, Appendix H.

J. Standard 10 - Illicit Discharges to Drainage System

All illicit discharges to the stormwater management system are prohibited.

Proposed Full Compliance:

- The Long Term Operation and Maintenance Plan provided in Appendix H addresses illicit discharges to drainage system and includes an Illicit Discharge Compliance Statement signed by the applicant.
"55+ Manufactured Housing Community", Lot 3 Berry Farms Road, Sturbridge, MA - Stormwater Management Report

Tables No. 1-8 provide a summary of off-site Pre- and Post-Development peak runoff flow rates and volumes.
Appendix A includes a copy of the "MA-DEP Checklist for Stormwater Report".
Appendix B \& C includes maps and information regarding rainfall data and soils for the site.
Appendix D \& E includes the complete Pre-Development and Post-Development HydroCAD drainage calculation reports figures for your review.

Appendix F provides additional stormwater calculations relating to compliance with the MA Stormwater Management Standards

Appendix G provides a DRAFT "Weekly Construction Period Inspection Report"
Appendix H provides a "Long Term Stormwater Operation \& Maintenance Plan"
The "Special Permit and Site Plan, Blueberry Hill Estates, 55+ Manufactured Housing Community, Lot 3 Berry Farms Road, Sturbridge, MA" Plan Set prepared by McClure Engineering, Inc., dated 4/1/22, Rev 6/27/23 provides details of the complete stormwater management system design.

APPENDIX A

MA-DEP STORMWATER CHECKLIST

Massachusetts Department of Environmental Protection

 Bureau of Resource Protection - Wetlands Program
Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. ${ }^{1}$ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8^{2}
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

[^4]
Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

【 New development
\square Redevelopment
\square Mix of New Development and Redevelopment

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

【 No disturbance to any Wetland Resource Areas
Q Site Design Practices (e.g. clustered development, reduced frontage setbacks)
\square Reduced Impervious Area (Redevelopment Only)
【 Minimizing disturbance to existing trees and shrubs
\square LID Site Design Credit Requested:
Credit 1Credit 2Credit 3
U Use of "country drainage" versus curb and gutter conveyance and pipe
B Bioretention Cells (includes Rain Gardens)
\square Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
\square Treebox Filter
\square Water Quality Swale
\square Grass ChannelGreen RoofOther (describe):

Standard 1: No New Untreated Discharges

இ No new untreated discharges
\boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist for Stormwater Report

Checklist (continued)

Standard 2: Peak Rate Attenuation

Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
\boxtimes Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2 -year and 10 -year 24 -hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

S Soil Analysis provided.
® Required Recharge Volume calculation provided.
\square Required Recharge volume reduced through use of the LID site Design Credits.
\boxtimes Sizing the infiltration, BMPs is based on the following method: Check the method used.
Q StaticSimple Dynamic
\square Dynamic Field ${ }^{1}$
\square Runoff from all impervious areas at the site discharging to the infiltration BMP.
\boxtimes Runoff from all impervious areas at the site is not discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
\boxtimes Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
\square Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum extent practicable for the following reason:

Site is comprised solely of C and D soils and/or bedrock at the land surfaceM.G.L. c. 21E sites pursuant to 310 CMR 40.0000Solid Waste Landfill pursuant to 310 CMR 19.000
\square Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
【 Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
\square Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

[^5]Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 3: Recharge (continued)

\boxtimes The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
\square Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.

区 A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
\boxtimes Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
\square is within the Zone II or Interim Wellhead Protection Area
\boxtimes is near or to other critical areas
\square is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
\square involves runoff from land uses with higher potential pollutant loads.
The Required Water Quality Volume is reduced through use of the LID site Design Credits.
Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection
Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 4: Water Quality (continued)

\boxtimes The BMP is sized (and calculations provided) based on:
\boxtimes The $1 / 2^{\prime \prime}$ or $1^{\text {" }}$ Water Quality Volume or
\square The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.

The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.

A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
\square The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.

The NPDES Multi-Sector General Permit does not cover the land use.
LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.All exposure has been eliminated.
\square All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.
\square The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

\boxtimes The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
\boxtimes Critical areas and BMPs are identified in the Stormwater Report.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
\square Limited ProjectSmall Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentiaily affect a critical area.
\square Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
\square Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoffBike Path and/or Foot PathRedevelopment ProjectRedevelopment portion of mix of new and redevelopment.Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
\square The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2,3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

Q A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

\square The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted before land disturbance begins.
\square The project is not covered by a NPDES Construction General Permit.
\square The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
\boxtimes The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

\boxtimes The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:

N Name of the stormwater management system owners;
Party responsible for operation and maintenance;
\boxtimes Schedule for implementation of routine and non-routine maintenance tasks;
X Plan showing the location of all stormwater BMPs maintenance access areas;
Description and delineation of public safety features;
\boxtimes Estimated operation and maintenance budget; and
Q Operation and Maintenance Log Form.
The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:

A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
\square A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

\boxtimes The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
X An Illicit Discharge Compliance Statement is attached;
\square NO Illicit Discharge Compliance Statement is attached but will be submitted prior to the discharge of any stormwater to post-construction BMPs.

APPENDIX B

USGS - Figure 1

DATE:	3.31 .22	
DRAWN BY:	MM	
APPROVED BY:		
SCALE:		
HORZ:		$1^{\prime \prime}=2000^{\prime}$
0	1000°	2000^{\prime}

McCLURE

USGS SITE LOCATION LOT 3

APPENDIX C

FEMA - FLOOD PLAIN MAPPING
NCRS SOIL MAPPING
ON-SITE SOIL TESTING LOGS
RAWLS TABLE
NOAA PRECIPITATION FREQUENCY ESTIMATES

McCLURE

engineering, Inc
119 Worcester Road

PROJ. NO.
287-2118-K
DWG.

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

| SPECIAL FLOOD |
| :--- | :--- |
| HAZARD AREAS |

| Without Base Flood Elevation (BFE) |
| :--- | :--- |
| Zone A, V, A99 |
| With BFE or Depth Zone AE, AO, AH, VE, AR |

Regulatory Floodway

B $-\frac{20.2}{-175}$ Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation

8 - - Coastal Transect
$\mathrm{mm}_{513 \mathrm{~mm}}$ Base Flood Elevation Line (BFE)
$工$ Limit of Study
_Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES

- Profile Baseline

Hydrographic Feature

MAP PANELS
Digital Data Available
No Digital Data Available Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on $3 / 31 / 2022$ at 10:34 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

MassGIS Soil Map

MAP LEGEND

Area of Interest (AOI)		$C$$C / D$
Area of Interest (AOI)		
Soils \square		
Soil Rating Polygons		
$\square \mathrm{A}$	\square	Not rated or not available
A/D	Water Fe	ures
	\sim	Streams and Canals
B		
	Transpo	tion
B/D	H+	Rails
C	\sim	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	12)	Local Roads
Soil Rating Lines	Backgro	
$\cdots \mathrm{A}$		Aerial Photography
\cdots A/D		
$\cdots B$		
\cdots B/D		
$\cdots \mathrm{C}$		
\cdots C/D		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
$\square \mathrm{B} / \mathrm{D}$		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:25,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Worcester County, Massachusetts, Southern Part
Survey Area Data: Version 14, Sep 3, 2021
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 18, 2019-Jul 9, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D	12.8	9.5\%
102C	Chatfield-Hollis-Rock outcrop complex, 0 to 15 percent slopes	B	28.2	20.9\%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	9.1	6.7\%
305C	Paxton fine sandy loam, 8 to 15 percent slopes	C	3.2	2.4\%
307C	Paxton fine sandy loam, 8 to 15 percent slopes, extremely stony	C	25.3	18.8\%
307E	Paxton fine sandy loam, 15 to 35 percent slopes, extremely stony	C	38.0	28.3\%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	C/D	17.9	13.3\%
Totals for Area of Interest			134.5	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Table 2.3.3. 1982 Rawls Rates ${ }^{18}$

Texture Class	NRCS Hydrologic Soil Group (HSG)	Infiltration Rate Inches/Hour
Sand	A	8.27
Loamy Sand	A	2.41
Sandy Loam	B	1.02
Loam	B	0.52
Silt Loam	C	0.27
Sandy Clay Loam	C	0.17
Clay Loam	D	0.09
Silty Clay Loam	D	0.06
Sandy Clay	D	0.05
Silty Clay	D	0.04
Clay	D	0.02

NOAA Atlas 14, Volume 10, Version 3
Latitude: $\mathbf{4 2 . 0 9 1}^{\circ}$, Longitude: $\mathbf{- 7 2 . 0 5 2 9}{ }^{\circ}$
Elevation: 691.19 ft** *

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite
NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with $\mathbf{9 0 \%}$ confidence intervals (in inches) ${ }^{\mathbf{1}}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-mi	0.338 $(0.263-0.428)$	$(0.310-0.506)$	$(0.386-0.635)$	$(0.448-0.745)$	$(0.518-0.930)$	$\mid(0.570-1.07)$	$(0.616-1.24)$	$\begin{gathered} 0.967 \\ (0.652-1.41) \\ \hline \end{gathered}$	$(0.714-1.67)$	$\begin{array}{c\|} \hline 1.21 \\ (0.763-1.87) \end{array}$
10-min	$\begin{gathered} \mathbf{0 . 4 7 9} \\ (0.373-0.607) \\ \hline \end{gathered}$	$\begin{gathered} 0.566 \\ (0.440-0.717) \\ \hline \end{gathered}$	0.54	$\begin{gathered} \hline \mathbf{0 . 8 2 4} \\ (0.635-1.06) \end{gathered}$	$\begin{gathered} 0.985 \\ (0.734-1.32) \\ \hline \end{gathered}$	$\begin{gathered} 1.11 \\ (0.808-1.51) \end{gathered}$	$\begin{array}{c\|} \hline 1.23 \\ (0.872-1.75) \\ \hline \end{array}$	(0.923-2.00)	$(1.01-2.37)$	$\begin{array}{c\|} \hline 1.71 \\ (1.08-2.65) \\ \hline \end{array}$
15-1	$\begin{gathered} \mathbf{0 . 5 6 4} \\ (0.439-0.71 \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{0 . 6 6 5} \\ (0.517-0.843) \\ \hline \end{array}$	(0.643-1.06)	$\begin{gathered} 0.969 \\ (0.747-1.24) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.16 \\ (0.864-1.55) \end{gathered}$	(0.95	$\begin{gathered} \hline 1.45 \\ (1.03-2.06) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.61 \\ (1.09-2.36) \end{gathered}$	$\begin{array}{c\|} \hline 1.83 \\ (1.19-2.78) \\ \hline \end{array}$	
30-	0.768 $(0.597-0.972)$	$\begin{gathered} 0.906 \\ (0.704-1.15) \end{gathered}$	$\begin{gathered} 1.13 \\ (0.877-1.44) \end{gathered}$							
60-m	$\begin{gathered} 0.971 \\ (0.756-1.23) \\ \hline \end{gathered}$	$\begin{gathered} 1.15 \\ (0.891-1.45) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.43 \\ (1.11-1.82) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.67 \\ (1.29-2.14) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 0 0} \\ (1.49-2.67) \end{gathered}$		$\begin{gathered} \hline \mathbf{2 . 5 0} \\ (1.77-3.55) \end{gathered}$	(1.87-4.06)		$\begin{array}{c\|} \hline 3.46 \\ (2.19-5.37) \\ \hline \end{array}$
2-hr	$\begin{gathered} 1.25 \\ (0.976-1.57) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.46 \\ (1.14-1.84) \\ \hline \end{gathered}$	$\begin{gathered} 1.82 \\ (1.42-2.30) \end{gathered}$			$\begin{gathered} \hline \mathbf{2 . 8 2} \\ (2.08-3.85) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.14 \\ (2.25-4.47) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.51 \\ (2.37-5.11) \\ \hline \end{gathered}$		
3-hr	$\begin{gathered} \hline \hline 1.43 \\ (1.13-1.79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.68 \\ (1.32-2.11) \\ \hline \end{gathered}$	$\begin{gathered} 2.09 \\ (1.64-2.64) \end{gathered}$		$\begin{gathered} 2.91 \\ (2.19-3.87) \end{gathered}$				$\begin{gathered} \hline 4.76 \\ (3.10-7.17) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.34 \\ (3.40-8.22) \\ \hline \end{gathered}$
6-hr	$\begin{gathered} \hline 1.79 \\ (1.42-2.23) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.13 \\ (1.69-2.66) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 6 9} \\ (2.12-3.36) \\ \hline \end{gathered}$		$\begin{gathered} \hline 3.79 \\ (2.88-5.02) \\ \hline \end{gathered}$		$\begin{gathered} \hline 4.76 \\ (3.47-6.79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.40 \\ (3.67-7.79) \\ \hline \end{gathered}$		$\begin{array}{c\|} \hline 7.23 \\ (4.61-11.1) \\ \hline \end{array}$
12	$\begin{gathered} \hline 2.20 \\ (1.76-2.72) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 6 7} \\ (2.13-3.31) \end{gathered}$	$\begin{gathered} \hline 3.44 \\ (2.73-4.27) \end{gathered}$	$\begin{gathered} \hline 4.08 \\ (3.21-5.09) \end{gathered}$		$\begin{gathered} \hline \mathbf{5 . 6 0} \\ (4.21-7.59) \end{gathered}$	$\begin{gathered} \hline 6.31 \\ (4.62-8.96) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.18 \\ (4.90-10.3) \end{gathered}$	$\begin{gathered} \hline 8.55 \\ (5.60-12.7) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 9.74 \\ (6.23-14.8) \\ \hline \end{array}$
24-hr	$\begin{gathered} \hline \mathbf{2 . 6 3} \\ (2.11-3.23) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.24 \\ (2.60-3.98) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.23 \\ (3.38-5.22) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 5.05 \\ (4.01-6.27) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.18 \\ (4.76-8.12) \\ \hline \end{gathered}$	(5.30-9.46)	$\begin{gathered} \hline 7.93 \\ (5.84-11.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9.07 \\ (6.21-12.9) \\ \hline \end{gathered}$	(7.12-16.1)	$\begin{array}{c\|} \hline 12.4 \\ (7.94-18.7) \\ \hline \end{array}$
2-day	(2.47-3.72)	$\begin{gathered} 3.78 \\ (3.05-4.61) \end{gathered}$	$\begin{gathered} \hline \hline 4.96 \\ (3.99-6.07) \end{gathered}$	$\begin{gathered} 5.94 \\ (4.75-7.32) \end{gathered}$	$\begin{gathered} \hline 7.28 \\ (5.65-9.50) \end{gathered}$	(6.29-11.1)	(6.94-13.2)	$\begin{gathered} \hline 10.7 \\ (7.37-15.2) \end{gathered}$	(8.47-18.9)	$\begin{gathered} \hline 14.7 \\ (9.46-22.1) \\ \hline \end{gathered}$
3-da	$\begin{gathered} \hline 3.33 \\ (2.71-4.05) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{4 . 1 2} \\ (3.34-5.01) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.41 \\ (4.37-6.60) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.48 \\ (5.20-7.96) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.95 \\ (6.19-10.3) \\ \hline \end{gathered}$	$\begin{gathered} 9.03 \\ (6.89-12 . \end{gathered}$	$(7.60-14.3)$	$\begin{gathered} \hline 11.7 \\ (8.07-16.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14.1 \\ (9.29-20.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16.1 \\ (10.4-24.1) \\ \hline \end{gathered}$
4-da	$\begin{gathered} \hline \hline 3.57 \\ (2.91-4.32) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.41 \\ (3.59-5.35) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.78 \\ (4.68-7.03) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.92 \\ (5.57-8.47) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 8.48 \\ (6.62-11.0) \\ \hline \hline \end{gathered}$	(7.37-12.8)	$\begin{gathered} \hline 10.9 \\ (8.12-15.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 12.5 \\ (8.62-17.6) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 15.0 \\ (9.93-22.0) \\ \hline \hline \end{array}$	$\begin{gathered} \hline 17.2 \\ (11.1-25.7) \\ \hline \hline \end{gathered}$
7-day	$\begin{gathered} 4.24 \\ (3.47-5.10) \end{gathered}$	$\begin{gathered} 5.18 \\ (4.24-6.25) \end{gathered}$	$\begin{gathered} 6.72 \\ (5.48-8.14) \end{gathered}$	$\begin{array}{c\|} \hline \hline 8.00 \\ (6.48-9.75) \\ \hline \end{array}$	$\begin{gathered} 9.76 \\ (7.66-12.6) \end{gathered}$	$\begin{gathered} 11.1 \\ (8.50-14.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.5 \\ (9.34-17.4) \end{gathered}$	$\begin{gathered} \hline 14.3 \\ (9.89-20.0) \end{gathered}$	$\begin{gathered} 17.1 \\ (11.4-24.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 19.6 \\ (12.7-29.1) \\ \hline \end{gathered}$
10-da	$\begin{gathered} 4.92 \\ (4.04-5.90) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.92 \\ (4.86-7.11) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.55 \\ (6.17-9.10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.90 \\ (7.23-10.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.8 \\ (8.47-13.8) \\ \hline \end{gathered}$	$\begin{gathered} 12.1 \\ (9.35-16.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{1 3 . 6} \\ (10.2-18.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{1 5 . 5} \\ (10.8-21.7) \\ \hline \end{gathered}$	$\begin{gathered} 18.4 \\ (12.3-26.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 1 . 0} \\ (13.6-31.1) \\ \hline \end{gathered}$
20-	$\begin{gathered} 7.09 \\ (5.87-8.44) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.14 \\ (6.73-9.71) \\ \hline \end{gathered}$	$\begin{gathered} 9.86 \\ (8.12-11.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11.3 \\ (9.24-13.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.3 \\ (10.5-16.8) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 14.7 \\ (11.3-19.1) \\ \hline \end{array}$	$\begin{gathered} 16.3 \\ (12.1-22.0) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{1 8 . 1} \\ (12.7-25.1) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 20.8 \\ (13.9-29.9) \\ \hline \end{array}$	$\begin{gathered} \hline 23.0 \\ (14.9-33.9) \\ \hline \end{gathered}$
30	$\begin{gathered} 8.90 \\ (7.40-10.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9.98 \\ (8.29-11.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11.7 \\ (9.71-14.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.2 \\ (10.8-15.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15.2 \\ (12.0-19.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16.7 \\ (12.9-21.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{1 8 . 3} \\ (13.6-24.4) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 0 . 0} \\ (14.0-27.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{2 2 . 3} \\ (15.0-32.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 4 . 2} \\ (15.8-35.6) \\ \hline \end{gathered}$
45-day	$\begin{gathered} 11.1 \\ (9.31-13.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.3 \\ (10.2-14.5) \\ \hline \end{gathered}$	$\begin{gathered} 14.1 \\ (11.7-16.7) \end{gathered}$	$\begin{gathered} \hline 15.6 \\ (12.9-18.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{1 7 . 7} \\ (14.0-21.9) \\ \hline \end{gathered}$	$\begin{gathered} 19.3 \\ (14.8-24.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 0 . 9} \\ (15.4-27.4) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 2 . 4} \\ (15.8-30.7) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{2 4 . 4} \\ (16.4-34.8) \\ \hline \end{array}$	$\begin{array}{c\|} \hline \mathbf{2 5 . 8} \\ (16.8-37.8) \\ \hline \end{array}$
60	$\begin{gathered} 13.0 \\ (10.9-15.3) \end{gathered}$	$\begin{gathered} 14.1 \\ (11.8-16.7) \end{gathered}$	$\begin{gathered} \hline 16.0 \\ (13.4-19.0) \\ \hline \end{gathered}$	$\begin{gathered} 17.6 \\ (14.6-21.0) \end{gathered}$	$\begin{gathered} \hline 19.8 \\ (15.7-24.4) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 1 . 5} \\ (16.5-27.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 23.1 \\ (17.0-30.1) \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{2 4 . 5} \\ (17.3-33.5) \\ \hline \end{gathered}$	$(17.7-37.4)$	$\begin{gathered} 27.4 \\ (17.9-40.1) \\ \hline \end{gathered}$
${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.										

PDS-based depth-duration-frequency (DDF) curves
Latitude: $\mathbf{4 2 . 0 9 1 0 ^ { \circ }}$, Longitude: -72.0529°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
-100
-200
-500
-1000

Duration	
5-min 10-min 15-min $30-\mathrm{min}$ $60-\mathrm{min}$ $2-\mathrm{hr}$ 3-hr 6-hr 12-hr 24-hr	2-day 3-day 4-day 7-day 10-day 20-day 30-day 45-day 60-day

NOAA Atlas 14, Volume 10, Version 3
Created (GMT): Thu Dec 9 18:26:44 2021
Back to Top

Maps \& aerials

Small scale terrain

APPENDIX D

PRE-DEVELOPMENT HYDROCAD DRAINAGE CALCULATIONS

 AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Summary for Subcatchment E1: AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Runoff $=\quad 2.58$ cfs @ 12.23 hrs, Volume $=11,834$ cf, Depth> $0.85{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)		CN	Description			
167,515		70 Woods, Good, HSG C				
	67,515		0.00\% P	rvious Are		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.7	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00$
2.4	220	0.0950	1.54		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

AP1

Summary for Subcatchment E1: AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Runoff $=\quad 6.90$ cfs @ 12.22 hrs, Volume $=\quad 28,841$ cf, Depth> 2.07"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)		CN	Description			
167,515		70 Woods, Good, HSG C				
	67,515		0.00\% P	rvious Are		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.7	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00$
2.4	220	0.0950	1.54		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

AP1

Summary for Subcatchment E1: AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Runoff $=\quad 9.96$ cfs @ 12.21 hrs, Volume $=\quad 41,026$ cf, Depth> 2.94"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)		CN	Description			
167,515		70 Woods, Good, HSG C				
	67,515		0.00\% P	rvious Are		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.7	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00$
2.4	220	0.0950	1.54		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

AP1

Summary for Subcatchment E1: AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Runoff $=15.00$ cfs @ 12.20 hrs, Volume $=61,293$ cf, Depth> 4.39"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)		CN	Description			
167,515		70 Woods, Good, HSG C				
	67,515		0.00\% P	rvious Are		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.7	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00$
2.4	220	0.0950	1.54		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Summary for Subcatchment E2: AP2 - To Wetland A (A56-A87)

Runoff $=7.95$ cfs @ 12.38 hrs, Volume $=\quad 45,298 \mathrm{cf}$, Depth> 0.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment E2: AP2 - To Wetland A (A56-A87)

Runoff $=\quad 22.72$ cfs @ 12.35 hrs, Volume $=115,158$ cf, Depth> 1.90"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment E2: AP2 - To Wetland A (A56-A87)

Runoff $=\quad 33.38$ cfs @ 12.34 hrs, Volume $=166,010$ cf, Depth> 2.75"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment E2: AP2 - To Wetland A (A56-A87)

Runoff $=51.05$ cfs @ 12.33 hrs, Volume $=251,343 \mathrm{cf}$, Depth> 4.16"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment E3: AP3 - To Wetland A (A47-A56) / VP A2
Runoff $=\quad 0.34$ cfs @ 12.33 hrs, Volume $=\quad 2,780 \mathrm{cf}$, Depth> 0.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)		CN	Description		
	$\begin{array}{r} 08,890 \\ 5,640 \end{array}$	$\begin{aligned} & 55 \\ & 77 \\ & \hline \end{aligned}$	oods, G oods, G	d, HSG B d, HSG D	
	$\begin{aligned} & 14,530 \\ & 14,530 \end{aligned}$	56	eighted 0.00\%	verage rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.7	50	0.1500	0.15		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.00$ "
2.1	280	0.2000	2.24		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
7.8	330	Total			

Summary for Subcatchment E3: AP3 - To Wetland A (A47-A56) / VP A2

Runoff $=\quad 2.55$ cfs @ 12.13 hrs, Volume $=10,163 \mathrm{cf}$, Depth> 1.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	rea (sf)	CN Description			
	$\begin{array}{r} 08,890 \\ 5,640 \\ \hline \end{array}$	$\begin{array}{ll} 55 & u \\ 77 & W \\ \hline \end{array}$	loods, Good oods, Good	d, HSG B d, HSG D	
$\begin{aligned} & \hline 114,530 \\ & 114,530 \end{aligned}$		56	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.7	50	0.1500	0.15		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.00 "$
2.1	280	0.2000	2.24		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
7.8	330	Total			

Summary for Subcatchment E3: AP3 - To Wetland A (A47-A56) / VP A2

Runoff $=\quad 4.48$ cfs @ 12.12 hrs, Volume $=16,226 \mathrm{cf}$, Depth> 1.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)		CN	Description		
	$\begin{array}{r} 08,890 \\ 5,640 \end{array}$	$\begin{aligned} & 55 \\ & 77 \\ & \hline \end{aligned}$	oods, G oods, G	d, HSG B d, HSG D	
	$\begin{aligned} & 14,530 \\ & 14,530 \end{aligned}$	56	eighted 0.00\%	verage rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.7	50	0.1500	0.15		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.00$ "
2.1	280	0.2000	2.24		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
7.8	330	Total			

Summary for Subcatchment E3: AP3 - To Wetland A (A47-A56) / VP A2

Runoff $=\quad 7.93$ cfs @ 12.12 hrs, Volume $=\quad 27,093 \mathrm{cf}$, Depth> 2.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

AP4

Prepared by Microsoft
Printed 4/4/2022
HydroCAD® 10.00-19 s/n 03362 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment E4: AP4 - To Wetland A (A32-A47)

Runoff $=\quad 3.07$ cfs @ 12.15 hrs, Volume $=12,702 \mathrm{cf}$, Depth= $0.71^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description		
100,155		Woods, Good, HSG B Woods, Good, HSG C Woods, Good, HSG D		
6,695	70			
108,390	77			
$\begin{aligned} & 215,240 \\ & 215,240 \end{aligned}$	67	Weighted Average 100.00\% Pervious Area		
$\begin{array}{rr} \text { Tc } & \begin{array}{r} \text { Length } \\ (\mathrm{min}) \end{array} \\ \text { (feet) } \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.150	0.3500	0.21		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.00$ "
5.1435	0.0800	1.41		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
9.2485	Total			

AP4

Prepared by Microsoft
HydroCAD® 10.00-19 s/n 03362 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment E4: AP4 - To Wetland A (A32-A47)

Runoff $=9.20$ cfs @ 12.14 hrs, Volume $=\quad 32,966 \mathrm{cf}$, Depth= $1.84{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Description		
100,155		Woods, Good, HSG B Woods, Good, HSG C Woods, Good, HSG D		
6,695	70			
108,390	77			
$\begin{aligned} & 215,240 \\ & 215,240 \end{aligned}$	67	Weighted Average 100.00\% Pervious Area		
$\begin{array}{rr} \text { Tc } & \begin{array}{r} \text { Length } \\ (\mathrm{min}) \end{array} \\ \text { (feet) } \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.150	0.3500	0.21		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.00$ "
5.1435	0.0800	1.41		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
9.2485	Total			

AP4

Prepared by Microsoft
HydroCAD® 10.00-19 s/n 03362 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment E4: AP4 - To Wetland A (A32-A47)

Runoff $=13.66$ cfs @ 12.13 hrs, Volume $=47,831$ cf, Depth= 2.67"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment E4: AP4 - To Wetland A (A32-A47)

Runoff $=21.07$ cfs @ 12.13 hrs, Volume $=\quad 72,881 \mathrm{cf}$, Depth= $4.06{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment E5: AP5 - To Wetland A (A23-A32) / VP A1

Runoff $=\quad 2.87$ cfs @ 12.27 hrs, Volume $=14,691 \mathrm{cf}$, Depth> 0.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment E6: AP6 - To Wetland B (off-site)

Runoff $=1.57$ cfs @ 12.15 hrs, Volume= $6,195 \mathrm{cf}$, Depth> 0.80"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment E5: AP5 - To Wetland A (A23-A32) / VP A1

Runoff $=8.60$ cfs @ 12.24 hrs, Volume $=38,172$ cf, Depth> 1.83"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment E6: AP6 - To Wetland B (off-site)

Runoff $=\quad 4.36$ cfs @ 12.13 hrs, Volume= $15,405 \mathrm{cf}$, Depth> 1.99"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment E5: AP5 - To Wetland A (A23-A32) / VP A1

Runoff $=12.80$ cfs @ 12.23 hrs, Volume $=\quad 55,402 \mathrm{cf}$, Depth> 2.66"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment E6: AP6 - To Wetland B (off-site)

Runoff =
6.35 cfs @
12.13 hrs , Volume=
22,053 cf, Depth> 2.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment E5: AP5 - To Wetland A (A23-A32) / VP A1

Runoff $=19.79$ cfs @ 12.23 hrs, Volume $=84,447$ cf, Depth> 4.05"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"
$\left.\begin{array}{rrll}\text { Area (sf) } & \text { CN } & \text { Description } \\ \hline 80,545 & 55 & \text { Woods, Good, HSG B } \\ 121,865 & 70 & \begin{array}{l}\text { Woods, Good, HSG C } \\ 47,880\end{array} & 77 \\ \text { Woods, Good, HSG D }\end{array}\right]$

Summary for Subcatchment E6: AP6 - To Wetland B (off-site)

Runoff $=\quad 9.62$ cfs @ 12.13 hrs, Volume= $33,159 \mathrm{cf}$, Depth> 4.28"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment E7: AP7 - To Wetland E

Runoff $=1.61$ cfs @ 12.40 hrs, Volume $=10,728 \mathrm{cf}$, Depth> 0.49"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

| Area (sf) | CN | Description | |
| ---: | ---: | :--- | :--- | :--- |
| 147,040 | 55 | Woods, Good, HSG B | |
| 113,445 | 70 | Woods, Good, HSG C | |

Summary for Subcatchment E7: AP7 - To Wetland E

Runoff $=\quad 6.18 \mathrm{cfs} @ 12.33 \mathrm{hrs}$, Volume $=\quad 31,700 \mathrm{cf}$, Depth> 1.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment E7: AP7 - To Wetland E

Runoff $=\quad 9.74$ cfs @ 12.31 hrs, Volume $=\quad 47,805 \mathrm{cf}$, Depth> 2.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

| Area (sf) | CN | Description | |
| ---: | ---: | :--- | :--- | :--- |
| 147,040 | 55 | Woods, Good, HSG B | |
| 113,445 | 70 | Woods, Good, HSG C | |

Summary for Subcatchment E7: AP7 - To Wetland E

Runoff $=15.87$ cfs @ 12.30 hrs, Volume $=75,646$ cf, Depth> 3.48"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description	
147,040	55	Woods, Good, HSG B	
113,445	70	Woods, Good, HSG C	

 AP8 - To Southbridge Parcel 032-092 Idlewood Street

Reach

Summary for Subcatchment E8: AP8 - To Southbridge Parcel 032-092 Idlewood Street
Runoff $=\quad 0.40$ cfs @ 12.17 hrs, Volume $=1,626 \mathrm{cf}$, Depth> 0.90"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment E8: AP8 - To Southbridge Parcel 032-092 Idlewood Street
Runoff $=1.05$ cfs @ 12.16 hrs, Volume $=\quad 3,884 \mathrm{cf}$, Depth> 2.15"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

AP8

Summary for Subcatchment E8: AP8 - To Southbridge Parcel 032-092 Idlewood Street
Runoff $=1.50$ cfs @ 12.16 hrs, Volume $=\quad 5,490 \mathrm{cf}$, Depth> 3.04"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

AP8

Summary for Subcatchment E8: AP8 - To Southbridge Parcel 032-092 Idlewood Street
Runoff $=\quad 2.23$ cfs @ 12.15 hrs, Volume $=\quad 8,149 \mathrm{cf}$, Depth> 4.51"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

APPENDIX E

POST-DEVELOPMENT HYDROCAD DRAINAGE CALCULATIONS

 AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Summary for Subcatchment P1: AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Runoff $=\quad 2.56$ cfs @ 12.23 hrs, Volume $=11,765 \mathrm{cf}$, Depth> $0.85{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description			
166,550	70	Woods, Good, HSG C			
166,550		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

AP1

Summary for Subcatchment P1: AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Runoff $=\quad 6.86$ cfs @ 12.22 hrs, Volume $=\quad 28,675$ cf, Depth> 2.07"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)		CN	Description			
166,550		70 Woods, Good, HSG C				
	66,550		0.00\% P	rvious Are		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.7	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00$
2.4	220	0.0950	1.54		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Summary for Subcatchment P1: AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Runoff $=\quad 9.90$ cfs @ 12.21 hrs, Volume $=\quad 40,790$ cf, Depth> 2.94"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)	CN	Description			
166,550	70	Woods, Good, HSG C			
166,550	100.00% Pervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

AP1

Summary for Subcatchment P1: AP1 - To Southbridge Parcel 019-048 (0 Cournoyer Blvd)

Runoff $=14.91$ cfs @ 12.20 hrs, Volume $=60,940$ cf, Depth> 4.39"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description			
166,550	70	Woods, Good, HSG C			
166,550	100.00% Pervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Summary for Subcatchment P2.1: To Wetland A (A56-A87)

Runoff $=3.65$ cfs @ 12.15 hrs, Volume=
Routed to Link AP2-P : AP2-P

14,371 cf, Depth> 0.85 "

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P2.10: To RG4.1

Runoff $=\quad 1.01$ cfs @ 12.11 hrs, Volume= $3,318 \mathrm{cf}$, Depth> 1.50"
Routed to Reach SW2.1 : Swale RG2.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall=3.24"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| $*$ | 12,070 | 90 |
| ---: | ---: | :--- |
| Residential Lots, 65\% imp, HSG C | | |
| 2,925 | 70 | Woods, Good, HSG C |
| 11,575 | 74 | $>75 \%$ Grass cover, Good, HSG C |
| 26,570 | 81 | Weighted Average |
| 18,725 | | 70.47% Pervious Area |
| 7,846 | | 29.53% Impervious Area |

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
6.2	50	0.1200	0.13	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00 "$
1.0	100	0.1200	1.73	Shallow Concentrated Flow, Woodland Kv=5.0 fps	
7.2	150	Total			

Summary for Subcatchment P2.11: Lots 48-50

Runoff $=\quad 0.61$ cfs @ 12.07 hrs, Volume= $\quad 1,912$ cf, Depth> 2.20"

Routed to Pond RG49-50 : Rain Gardens 49,50
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)				CN	Description
10,410	90	Residential Lots, 65% imp, HSG C			
3,644	35.00% Pervious Area				
6,767	65.00% Impervious Area				

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P2.12: Lot 54

Runoff $=\quad 0.32$ cfs @ 12.07 hrs, Volume= 1,001 cf, Depth> 2.20"
Routed to Pond RG55 : Rain Garden 55
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P2.13: Lot 14

Runoff $=0.39$ cfs @ 12.07 hrs, Volume= $1,212 \mathrm{cf}$, Depth> 2.12"
Routed to Pond RG14 : Rain Garden 14
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN	Description $1 / 8$ acre lots, 65% imp, HSG C		
	5,915				
	955		1/8 acre lots, $65 \% \mathrm{imp}$, HSG C $1 / 8$ acre lots, $65 \% \mathrm{imp}$, HSG B		
	6,870	89	Weighted Average		
	2,405		35.00\% Pervious Area		
	4,466		65.00\% Im	pervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P2.14: Lots 30-33

Runoff $=\quad 1.27$ cfs @ 12.07 hrs, Volume= 3,950 cf, Depth> 2.20"

Routed to Pond RG31-33 : Rain Gardens 31,32,33
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P2.2: Lots 42-48
Runoff $=\quad 2.35$ cfs @ 12.07 hrs, Volume= $\quad 7,325$ cf, Depth> 2.20"
Routed to Pond RG43-48 : Rain Garden 43-48
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)		CN	Description					
*	39,875	90						
$\begin{aligned} & \hline 13,956 \\ & 25,919 \end{aligned}$		35.00\% Pervious Area 65.00\% Impervious Area						
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry			

Summary for Subcatchment P2.3: Lots 41-42

Runoff $=0.75$ cfs @ 12.07 hrs, Volume=
2,336 cf, Depth> 2.20"
Routed to Pond RG42 : Rain Garden 42
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P2.4: Lots 40-41

Runoff $=\quad 0.44$ cfs @ 12.07 hrs, Volume= $1,382 \mathrm{cf}$, Depth> 2.20"
Routed to Pond RG41 : Rain Garden 41
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN D	1/8 acre lots, 65% imp, HSG C		
	7,525	90			
	2,634	35.00\% Pervious Area			
	4,891	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P2.5: Lots 39-40

Runoff $=\quad 0.56$ cfs @ 12.07 hrs, Volume= $1,750 \mathrm{cf}$, Depth> 2.20"
Routed to Pond RG40 : Rain Garden 40
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description
9,525	90	$1 / 8$ acre lots, 65% imp, HSG C
3,334	35.00% Pervious Area	
6,191		65.00% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P2.6: Lots 33-39

Runoff $=\quad 2.67$ cfs @ 12.07 hrs, Volume= $8,319 \mathrm{cf}$, Depth> 2.20"
Routed to Pond RG34-39 : Rain Gardens 34-39
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf) CN Description

	Area (sf)	CN
$*$	45,285	90
	Rescridential Lots, 65% imp, HSG C	
15,850	35.00% Pervious Area	
29,435	65.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P2.7: Upgradient Lots 35-39

Runoff $=0.63$ cfs @ 12.31 hrs, Volume= 3,211 cf, Depth> $0.85{ }^{\prime \prime}$
Routed to Pond IT-35/39 : Interceptor Trench Lots 35-39
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P2.8: Upgradient Lots 30-35

Runoff $=1.42$ cfs @ 12.25 hrs, Volume=
Routed to Pond IT-30/35 : Interceptor Trench Lots 30-35

6,623 cf, Depth> 0.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2YearMass Rainfall=3.24"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- | :--- |
| 11,085 | 74 | $>75 \%$ Grass cover, Good, HSG C |
| 77,375 | 70 | Woods, Good, HSG C |

Summary for Subcatchment P2.9: Lots 51-53

Runoff $=1.19$ cfs @ 12.08 hrs, Volume= 3,680 cf, Depth> 1.57"
Routed to Pond RG52-54 : Rain Garden Lots 52,53,54
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN D	Description		
	2,430	901	1/8 acre lots, 65\% imp, HSG C		
	20,825	851	1/8 acre lots, $65 \% \mathrm{imp}$, HSG B		
	3,605	70	Woods, Good, HSG C		
	1,280	55	Woods, Good, HSG B		
	28,140	82	Weighted Average		
	13,024		46.28\% Pervious Area		
	15,116		53.72\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Reach SW2.1: Swale RG2.1

Inflow Area $=\quad 58,485$ sf, 48.88% Impervious, Inflow Depth > 2.32" for 2YearMass event Inflow $=1.98$ cfs @ 12.16 hrs , Volume= 11,286 cf Outflow = 1.97 cfs @ 12.16 hrs, Volume= $11,284 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.3 \mathrm{~min}$
Routed to Pond RG2.1 : Rain Garden 2.1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Max. Velocity $=6.61 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=2.45 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 36 cf @ 12.16 hrs
Average Depth at Peak Storage= 0.21^{\prime}, Surface Width= 1.84'
Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 46.26 cfs
$1.00^{\prime} \times 1.00^{\prime}$ deep channel, $\mathrm{n}=0.025$ Earth, clean \& winding
Side Slope Z-value= 2.0 '/' Top Width= 5.00'
Length= 120.0' Slope= 0.1500 '/'
Inlet Invert= 722.00', Outlet Invert= 704.00'

Summary for Pond IT-30/35: Interceptor Trench Lots 30-35

Inflow Area $=$	$88,460 \mathrm{sf}$,	0.00% Impervious,	Inflow Depth $>$	$0.90 "$
Inflow	$=$	$1.42 \mathrm{cfs} @$	12.25 hrs , Volume $=$	$6,623 \mathrm{cf}$
Outflow	$=$	$1.36 \mathrm{cfs} @$	12.31 hrs , Volume $=$	$6,565 \mathrm{cf}$, Atten $=4 \%$, Lag $=3.6 \mathrm{~min}$
Primary	$=$	$1.36 \mathrm{cfs} @$	12.31 hrs , Volume=	$6,565 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 732.56' @ 12.31 hrs Surf.Area= 1,470 sf Storage= 421 cf
Plug-Flow detention time $=12.1$ min calculated for $6,565 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=7.3 \mathrm{~min}(885.7-878.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1	732.00'	1,696 cf	$3.00{ }^{\prime} \mathrm{W} \times 490.00^{\prime} \mathrm{L} \times 3.00$ 'H Prismatoid
			4,410 cf Overall - 171 cf Embedded $=4,239$ cf $\times 40.0 \%$ Voids
\#2	732.00'	171 cf	8.0" Round Pipe Storage Inside \#1
		1,867 cf	Total Available Storage
Device	Routing	Invert Outl	t Devices
\#1	Primary	732.00' 15.0	' Round Culvert
			50.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$

Inlet / Outlet Invert= 732.00' / 724.00' S= 0.0320 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.35 cfs @ 12.31 hrs HW=732.56' TW=0.00' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 1.35 cfs @ 2.54 fps)

Summary for Pond IT-35/39: Interceptor Trench Lots 35-39

flow Area =	45,500 sf,	0.00\% Impervious,	(Depth > 0.85" for 2YearMass event
Inflow	0.63 cfs @	12.31 hrs, Volume=	3,211 cf
Outflow	0.58 cfs @	12.40 hrs , Volume=	$3,173 \mathrm{cf}$, Atten= 7%, Lag $=5.4 \mathrm{~min}$
Primary	0.58 cfs @	12.40 hrs , Volume=	3,173 cf

Routed to Link AP2-P : AP2-P
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 734.41' @ 12.40 hrs Surf.Area= 1,200 sf Storage= 251 cf
Plug-Flow detention time $=15.6 \mathrm{~min}$ calculated for $3,173 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=9.3 \mathrm{~min}(893.8-884.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	734.00^{\prime}	$1,384 \mathrm{cf}$	$3.00 ' W \times 400.00 ' \mathrm{~L} \times 3.00 ' \mathrm{H}$ Prismatoid $3,600 \mathrm{cf}$ Overall -140 cf Embedded $=3,460 \mathrm{cf} \times 40.0 \%$ Voids $\# 2$
	734.00	140 cf	8.0" Round Pipe Storage Inside \#1 L= 400.0'
	$1,524 \mathrm{cf}$	Total Available Storage	

Device	Routing	Invert	Outlet Devices
\#1	Primary	734.00'	10.0" Round Culvert
			$\mathrm{L}=80.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 734.00' / 733.00' S=0.0125 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=0.58 cfs @ 12.40 hrs HW=734.41' TW=0.00' (Dynamic Tailwater)
_1=Culvert (Inlet Controls 0.58 cfs @ 2.18 fps)

Summary for Pond RG14: Rain Garden 14

Inflow Area =	6,870	.00\% Impervious,	Inflow Depth > 2.12" for 2YearMass event
Inflow	0.39 cfs @	12.07 hrs , Volume=	1,212 cf
Outflow	0.25 cfs @	12.18 hrs , Volume=	$1,201 \mathrm{cf}$, Atten= 37\%, Lag= 6.2 min
Primary	0.25 cfs @	12.18 hrs , Volume=	1,201 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 703.98' @ 12.18 hrs Surf.Area= 240 sf Storage= 218 cf
Plug-Flow detention time= 20.7 min calculated for $1,201 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time= $15.4 \mathrm{~min}(824.7-809.3)$

Volume	Invert	Avail.Storage	Storage Description				
\#1	702.00'	47 cf 12.0" Round Pipe Storage Inside \#2$L=60.0^{\prime}$					
\#2	$702.00{ }^{\prime}$	269 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Grave				
			720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids				
\#3	704.25'	30 cf	$4.00^{\prime} \mathrm{W}$ x $\mathbf{6 0 . 0 0}^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids				
\#4	704.50'	373 cf 4.00'W \times 60.00'L $\times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$					
720 cf Total Available Storage							
Device	Routing	Invert Outlet Devices					
\#1	Primary	702.00' $\quad \begin{array}{ll}\text { 6.0' } \\ \text { L= }\end{array}$	6.0" Round Culvert				
			L= 75.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$Inlet / Outlet Invert= 702.00' / 702.00' $\mathrm{S}=0.0000$ '/' Cc= 0.900				
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf					
\#2	Device 1	705.00' 6.0'					
		105.00 $\quad \begin{aligned} & \text { 6.0 Horiz. Orifice/Grate } \mathrm{C}=0.600 \\ & \text { Limited to weir flow at low heads }\end{aligned}$					
\#3	Device 1	702.00' 2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads					
\#4	Device 1	703.75' 4.0" Vert. Orifice/Grate	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads				
-2=Orifice/Grate (Controls 0.00 cfs)							
-3=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.61 fps)							
-4=Orifice/Grate (Orifice Controls 0.10 cfs @ 1.60 fps)							

Summary for Pond RG2.1: Rain Garden 2.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 701.75' @ 13.35 hrs Surf.Area= 8,500 sf Storage= $5,147 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=153.5 \mathrm{~min}(976.9-823.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1	698.75'	67 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=85.0^{\prime}$
\#2	$698.75{ }^{\prime}$	5,073 cf	$50.00^{\prime} \mathrm{W} \times 85.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 12,750 cf Overall -67 cf Embedded $=12,683$ cf $\times 40.0 \%$ Voids
\#3	701.75'	531 cf	$50.00^{\prime} \mathrm{W} \times 85.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch $1,063 \mathrm{cf}$ Overall $\times 50.0 \%$ Voids
\#4	702.00'	9,623 cf	50.00'W $\times 85.00^{\prime} \mathrm{L} \times 2.00$ 'H Ponding $\mathrm{Z}=2.0$
		15,294 cf Total Available Storage	
Device	Routing	Invert Outle	t Devices
\#1	Primary	701.00' $\begin{array}{ll}\text { 12.0' } \\ & \mathrm{L}=10 \\ & \text { Inlet } \\ & \mathrm{n}=0 .\end{array}$	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 701.00' / 699.65' S=0.1350 '/l' Cc=0.900 013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
	Device 1	703.00' 10	' Horiz. Orifice/Grate X $2.00 \mathrm{C}=0.600$
\#2			ed to weir flow at low heads
\#3	Device 1	701.00' 2.0	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	701.75' 6.0	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#5	Secondary	703.75' $\begin{gathered}10 . \\ \\ \\ \\ \text { He } \\ \text { Co }\end{gathered}$	long $\times 10.0$ ' breadth Broad-Crested Rectangular Weir
			(feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			(English) 2.492 .562 .702 .692 .682 .692 .672 .64
\#6	Discarded	$698.75{ }^{\prime} 2.410$	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.47 cfs @ 13.36 hrs HW=701.75' (Free Discharge)
${ }^{4} \mathbf{6}=$ Exfiltration (Exfiltration Controls 0.47 cfs)
Primary OutFlow Max=0.17 cfs @ 13.35 hrs HW=701.75' TW=0.00' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(P a s s e s ~}^{0.17}$ cfs of 1.87 cfs potential flow)
5-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.17 cfs @ 3.94 fps)
—4=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.19 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=698.75' TW=0.00' (Dynamic Tailwater)
$\Psi_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond RG31-33: Rain Gardens 31,32,33

Inflow Area $=$	21,505	vious,	Inflow Dep	2.20" for 2YearMass event
Inflow	1.27 cfs @	12.07 hrs , Volume=	3,950 cf	
Outflow	0.50 cfs @	12.31 hrs, Volume=	3,934 cf,	f, Atten= 61\%, Lag= 14.0 min
Primary	0.50 cfs @	12.31 hrs , Volume=	3,934 cf	

Routed to Reach SW2.1 : Swale RG2.1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 730.84' @ 12.31 hrs Surf.Area= 720 sf Storage= 829 cf
Plug-Flow detention time $=18.5$ min calculated for $3,934 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=16.0 \mathrm{~min}(821.1-805.1)$
Prepared by Mcclure Engineeering Printed 5/1/2023

HydroCAD® 10.20-2g s/n 03362 © 2022 HydroCAD Software Solutions LLC

Primary OutFlow Max=0.50 cfs @ $12.31 \mathrm{hrs} \mathrm{HW}=730.83^{\prime}$ TW=722.19' (Dynamic Tailwater)
\&1=Culvert (Passes 0.50 cfs of 4.33 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.50 cfs @ 7.61 fps)
4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond RG34-39: Rain Gardens 34-39

 Routed to Reach SW2.1 : Swale RG2.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 731.03' @ 12.31 hrs Surf.Area= 1,440 sf Storage= $1,769 \mathrm{cf}$

Plug-Flow detention time $=18.8 \mathrm{~min}$ calculated for $8,268 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time= 16.3 min (821.4-805.1)

Primary OutFlow Max=0.69 cfs @ 12.31 hrs HW=731.02' TW=0.00' (Dynamic Tailwater)
$亡_{1}=$ Culvert (Passes 0.69 cfs of 6.01 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
- $\mathbf{5 =}=$ Orifice/Grate (Orifice Controls 0.69 cfs @ 7.90 fps)
$\square_{7=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~}^{0.01}$ cfs @ 0.53 fps)
Secondary OutFlow Max=0.35 cfs @ 12.31 hrs HW=731.02' TW=722.19' (Dynamic Tailwater)
-2=Culvert (Passes 0.35 cfs of 3.00 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)
6=Orifice/Grate (Orifice Controls 0.34 cfs @ 7.90 fps)
—8=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.53 fps)

Summary for Pond RG40: Rain Garden 40

Inflow Area	9,525	pervious,	epth >	20" for 2YearMass event
Inflow	0.56 cfs @	12.07 hrs , Volume=	1,750 cf	
Outflow	0.42 cfs @	12.16 hrs , Volume=	1,743 cf,	Atten= 25\%, Lag= 5.0 min
Primary	0.42 cfs @	12.16 hrs , Volume=	1,743 cf	

Routed to Link AP2-P : AP2-P
Prepared by Mcclure Engineeering Printed 5/1/2023

HydroCAD® 10.20-2g s/n 03362 © 2022 HydroCAD Software Solutions LLC

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 732.52' @ 12.16 hrs Surf.Area= 240 sf Storage= 294 cf

Plug-Flow detention time $=16.2$ min calculated for 1,740 cf (99% of inflow)
Center-of-Mass det. time= 13.9 min (819.0-805.1)

Primary OutFlow Max=0.41 cfs @ 12.16 hrs HW=732.50' TW=0.00' (Dynamic Tailwater)
$亡_{1}=$ Culvert (Passes 0.41 cfs of 1.82 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.17 cfs @ 7.86 fps)
-4=Orifice/Grate (Orifice Controls 0.24 cfs @ 2.78 fps)

Summary for Pond RG41: Rain Garden 41

Inflow Area =	7,525 sf,	\% Impervious,	Inflow Depth > 2.20" for 2YearMass event
Inflow	0.44 cfs @	12.07 hrs , Volume=	1,382 cf
Outflow	0.30 cfs @	12.16 hrs , Volume=	1,331 cf, Atten= 32\%, Lag= 5.3 min
Discarded	0.04 cfs @	12.15 hrs , Volume=	750 cf
Primary	0.26 cfs @	12.17 hrs , Volume=	581 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 731.51' @ 12.17 hrs Surf.Area= 723 sf Storage= 349 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 79.0 min (884.1-805.1)

Discarded OutFlow Max=0.04 cfs @ $12.15 \mathrm{hrs} \mathrm{HW}=731.50$ ' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.04 cfs)
Primary OutFlow Max=0.26 cfs @ $12.17 \mathrm{hrs} \mathrm{HW}=731.49^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
L2=Culvert (Passes 0.26 cfs of 0.83 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Orifice Controls 0.11 cfs @ 5.19 fps)
-5=Orifice/Grate (Orifice Controls 0.14 cfs @ 2.92 fps)

Summary for Pond RG42: Rain Garden 42

Volume	Invert	Avail.Storage	Storage Description
\#1	$728.25{ }^{\prime}$	212 cf $\begin{aligned} & \text { 18.0" } \\ & \mathrm{L}=60.0^{\prime}\end{aligned}$	
\#2	$728.25{ }^{\prime}$	491 cf	$8.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 1,440 cf Overall - 212 cf Embedded $=1,228$ cf $\times 40.0 \%$ Voids
\#3	$731.25{ }^{\prime}$	60 cf	8.00'W x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 120 cf Overall x 50.0% Voids
\#4	731.50'	621 cf	$8.00^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
1,385 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	$\begin{array}{ll}728.25 & \text { 1.02 } \\ 730.25 & \mathbf{8 . 0}\end{array}$	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary		Round Culvert
		$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= 730.25' / 730.15' S= 0.0100 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.35 sf	
\#3	Device 2	Limited to weir flow at low heads	
\#4	Device 2	730.25' 3.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#5	Device 2	731.00' 3.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.02 cfs @ 12.15 hrs HW=731.38' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.02 cfs)
Primary OutFlow Max=0.37 cfs @ $12.21 \mathrm{hrs} \mathrm{HW}=731.43^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
L2=Culvert (Passes 0.37 cfs of 1.54 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Orifice Controls 0.24 cfs @ 4.95 fps)
5=Orifice/Grate (Orifice Controls 0.13 cfs @ 2.66 fps)

Summary for Pond RG43-48: Rain Garden 43-48

Discarded OutFlow Max=0.08 cfs @ 12.23 hrs HW=732.77' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.08 cfs)
Primary OutFlow Max=0.97 cfs @ 12.22 hrs HW=732.78' TW=0.00' (Dynamic Tailwater)
\&2=Culvert (Passes 0.97 cfs of 4.12 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{6 = O r i f i c e / G r a t e ~ (O r i f i c e ~ C o n t r o l s ~} 0.51$ cfs @ 4.68 fps)
—8=Orifice/Grate (Orifice Controls 0.46 cfs @ 1.87 fps)
Secondary OutFlow Max=0.19 cfs @ 12.22 hrs HW=732.78' TW=722.20' (Dynamic Tailwater)
- $3=$ Culvert (Passes 0.19 cfs of 0.82 cfs potential flow)
$-5=$ Orifice/Grate (Controls 0.00 cfs)
$-7=$ Orifice/Grate (Orifice Controls 0.10 cfs @ 4.68 fps)
9=Orifice/Grate (Orifice Controls 0.09 cfs @ 1.87 fps)

Summary for Pond RG49-50: Rain Gardens 49,50

Inflow Area =	10,410	vious,	Inflow Depth > 2.20" for 2YearMass event
Inflow	0.61 cfs @	12.07 hrs , Volume=	1,912 cf
Outflow	0.18 cfs @	12.40 hrs , Volume=	$1,494 \mathrm{cf}$, Atten= 70%, Lag= 19.7 min
Discarded	0.01 cfs @	10.50 hrs , Volume=	797 cf
Primary	0.17 cfs @	12.40 hrs , Volume=	697 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 730.99' @ 12.40 hrs Surf.Area= 600 sf Storage= 715 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $81.0 \mathrm{~min}(886.1-805.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1	728.25'	94 cf 12.0" Round Pipe Storage $\times 2$ Inside \#2L= 60.0'	
\#2	$728.25{ }^{\prime}$	682 cf	5.00 'W x $60.00 ' \mathrm{~L} \times 3.00{ }^{\prime} \mathrm{H}$ Soil Media and Gravelx 2
\#3	731.25'	75 cf	1,800 cf Overall -94 cf Embedded $=1,706$ cf $\times 40.0 \%$ Voids 5.00'W x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch $\times 2$ 150 cf Overall x 50.0% Voids
\#4	731.50'	871 cf	$5.00^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
$1,722 \mathrm{cf}$ Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	728.25'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	730.25'	6.0" Round Culvert X 2.00
			$\mathrm{L}=10.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 730.25' / 730.15' S=0.0100 '/l' Cc=0.900
\#3	Device 2	$732.00{ }^{\prime} \quad 6$	Horiz. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$
			ed to weir flow at low heads
\#4	Device 2	$730.25{ }^{\text {2 }}$	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#5	Device 2	731.00' 3.0	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 10.50 hrs HW=728.29' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=0.17 cfs @ $12.40 \mathrm{hrs} \mathrm{HW}=730.99^{\prime}$ TW=722.18' (Dynamic Tailwater)
$4_{2}=$ Culvert (Passes 0.17 cfs of 1.22 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Orifice Controls 0.17 cfs @ 3.91 fps)
$-5=$ Orifice/Grate (Controls 0.00 cfs)

Summary for Pond RG52-54: Rain Garden Lots 52,53,54

Device	Routing	Invert	Outlet Devices
\#1	Primary	686.75'	6.0" Round Culvert X 3.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=686.75' / 686.70' S=0.0050 '/' Cc= 0.900
		690.50'	$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf 6.0" Horiz Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$
\#2	Device 1		Limited to weir flow at low heads
\#3	Device 1	686.75'	2.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	689.00'	4.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=0.50 cfs @ 12.31 hrs HW=689.06' TW=0.00' (Dynamic Tailwater)
L1=Culvert (Passes 0.50 cfs of 4.07 cfs potential flow)
-2 $2=$ Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.47 cfs @ 7.19 fps)
—4=Orifice/Grate (Orifice Controls 0.03 cfs @ 0.84 fps)

Summary for Pond RG55: Rain Garden 55

Inflow Area =	5,450	viou	Inflow Depth > 2.20" for 2YearMass event
Inflow	0.32 cfs @	12.07 hrs , Volume=	1,001 cf
Outflow	0.13 cfs @	12.31 hrs , Volume=	996 cf, Atten= 61\%, Lag= 14.2 min
Primary	0.13 cfs @	12.31 hrs , Volume=	996 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 687.25' @ 12.31 hrs Surf.Area= 240 sf Storage= 208 cf
Plug-Flow detention time $=18.9$ min calculated for 996 cf (100% of inflow)
Center-of-Mass det. time $=15.9 \min (821.1-805.1)$

Primary OutFlow Max=0.12 cfs @ $12.31 \mathrm{hrs} \mathrm{HW}=687.25^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
\& $1=$ Culvert (Passes 0.12 cfs of 1.06 cfs potential flow)
-2 $2=$ Orifice/Grate (Controls 0.00 cfs)

- $3=$ Orifice/Grate (Orifice Controls 0.12 cfs @ 5.73 fps)
-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Link AP2-P: AP2-P

Inflow Area $=\quad 550,840$ sf, 23.14% Impervious, Inflow Depth > 0.92" for 2YearMass event
Inflow $=7.92$ cfs @ 12.20 hrs , Volume= $42,215 \mathrm{cf}$
Primary $=7.92$ cfs @ 12.20 hrs , Volume $=\quad 42,215 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Subcatchment P2.1: To Wetland A (A56-A87)

Runoff $=9.73$ cfs @ 12.14 hrs, Volume=
Routed to Link AP2-P : AP2-P

35,011 cf, Depth> 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P2.10: To RG4.1

Runoff $=\quad 2.05$ cfs @ 12.11 hrs, Volume= $\quad 6,701 \mathrm{cf}$, Depth> 3.03"
Routed to Reach SW2.1 : Swale RG2.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 10YearMass Rainfall=5.05"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| $*$ | 12,070 | 90 |
| :--- | ---: | :--- |
| Residential Lots, 65\% imp, HSG C | | |
| 2,925 | 70 | Woods, Good, HSG C |
| 11,575 | 74 | $>75 \%$ Grass cover, Good, HSG C |
| 26,570 | 81 | Weighted Average |
| 18,725 | | 70.47\% Pervious Area |
| 7,846 | | 29.53% Impervious Area |

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
6.2	50	0.1200	0.13	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00 "$
1.0	100	0.1200	1.73	Shallow Concentrated Flow, Woodland Kv=5.0 fps	
7.2	150	Total			

Summary for Subcatchment P2.11: Lots 48-50

Runoff $=1.07$ cfs @ 12.07 hrs, Volume= 3,403 cf, Depth> 3.92"

Routed to Pond RG49-50 : Rain Gardens 49,50
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN	Description $1 / 8$ acre lots, 65% imp, HSG C		
	5,915				
	955		1/8 acre lots, $65 \% \mathrm{imp}$, HSG C $1 / 8$ acre lots, $65 \% \mathrm{imp}$, HSG B		
	6,870	89	Weighted Average		
	2,405		35.00\% Pervious Area		
	4,466		65.00\% Im	pervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P2.14: Lots 30-33

Runoff = 2.20 cfs @ 12.07 hrs, Volume= 7,029 cf, Depth> 3.92"
Routed to Pond RG31-33 : Rain Gardens 31,32,33
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P2.2: Lots 42-48

Runoff $=\quad 4.08$ cfs @ 12.07 hrs, Volume $=13,034$ cf, Depth> 3.92"
Routed to Pond RG43-48 : Rain Garden 43-48
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)		CN	Description					
*	39,875	90						
$\begin{aligned} & \hline 13,956 \\ & 25,919 \end{aligned}$		35.00\% Pervious Area 65.00\% Impervious Area						
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry			

Summary for Subcatchment P2.3: Lots 41-42

Runoff $=1.30$ cfs @ 12.07 hrs, Volume=
Routed to Pond RG42 : Rain Garden 42
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN D	Description		
	12,715	90	1/8 acre lots, 65% imp, HSG C		
	$\begin{aligned} & 4,450 \\ & 8,265 \end{aligned}$	35.00\% Pervious Area 65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P2.4: Lots 40-41

Runoff $=\quad 0.77$ cfs @ 12.07 hrs, Volume= $2,460 \mathrm{cf}$, Depth> 3.92"
Routed to Pond RG41 : Rain Garden 41
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P2.6: Lots 33-39

Runoff = 4.64 cfs @ 12.07 hrs, Volume= 14,802 cf, Depth> 3.92"
Routed to Pond RG34-39 : Rain Gardens 34-39
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf) CN Description

$*$	45,285	90
15,850	Residential Lots, 65% imp, HSG C	
29,435	35.00% Pervious Area	
	65.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P2.7: Upgradient Lots 35-39

Runoff $=1.67$ cfs @ 12.29 hrs, Volume= $\quad 7,827$ cf, Depth> 2.06"
Routed to Pond IT-35/39 : Interceptor Trench Lots 35-39
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P2.8: Upgradient Lots 30-35

Runoff $=\quad 3.67$ cfs @ 12.24 hrs, Volume= $\quad 15,826$ cf, Depth> 2.15"
Routed to Pond IT-30/35 : Interceptor Trench Lots 30-35
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN Description				
	$\begin{aligned} & 11,085 \\ & 77,375 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 74 \\ & 70 \\ & \hline \end{aligned}$	>75\% Grass cover, Good, HSG C Woods, Good, HSG C			
$\begin{aligned} & \hline 88,460 \\ & 88,460 \end{aligned}$		71	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.7	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush $n=0.400$	P2=3.00"
3.5	280	0.0700	1.32		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
0.1	30	0.5000	- 4.95		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$	
16.3	360	Total				

Summary for Subcatchment P2.9: Lots 51-53

Runoff $=\quad 2.36$ cfs @ 12.08 hrs, Volume= 7,321 cf, Depth> 3.12"
Routed to Pond RG52-54 : Rain Garden Lots 52,53,54
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN D	1/8 acre lots, $65 \% \mathrm{imp}$, HSG C		
	2,430	90			
	20,825	851	1/8 acre lots, $65 \% \mathrm{imp}$, HSG B		
	3,605	70	Woods, Good, HSG C		
	1,280	55	Woods, Good, HSG B		
	28,140	82	Weighted Average		
	13,024		46.28\% Pervious Area		
	15,116		53.72\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Reach SW2.1: Swale RG2.1

Inflow Area $=\quad 58,485$ sf, 48.88% Impervious, Inflow Depth $>4.51 "$ for 10YearMass event Inflow $=\quad 4.87$ cfs @ 12.12 hrs , Volume= 22,003 cf Outflow = 4.89 cfs @ 12.12 hrs , Volume= $22,000 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Routed to Pond RG2.1 : Rain Garden 2.1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Max. Velocity $=8.51 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=2.91 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 69 cf @ 12.12 hrs
Average Depth at Peak Storage= 0.34^{\prime}, Surface Width= 2.36'
Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 46.26 cfs
$1.00^{\prime} \times 1.00^{\prime}$ deep channel, $\mathrm{n}=0.025$ Earth, clean \& winding
Side Slope Z-value= 2.0 '/' Top Width= 5.00'
Length= 120.0' Slope= 0.1500 '/'
Inlet Invert= 722.00', Outlet Invert= 704.00'

Summary for Pond IT-30/35: Interceptor Trench Lots 30-35

Inflow Area $=$	$88,460 \mathrm{sf}$,	0.00% Impervious,	Inflow Depth > $2.15 "$
Inflow	$=$	$3.67 \mathrm{cfs} @$	12.24 hrs, Volume $=$
Outflow	$=$	$3.61 \mathrm{cfs} @$	12.27 hrs, Volume $=$
Primary	$=$	$3.61 \mathrm{cfs} @$	12.27 hrs , Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 733.01' @ 12.27 hrs Surf.Area= 1,470 sf Storage= 694 cf
Plug-Flow detention time $=8.3$ min calculated for 15,743 cf (99% of inflow)
Center-of-Mass det. time $=5.2 \mathrm{~min}(857.3-852.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	732.00'	1,696 cf	$3.00{ }^{\prime} \mathrm{W} \times 490.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Prismatoid
			4,410 cf Overall - 171 cf Embedded $=4,239 \mathrm{cf} \times 40.0 \%$ Voids
\#2	732.00'	171 cf	8.0" Round Pipe Storage Inside \#1
		1,867 cf	Total Available Storage
Device	Routing	Invert Outle	t Devices
\#1	Primary	$\begin{array}{ll} \hline 732.00^{\prime} & \begin{array}{l} 15.0^{\prime} \\ \mathrm{L}=2 \end{array} \end{array}$	Round Culvert 50.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$

Inlet / Outlet Invert= 732.00' / 724.00' S= 0.0320 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.57 cfs @ $12.27 \mathrm{hrs} \mathrm{HW}=733.00^{\prime}$ TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 3.57 cfs @ 3.40 fps)

Summary for Pond IT-35/39: Interceptor Trench Lots 35-39

Inflow Area =	45,500	0.00\% Imperviou	Depth > 2.06" for 10YearMass event
Inflow	1.67 cfs @	12.29 hrs , Volume=	7,827 cf
Outflow	1.61 cfs @	12.35 hrs , Volume=	7,774 cf, Atten= 4\%, Lag= 3.5 min
Primary	1.61 cfs @	12.35 hrs , Volume=	7,774 cf

Routed to Link AP2-P : AP2-P
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 734.79 @ 12.35 hrs Surf.Area= 1,200 sf Storage= 461 cf
Plug-Flow detention time $=10.6 \mathrm{~min}$ calculated for 7,758 cf (99% of inflow)
Center-of-Mass det. time $=6.8 \mathrm{~min}(864.1-857.4)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	734.00	$1,384 \mathrm{cf}$	$3.00 ' \mathrm{~W} \times 400.00 ' \mathrm{~L} \times 3.00$ 'H Prismatoid $3,600 \mathrm{cf}$ Overall -140 cf Embedded $=3,460 \mathrm{cf} \times 40.0 \%$ Voids $\# 2$
	734.00	140 cf	8.0" Round Pipe Storage Inside \#1 L= 400.0'
	$1,524 \mathrm{cf}$	Total Available Storage	

Device	Routing	Invert	Outlet Devices
\#1	Primary	734.00'	10.0" Round Culvert
			$\mathrm{L}=80.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 734.00' / 733.00' S=0.0125 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=1.61 cfs @ 12.35 hrs HW=734.79' TW=0.00' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 1.61 cfs @ 3.02 fps)

Summary for Pond RG14: Rain Garden 14

Routing by Dyn-Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.05 hrs
Peak Elev= 704.54' @ 12.15 hrs Surf.Area= 730 sf Storage= 312 cf
Plug-Flow detention time= 16.9 min calculated for $2,173 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time= 13.3 min (806.0-792.7)

Volume	Invert	Avail.Storage	Storage Description
\#1	702.00'	47 cf 12.0" Round Pipe Storage Inside \#2L= 60.0'	
\#2	702.00'	269 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00{ }^{\prime} \mathrm{H}$ Soil Media and Gravel
			720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
\#3	704.25'	30 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch
			60 cf Overall $\times 50.0 \%$ Voids
\#4	704.50'	373 cf	$4.00^{\prime} \mathrm{W} \times 60.0{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
720 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	702.00' $\begin{array}{ll}\text { 6.0" } \\ & \mathrm{L}=7 \\ & \text { Inlet } \\ \\ \mathrm{n}=0\end{array}$	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 702.00' / 702.00' S=0.0000 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	705.00' $\begin{gathered}\text { 6.0' } \\ \\ \text { Lim }\end{gathered}$	Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Device 1	$702.00{ }^{\prime} \mathbf{2 . 0}{ }^{\prime \prime}$	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	703.75' 4.0	Vert. Orifice/Grate $\quad \mathrm{C}=0.600$ Limited to weir flow at low heads
Primary OutFlow Max=0.50 cfs @ 12.15 hrs HW=704.54' TW=701.25' (Dynamic Tailwater)			
$\chi_{1}=$ Culvert (Passes 0.50 cfs of 0.83 cfs potential flow)			
-2=Orifice/Grate (Controls 0.00 cfs)			
-3=Orifice/Grate (Orifice Controls 0.16 cfs @ 7.54 fps)			
-4=Orifice/Grate (Orifice Controls 0.33 cfs @ 3.80 fps)			

Summary for Pond RG2.1: Rain Garden 2.1

Inflow Area =	65,355 sf,	50.58\% Impervious,	仡	4.44" for 10YearMass event
Inflow	5.39 cfs @	12.12 hrs , Volume=	24,173 cf	
Outflow	2.20 cfs @	12.56 hrs , Volume=	23,340 cf,	Atten $=59 \%, L$ ag $=26.0 \mathrm{~min}$
Discarded =	0.72 cfs @	12.56 hrs, Volume=	15,934 cf	
Primary = Routed to	$\begin{aligned} & 1.48 \mathrm{cfs} @ \\ & \text { AP2-P : AP2-F } \end{aligned}$	12.56 hrs, Volume=	7,405 cf	
Secondary = Routed to	$\begin{gathered} 0.00 \text { cfs @ } \\ \text { AP2-P : AP2-F } \end{gathered}$	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 702.43' @ 12.56 hrs Surf.Area= 12,983 sf Storage= $7,529 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $96.2 \min (903.0-806.8)$

Discarded OutFlow Max=0.72 cfs @ 12.56 hrs HW=702.42' (Free Discharge)
$\Psi_{6=\text { Exfiltration (Exfiltration Controls } 0.72 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=1.47 cfs @ 12.56 hrs HW=702.42' TW=0.00' (Dynamic Tailwater)
亡1=Culvert (Passes 1.47 cfs of 3.64 cfs potential flow)
5-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.24 cfs @ 5.58 fps)
—4=Orifice/Grate (Orifice Controls 1.23 cfs @ 3.14 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=698.75' TW=0.00' (Dynamic Tailwater)
$\Psi_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond RG31-33: Rain Gardens 31,32,33

Inflow Area =	21,505	perviou	Inflow De	3.92" for 10YearMass event
Inflow	2.20 cfs @	12.07 hrs , Volume=	7,029 cf	
Outflow	1.18 cfs @	12.20 hrs , Volume=	7,008 cf	f, Atten= 46\%, Lag= 7.9 min
Primary	1.18 cfs @	12.20 hrs , Volume=	7,008 cf	

Routed to Reach SW2.1 : Swale RG2.1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 731.83' @ 12.20 hrs Surf.Area= 2,417 sf Storage= 1,317 cf
Plug-Flow detention time $=17.1$ min calculated for $7,008 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=15.1 \mathrm{~min}(804.2-789.1)$
Prepared by Mcclure Engineeering Printed 5/1/2023

HydroCAD® 10.20-2g s/n 03362 © 2022 HydroCAD Software Solutions LLC

Primary OutFlow Max=1.18 cfs @ $12.20 \mathrm{hrs} \mathrm{HW}=731.83^{\prime}$ TW=722.32' (Dynamic Tailwater)
L1=Culvert (Passes 1.18 cfs of 5.17 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.59 cfs @ 9.00 fps)
4=Orifice/Grate (Orifice Controls 0.59 cfs @ 4.03 fps)

Summary for Pond RG34-39: Rain Gardens 34-39

Primary OutFlow Max=1.62 cfs @ 12.21 hrs HW=731.90' TW=0.00' (Dynamic Tailwater)
$廿_{1}=$ Culvert (Passes 1.62 cfs of 6.97 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
- $\mathbf{5}=$ Orifice/Grate (Orifice Controls 0.79 cfs @ 9.09 fps)
$\square_{7=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~}^{0.83}$ cfs @ 4.23 fps)
Secondary OutFlow Max=0.81 cfs @ 12.21 hrs HW=731.90' TW=722.32' (Dynamic Tailwater)
$亡_{2}=$ Culvert (Passes 0.81 cfs of 3.49 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)
6=Orifice/Grate (Orifice Controls 0.40 cfs @ 9.09 fps)
—8=Orifice/Grate (Orifice Controls 0.42 cfs @ 4.23 fps)

Summary for Pond RG40: Rain Garden 40

Inflow Area	9,525	0\% Impervious,	Depth > 3	92" for 10YearMass event
Inflow	0.98 cfs @	12.07 hrs , Volume=	3,113 cf	
Outflow	0.65 cfs @	12.16 hrs , Volume=	3,105 cf,	Atten $=33 \%$, Lag $=5.4 \mathrm{~min}$
Primary	0.65 cfs @	12.16 hrs , Volume=	3,105 cf	

Routed to Link AP2-P : AP2-P
Prepared by Mcclure Engineeering Printed 5/1/2023

HydroCAD® 10.20-2g s/n 03362 © 2022 HydroCAD Software Solutions LLC

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 733.35' @ 12.16 hrs Surf.Area= 811 sf Storage= 446 cf
Plug-Flow detention time $=14.5 \mathrm{~min}$ calculated for $3,105 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time= $12.8 \mathrm{~min}(801.9-789.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1	729.75'	47 cf 12.0" Round Pipe Storage Inside \#2L= 60.0'	
\#2	729.75'	269 cf	4.00^{\prime} W x $60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
\#3	732.75'	30 cf	$4.00^{\prime} \mathrm{W}$ x $\mathbf{6 0 . 0 0}^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	$733.00{ }^{\prime}$	373 cf	$4.00{ }^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
720 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	729.75' $\begin{array}{ll} & 8.0 \\ & \text { L= } \\ & \text { Inlet } \\ & \mathrm{n}=0 .\end{array}$	Round Culvert
			40.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 729.75' / 728.00' S=0.0125 '/' Cc= 0.900
			.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
\#2	Device 1	733.50 ' 6.0	Horiz. Orifice/Grate C= 0.600
			ed to weir flow at low heads
\#3	Device 1	$729.75{ }^{\prime}$ 2.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	732.00' 4.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.65 cfs @ 12.16 hrs HW=733.34' TW=0.00' (Dynamic Tailwater)
$\Psi_{1}=$ Culvert (Passes 0.65 cfs of 2.01 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.20 cfs @ 9.01 fps)
4=Orifice/Grate (Orifice Controls 0.45 cfs @ 5.21 fps)

Summary for Pond RG41: Rain Garden 41

Discarded OutFlow Max=0.05 cfs @ 12.17 hrs HW=732.05' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=0.43 cfs @ $12.17 \mathrm{hrs} \mathrm{HW}=732.05^{\prime}$ TW=0.00' (Dynamic Tailwater)
$廿_{2=C u l v e r t ~(P a s s e s ~}^{0.43}$ cfs of 1.04 cfs potential flow)

- $3=$ Orifice/Grate (Weir Controls 0.07 cfs @ 0.77 fps)
-4=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.32 fps)
5=Orifice/Grate (Orifice Controls 0.23 cfs @ 4.64 fps)

Summary for Pond RG42: Rain Garden 42

Discarded OutFlow Max=0.04 cfs @ $12.17 \mathrm{hrs} \mathrm{HW}=732.11^{\prime} \quad$ (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.04 cfs)
Primary OutFlow Max=0.78 cfs @ $12.17 \mathrm{hrs} \mathrm{HW}=732.11^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
L2=Culvert (Passes 0.78 cfs of 2.07 cfs potential flow)
${ }^{2}-3=$ Orifice/Grate (Weir Controls 0.24 cfs @ 1.07 fps)
-4=Orifice/Grate (Orifice Controls 0.31 cfs @ 6.34 fps)
-5=Orifice/Grate (Orifice Controls 0.23 cfs @ 4.77 fps)

Summary for Pond RG43-48: Rain Garden 43-48

Discarded OutFlow Max=0.14 cfs @ 12.20 hrs HW=733.42' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.14 cfs)
Primary OutFlow Max=1.72 cfs @ 12.20 hrs HW=733.42' TW=0.00' (Dynamic Tailwater)
\& $2=$ Culvert (Passes 1.72 cfs of 5.64 cfs potential flow)
2-4=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{6 = O r i f i c e / G r a t e ~ (O r i f i c e ~ C o n t r o l s ~} 0.66$ cfs @ 6.07 fps)
—8=Orifice/Grate (Orifice Controls 1.06 cfs @ 4.30 fps)
Secondary OutFlow Max=0.34 cfs @ 12.20 hrs HW=733.42' TW=722.32' (Dynamic Tailwater)

$-5=$ Orifice/Grate (Controls 0.00 cfs)
-7=Orifice/Grate (Orifice Controls 0.13 cfs @ 6.07 fps)
$-9=$ Orifice/Grate (Orifice Controls 0.21 cfs @ 4.30 fps)

Summary for Pond RG49-50: Rain Gardens 49,50

Device	Routing	Invert	Outlet Devices
\#1	Discarded	728.25'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	730.25'	6.0" Round Culvert X 2.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 730.25' $/ 730.15$ ' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	732.00'	6.0" Horiz. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 2	730.25'	2.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#5	Device 2	731.00'	3.0" Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.04 cfs @ 12.18 hrs HW=731.68' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.04 cfs)
Primary OutFlow Max=0.59 cfs @ $12.18 \mathrm{hrs} \mathrm{HW}=731.68^{\prime}$ TW=722.33' (Dynamic Tailwater)
\& 2=Culvert (Passes 0.59 cfs of 2.05 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Orifice Controls 0.24 cfs @ 5.58 fps)
$-5=$ Orifice/Grate (Orifice Controls 0.35 cfs @ 3.58 fps)

Summary for Pond RG52-54: Rain Garden Lots 52,53,54

Inflow Area =		28,140 sf, 53.7	Impervious, Inflow Depth > 3.12" for 10YearMass event
Inflow	2	2.36 cfs @ 12.08	hrs, Volume= 7,321 cf
Outflow	1	1.76 cfs @ 12.15	hrs, Volume $=\quad 7,297 \mathrm{cf}$, Atten= 25%, Lag $=4.5 \mathrm{~min}$
Primary	1	1.76 cfs @ 12.15	hrs, Volume= 7,297 cf
Route	to Link AP	AP2-P : AP2-P	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs			
Peak Elev= 690.06' @ 12.15 hrs Surf.Area= 2,209 sf Storage= 1,086 cf			
Plug-Flow detention time $=14.9 \mathrm{~min}$ calculated for $7,281 \mathrm{cf}(99 \%$ of inflow)			
Center-of-Mass det. time $=12.9 \mathrm{~min}(827.4-814.5)$			
Volume	Invert	t Avail.Storage	Storage Description
\#1	$686.75{ }^{\prime}$	' 141 cf	12.0" Round Pipe Storage x 3 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$686.75{ }^{\prime}$	' 807 cf	4.00^{\prime} W $\times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 3 2,160 cf Overall - 141 cf Embedded $=2,019$ cf $\times 40.0 \%$ Voids
\#3	$689.75{ }^{\prime}$	' 90 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25$ 'H Mulch $\times 3$ 180 cf Overall $\times 50.0 \%$ Voids
\#4	$690.00{ }^{\prime}$	' 1,120 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 3$
		2,159 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	686.75'	6.0" Round Culvert X 3.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=686.75' / 686.70' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	690.50'	6.0" Horiz. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$686.75{ }^{\prime}$	2.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	689.00'	4.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=1.76 cfs @ 12.15 hrs HW=690.06' TW=0.00' (Dynamic Tailwater)
L-1=Culvert (Passes 1.76 cfs of 4.96 cfs potential flow)
-2 $=$ Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.57 cfs @ 8.65 fps)
—4=Orifice/Grate (Orifice Controls 1.19 cfs @ 4.56 fps)

Summary for Pond RG55: Rain Garden 55

Routed to Link AP2-P : AP2-P
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 688.48' @ 12.16 hrs Surf.Area= 240 sf Storage= 326 cf
Plug-Flow detention time $=18.2$ min calculated for 1,771 cf (99% of inflow)
Center-of-Mass det. time $=15.9 \mathrm{~min}(805.0-789.1)$

Primary OutFlow Max=0.39 cfs @ 12.16 hrs HW=688.45' TW=0.00' (Dynamic Tailwater)
亡-1=Culvert (Passes 0.39 cfs of 1.48 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
$-3=$ Orifice/Grate (Orifice Controls 0.17 cfs @ 7.78 fps)
—4=Orifice/Grate (Orifice Controls 0.22 cfs @ 2.54 fps)

Summary for Link AP2-P: AP2-P

Inflow Area $=\quad 550,840$ sf, 23.14\% Impervious, Inflow Depth > 2.16" for 10YearMass event Inflow $=20.93$ cfs @ 12.17 hrs , Volume $=\quad 99,276 \mathrm{cf}$ Primary = 20.93 cfs @ 12.17 hrs , Volume $=\quad 99,276 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Subcatchment P2.1: To Wetland A (A56-A87)

Runoff $=14.02$ cfs @ 12.14 hrs, Volume=
Routed to Link AP2-P : AP2-P

49,797 cf, Depth> 2.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)	CN	Description			
142,635	70	Woods, Good, HSG C			
45,615	74	>75\% Grass cover, Good, HSG C			
10,360	55	Woods, Good, HSG B			
3,340	61	>75\% Grass cover, Good, HSG B			
1,060	98	Unconnected roofs, HSG B			
203,010	70	Weighted Average			
201,950		99.48\% Pervious Area			
1,060		0.52\% Impervious Area			
1,060		100.00\% Unconnected			
$\begin{array}{rr} \text { Tc } & \text { Length } \\ (\mathrm{min}) & (\text { feet }) \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
5.150	0.2000	0.16		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00$
0.790	0.2000	- 2.24		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
3.7290	0.0700	- 1.32		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.5430	Total				

Summary for Subcatchment P2.10: To RG4.1

Runoff $=\quad 2.72 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume= $\quad 8,954 \mathrm{cf}$, Depth> 4.04" Routed to Reach SW2.1 : Swale RG2.1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YearMass Rainfall=6.18"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| $*$ | 12,070 | 90 |
| :--- | ---: | :--- |
| Residential Lots, 65\% imp, HSG C | | |
| 2,925 | 70 | Woods, Good, HSG C |
| 11,575 | 74 | $>75 \%$ Grass cover, Good, HSG C |
| 26,570 | 81 | Weighted Average |
| 18,725 | | 70.47\% Pervious Area |
| 7,846 | | 29.53% Impervious Area |

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
6.2	50	0.1200	0.13	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00 "$
1.0	100	0.1200	1.73	Shallow Concentrated Flow, Woodland Kv=5.0 fps	
7.2	150	Total			

Summary for Subcatchment P2.11: Lots 48-50

Runoff $=1.35$ cfs @ 12.07 hrs, Volume=
4,354 cf, Depth> 5.02"
Routed to Pond RG49-50 : Rain Gardens 49,50
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 YearMass Rainfall $=6.18$ "

Area (sf)		CN Description						
10,410		90 Residential Lots, 65\% imp, HSG C						
$\begin{aligned} & \hline 3,644 \\ & 6,767 \end{aligned}$		35.00\% Pervious Area 65.00\% Impervious Area						
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Des			
5.0		Direct Entry,						
		Summary for Subcatchment P2.12: Lot 54						
Runoff Rout	$\begin{gathered} = \\ \text { ted to Pon } \end{gathered}$	$\begin{gathered} 0.70 \mathrm{cf} \\ \text { RG55: } \end{gathered}$	@ 12.07 Rain Gard	hrs, Volu en 55	$\mathrm{me}=$	2,279 cf,	Depth>	5.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN	Description $1 / 8$ acre lots, 65% imp, HSG C		
	5,915				
	955		1/8 acre lots, $65 \% \mathrm{imp}$, HSG C $1 / 8$ acre lots, $65 \% \mathrm{imp}$, HSG B		
	6,870	89	Weighted Average		
	2,405		35.00\% Pervious Area		
	4,466		65.00\% Im	pervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P2.14: Lots 30-33

Runoff $=\quad 2.78 \mathrm{cfs}$ @ 12.07 hrs, Volume= $8,994 \mathrm{cf}$, Depth> 5.02"

Routed to Pond RG31-33 : Rain Gardens 31,32,33
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment P2.2: Lots 42-48

Runoff $=\quad 5.16$ cfs @ 12.07 hrs, Volume $=16,676 \mathrm{cf}$, Depth> 5.02"

Routed to Pond RG43-48 : Rain Garden 43-48
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)		CN	Description					
*	39,875	90						
$\begin{aligned} & \hline 13,956 \\ & 25,919 \end{aligned}$		35.00\% Pervious Area 65.00\% Impervious Area						
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry			

Summary for Subcatchment P2.3: Lots 41-42

Runoff $=1.64$ cfs @ 12.07 hrs, Volume=
Routed to Pond RG42 : Rain Garden 42

5,318 cf, Depth> 5.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 YearMass Rainfall $=6.18$ "

	Area (sf)	CN D	Description		
	12,715	90	1/8 acre lots, 65% imp, HSG C		
	$\begin{aligned} & 4,450 \\ & 8,265 \end{aligned}$	35.00\% Pervious Area 65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P2.4: Lots 40-41

Runoff $=\quad 0.97$ cfs @ 12.07 hrs, Volume= $3,147 \mathrm{cf}$, Depth> 5.02"
Routed to Pond RG41 : Rain Garden 41
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YearMass Rainfall=6.18"

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P2.6: Lots 33-39

Runoff $=\quad 5.86$ cfs @ 12.07 hrs, Volume= $18,939 \mathrm{cf}$, Depth> 5.02"
Routed to Pond RG34-39 : Rain Gardens 34-39
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf) CN Description

$*$	45,285	90
15,850	Residential Lots, 65% imp, HSG C	
29,435	35.00% Pervious Area	
	65.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P2.7: Upgradient Lots 35-39

Runoff $=\quad 2.41$ cfs @ 12.28 hrs, Volume $=11,134$ cf, Depth> 2.94"
Routed to Pond IT-35/39 : Interceptor Trench Lots 35-39
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment P2.8: Upgradient Lots 30-35

Runoff $=5.25$ cfs @ 12.23 hrs, Volume= 22,370 cf, Depth> 3.03"
Routed to Pond IT-30/35 : Interceptor Trench Lots 30-35
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 25YearMass Rainfall=6.18"

	-ea (sf)	CN Description			
$\begin{aligned} & 11,085 \\ & 77,375 \\ & \hline \end{aligned}$			>75\% Grass cover, Good, HSG C Woods, Good, HSG C		
$\begin{aligned} & 88,460 \\ & 88,460 \end{aligned}$			Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.7	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.00$ "
3.5	280	0.0700	1.32		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.1	30	0.5000	4.95		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
16.3	360	Total			

Summary for Subcatchment P2.9: Lots 51-53

Runoff $=3.13$ cfs @ 12.07 hrs, Volume= $9,733 \mathrm{cf}$, Depth> 4.15"
Routed to Pond RG52-54 : Rain Garden Lots 52,53,54
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN D	Description		
	2,430	901	1/8 acre lots, 65% imp, HSG C		
	20,825	851	1/8 acre lots, $65 \% \mathrm{imp}$, HSG B		
	3,605	70	Woods, Good, HSG C		
	1,280	55	Woods, Good, HSG B		
	28,140	82	Weighted Average		
	13,024		46.28\% Pervious Area		
	15,116		53.72\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Reach SW2.1: Swale RG2.1

Inflow Area $=\quad 58,485$ sf, 48.88% Impervious, Inflow Depth > 5.96" for 25YearMass event Inflow $=6.87$ cfs @ 12.15 hrs , Volume= 29,023 cf Outflow = 6.83 cfs @ 12.15 hrs , Volume=

29,019 cf, Atten= 1\%, Lag= 0.2 min
Routed to Pond RG2.1 : Rain Garden 2.1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Max. Velocity $=9.37 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=3.15 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 87 cf @ 12.15 hrs
Average Depth at Peak Storage= 0.40^{\prime}, Surface Width= 2.61^{\prime}
Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 46.26 cfs
$1.00^{\prime} \times 1.00$ deep channel, $\mathrm{n}=0.025$ Earth, clean \& winding
Side Slope Z-value= 2.0 '/' Top Width= 5.00'
Length= 120.0' Slope= 0.1500 '/'
Inlet Invert= 722.00', Outlet Invert= 704.00'

Summary for Pond IT-30/35: Interceptor Trench Lots 30-35

Inflow Area =	88,460 sf	0.00\% Impervious,	Inflow Depth > 3.03" for 25YearMass event
Inflow	5.25 cfs @	12.23 hrs , Volume=	22,370 cf
Outflow	5.08 cfs @	12.27 hrs , Volume=	22,274 cf, Atten=3\%, Lag= 2.7 min
Primary	5.08 cfs @	12.27 hrs , Volume=	22,274 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 733.36' @ 12.27 hrs Surf.Area= 1,470 sf Storage= 905 cf
Plug-Flow detention time $=7.2$ min calculated for $22,228 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=4.7 \mathrm{~min}(846.7-842.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	732.00'	1,696 cf	$3.00{ }^{\prime} \mathrm{W} \times 490.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Prismatoid
			4,410 cf Overall - 171 cf Embedded $=4,239 \mathrm{cf} \times 40.0 \%$ Voids
\#2	732.00'	171 cf	8.0" Round Pipe Storage Inside \#1
		1,867 cf	Total Available Storage
Device	Routing	Invert Outle	t Devices
\#1	Primary	$\begin{array}{ll} \hline 732.00^{\prime} & \begin{array}{l} 15.0^{\prime} \\ \mathrm{L}=2 \end{array} \end{array}$	Round Culvert 50.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$

Inlet / Outlet Invert= 732.00' / 724.00' S= 0.0320 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=5.03 cfs @ 12.27 hrs HW=733.35' TW=0.00' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 5.03 cfs @ 4.10 fps)

Summary for Pond IT-35/39: Interceptor Trench Lots 35-39

Inflow Area =	45,500 sf,	0.00\% Impervious	w Depth > 2.94" for 25YearMass event
Inflow	2.41 cfs @	12.28 hrs, Volume=	11,134 cf
Outflow	2.26 cfs @	12.36 hrs , Volume=	$11,073 \mathrm{cf}$, Atten $=6 \%, L a g=4.6 \mathrm{~min}$
Primary	2.26 cfs @	12.36 hrs , Volume=	11,073 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 735.16' @ 12.36 hrs Surf.Area= 1,200 sf Storage= 640 cf
Plug-Flow detention time= 9.3 min calculated for 11,050 cf (99% of inflow)
Center-of-Mass det. time $=6.2 \mathrm{~min}$ (853.3-847.2)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	734.00	$1,384 \mathrm{cf}$	$3.00 ' \mathrm{~W} \times 400.00 ' \mathrm{~L} \times 3.00$ 'H Prismatoid $3,600 \mathrm{cf}$ Overall -140 cf Embedded $=3,460 \mathrm{cf} \times 40.0 \%$ Voids $\# 2$
	734.00	140 cf	8.0" Round Pipe Storage Inside \#1 L= 400.0'
	$1,524 \mathrm{cf}$	Total Available Storage	

Device	Routing	Invert	Outlet Devices
\#1	Primary	734.00'	10.0" Round Culvert
			$\mathrm{L}=80.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 734.00' / 733.00' S=0.0125 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=2.26 cfs @ 12.36 hrs HW=735.16' TW=0.00' (Dynamic Tailwater)
_1=Culvert (Inlet Controls 2.26 cfs @ 4.14 fps)

Summary for Pond RG14: Rain Garden 14

Routing by Dyn-Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.05 hrs
Peak Elev= 704.76' @ 12.17 hrs Surf.Area= 789 sf Storage= 396 cf
Plug-Flow detention time $=16.7 \mathrm{~min}$ calculated for $2,795 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $13.6 \mathrm{~min}(799.5-785.9)$

Volume	Invert	Avail.Storage	Storage Description
\#1	702.00'	47 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	702.00'	269 cf	4.00 'W x 60.00'L x 3.00'H Soil Media and Gravel
\#3	704.25'	30 cf	720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids 4.00'W x 60.00'L x 0.25'H Mulch 60 of Overall $\times 50.0 \%$ Voids
\#4	704.50'	373 cf	$4.00^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
		720 cf	Total Available Storage
Device	Routing	Invert Outle	Devices
\#1	Primary	702.00' 6.0"	Round Culvert
			50' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 702.00' / 702.00' S=0.0000 '/l' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	705.00' 6.0"	Horiz. Orifice/Grate $\mathrm{C}=0.600$
		Limi	ed to weir flow at low heads
\#3	Device 1	702.00 ' 2.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	703.75' 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
Primary OutFlow Max=0.55 cfs @ 12.17 hrs HW=704.75' TW=702.23' (Dynamic Tailwater) L-1=Culvert (Passes 0.55 cfs of 0.87 cfs potential flow)			
-2=Orifice/Grate (Controls 0.00 cfs)			
-3=Orifice/Grate (Orifice Controls $0.17 \mathrm{cfs} @ 7.65 \mathrm{fps}$)			

Summary for Pond RG2.1: Rain Garden 2.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 702.95' @ 12.60 hrs Surf.Area= 13,275 sf Storage= $9,939 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $73.4 \min$ (874.6-801.2)

Discarded OutFlow Max=0.74 cfs @ 12.60 hrs HW=702.95' (Free Discharge)
${ }^{-1} \mathbf{6 = E x f i l t r a t i o n ~ (E x f i l t r a t i o n ~ C o n t r o l s ~} 0.74 \mathrm{cfs}$)
Primary OutFlow Max=2.13 cfs @ 12.60 hrs HW=702.95' TW=0.00' (Dynamic Tailwater)
L1=Culvert (Passes 2.13 cfs of 4.55 cfs potential flow)
5-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.29 cfs @ 6.57 fps)
—4=Orifice/Grate (Orifice Controls 1.84 cfs @ 4.68 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=698.75' TW=0.00' (Dynamic Tailwater)
$\Psi_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond RG31-33: Rain Gardens 31,32,33

Routed to Reach SW2.1 : Swale RG2.1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 732.11' @ 12.17 hrs Surf.Area= 2,648 sf Storage= 1,627 cf
Plug-Flow detention time $=16.9 \mathrm{~min}$ calculated for $8,970 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=15.2 \min (797.7-782.5)$
Prepared by Mcclure Engineeering Printed 5/1/2023

Volume	Invert	Avail.Storage	Storage Description
\#1	728.25'	141 cf $12 . \mathbf{0}^{\prime \prime}$ Round Pipe Storage $\times 3$ Inside \#2L= 60.0'	
\#2	$728.25{ }^{\prime}$	807 cf	4.00^{\prime} W $\times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 3 $2,160 \mathrm{cf}$ Overall -141 cf Embedded $=2,019 \mathrm{cf} \times 40.0 \%$ Voids
\#3	731.25'	90 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch $\times 3$ 180 cf Overall $\times 50.0 \%$ Voids
\#4	731.50'	$1,120 \mathrm{cf}$ 4.00' $\mathrm{W} \times \mathbf{6 0 . 0 0} \mathbf{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathbf{Z}=2.0 \times 3$	
$2,159 \mathrm{cf}$ Total Available Storage			
Device	Routing	Invert Outle	t Devices
\#1	Primary	$\begin{array}{ll} \hline 728.25 & \begin{array}{l} 6.0 " \\ \\ \\ \\ \\ \text { Inlet } \\ \\ \\ n=0 \end{array} \end{array}$	Round Culvert X 3.00 0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$ / Outlet Invert= 728.25' / 728.15' S=0.0100 '/' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$732.00{ }^{\text {' }}$ 6.0"	Horiz. Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#3	Device 1	$\begin{array}{ll} 728.25 & \begin{array}{l} \text { 2.0" } \\ \\ \\ \text { Limit } \end{array} \end{array}$	Vert. Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#4	Device 1	731.00 ' $\begin{array}{ll}\text { 3.0" } \\ & \text { Limit }\end{array}$	Vert. Orifice/Grate X $3.00 \mathrm{C}=0.600$ ed to weir flow at low heads

Primary OutFlow Max=1.77 cfs @ $12.17 \mathrm{hrs} \mathrm{HW}=732.10^{\prime} \mathrm{TW}=722.40^{\prime} \quad$ (Dynamic Tailwater)
\&1=Culvert (Passes 1.77 cfs of 5.38 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.46 cfs @ 1.01 fps)
-3=Orifice/Grate (Orifice Controls 0.61 cfs @ 9.34 fps)

- $\mathbf{4 =}$ Orifice/Grate (Orifice Controls 0.70 cfs @ 4.75 fps)

Summary for Pond RG34-39: Rain Gardens 34-39

Primary OutFlow Max=2.76 cfs @ 12.16 hrs HW=732.13' TW=0.00' (Dynamic Tailwater)
$廿_{1}=$ Culvert (Passes 2.76 cfs of 7.21 cfs potential flow)

- $3=$ Orifice/Grate (Weir Controls 0.99 cfs @ 1.19 fps)
- $\mathbf{5}=$ Orifice/Grate (Orifice Controls 0.82 cfs @ 9.38 fps)
$\zeta_{7=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 0.95$ cfs @ 4.83 fps)
Secondary OutFlow Max=1.38 cfs @ 12.16 hrs HW=732.13' TW=722.40' (Dynamic Tailwater)
-2=Culvert (Passes 1.38 cfs of 3.60 cfs potential flow)
-4=Orifice/Grate (Weir Controls 0.49 cfs @ 1.19 fps)
6=Orifice/Grate (Orifice Controls 0.41 cfs @ 9.38 fps)
-8=Orifice/Grate (Orifice Controls 0.47 cfs @ 4.83 fps)

Summary for Pond RG40: Rain Garden 40

Inflow Area =	9,525	65.00\% Impervious	>	5.02" for 25YearMass event
Inflow	1.23 cfs @	12.07 hrs, Volume=	3,984 cf	
Outflow	0.92 cfs @	12.16 hrs, Volume=	3,974 cf,	Atten $=25 \%, L a g=5.0$ min
Primary	0.92 cfs @	12.16 hrs, Volume=	3,974 cf	

Prepared by Mcclure Engineeering Printed 5/1/2023

HydroCAD® 10.20-2g s/n 03362 © 2022 HydroCAD Software Solutions LLC

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 733.62' @ 12.16 hrs Surf.Area= 885 sf Storage= 546 cf
Plug-Flow detention time $=14.4 \mathrm{~min}$ calculated for $3,974 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $12.8 \mathrm{~min}(795.3-782.5)$

Primary OutFlow Max=0.91 cfs @ 12.16 hrs HW=733.61' TW=0.00' (Dynamic Tailwater)
\& $1=$ Culvert (Passes 0.91 cfs of 2.07 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.20 cfs @ 1.10 fps)
$-3=$ Orifice/Grate (Orifice Controls $0.20 \mathrm{cfs} @ 9.36 \mathrm{fps}$)
4=Orifice/Grate (Orifice Controls 0.51 cfs @ 5.79 fps)

Summary for Pond RG41: Rain Garden 41

Discarded OutFlow Max=0.05 cfs @ 12.14 hrs HW=732.16' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=0.72 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=732.16^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
L2=Culvert (Passes 0.72 cfs of 1.08 cfs potential flow)

- $3=$ Orifice/Grate (Weir Controls 0.34 cfs @ 1.32 fps)
-4=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.51 fps)
-5=Orifice/Grate (Orifice Controls 0.24 cfs @ 4.91 fps)

Summary for Pond RG42: Rain Garden 42

Discarded OutFlow Max=0.04 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=732.22^{\prime} \quad$ (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.04 cfs)
Primary OutFlow Max=1.27 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=732.22^{\prime}$ TW=0.00' (Dynamic Tailwater)
$廿_{2}=$ Culvert (Passes 1.27 cfs of 2.15 cfs potential flow)

- $3=$ Orifice/Grate (Weir Controls 0.70 cfs @ 1.53 fps)
-4=Orifice/Grate (Orifice Controls 0.32 cfs @ 6.54 fps)
— $5=$ Orifice/Grate (Orifice Controls 0.25 cfs @ 5.04 fps)

Summary for Pond RG43-48: Rain Garden 43-48

Discarded OutFlow Max=0.15 cfs @ 12.17 hrs HW=733.60' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.15 cfs)
Primary OutFlow Max=2.72 cfs @ 12.17 hrs HW=733.60' TW=0.00' (Dynamic Tailwater)
$\mathcal{L}_{2}=$ Culvert (Passes 2.72 cfs of 5.98 cfs potential flow)
-4 $\mathbf{~ - ~ O r i f i c e / G r a t e ~ (W e i r ~ C o n t r o l s ~} 0.85 \mathrm{cfs} @ 1.05 \mathrm{fps}$)

- $\mathbf{6 = O r i f i c e / G r a t e ~ (O r i f i c e ~ C o n t r o l s ~} 0.70$ cfs @ 6.41 fps)
—8=Orifice/Grate (Orifice Controls 1.17 cfs @ 4.76 fps)
Secondary OutFlow Max=0.54 cfs @ 12.17 hrs HW=733.60' TW=722.40' (Dynamic Tailwater)
-3=Culvert (Passes 0.54 cfs of 1.20 cfs potential flow)
-5=Orifice/Grate (Weir Controls 0.17 cfs @ 1.05 fps)
-7=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.41 fps)
$-9=$ Orifice/Grate (Orifice Controls 0.23 cfs @ 4.76 fps)

Summary for Pond RG49-50: Rain Gardens 49,50

Device	Routing	Invert	Outlet Devices
\#1	Discarded	728.25'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	730.25'	6.0" Round Culvert X 2.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 730.25' $/ 730.15$ ' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	732.00'	6.0" Horiz. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 2	730.25'	2.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#5	Device 2	731.00'	3.0" Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.05 cfs @ 12.20 hrs HW=731.92' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=0.69 cfs @ 12.20 hrs HW=731.92' TW=722.38' (Dynamic Tailwater)
\& $2=$ Culvert (Passes 0.69 cfs of 2.25 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Orifice Controls 0.26 cfs @ 6.06 fps)
-5=Orifice/Grate (Orifice Controls 0.42 cfs @ 4.29 fps)

Summary for Pond RG52-54: Rain Garden Lots 52,53,54

Device	Routing	Invert	Outlet Devices
\#1	Primary	686.75'	6.0" Round Culvert X 3.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=686.75' / 686.70' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf 60 " Horiz Orifice/Grate X $3.00 \quad \mathrm{C}=0.60$
\#2	Device 1	690.50	Limited to weir flow at low heads
\#3	Device 1	$686.75{ }^{\prime}$	2.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	689.00'	4.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=2.01 cfs @ 12.17 hrs HW=690.42' TW=0.00' (Dynamic Tailwater)
$\downarrow_{1}=$ Culvert (Passes 2.01 cfs of 5.25 cfs potential flow)
-2 $=$ Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.60 cfs @ 9.12 fps)
—4=Orifice/Grate (Orifice Controls 1.41 cfs @ 5.40 fps)

Summary for Pond RG55: Rain Garden 55

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 688.88' @ 12.14 hrs Surf.Area= 480 sf Storage= 367 cf
Plug-Flow detention time $=16.9$ min calculated for 2,267 cf (99% of inflow)
Center-of-Mass det. time= $14.9 \min (797.4-782.5)$

Primary OutFlow Max=0.53 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=688.86^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
亡-1=Culvert (Passes 0.53 cfs of 1.60 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.18 cfs @ 8.38 fps)
—4=Orifice/Grate (Orifice Controls 0.35 cfs @ 4.02 fps)

Summary for Link AP2-P: AP2-P

Inflow Area = $\quad 550,840$ sf, 23.14% Impervious, Inflow Depth > 3.05" for 25 YearMass event
Inflow $=31.68$ cfs @ 12.16 hrs , Volume $=139,992 \mathrm{cf}$
Primary $=31.68$ cfs @ 12.16 hrs , Volume $=139,992 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Subcatchment P2.1: To Wetland A (A56-A87)

Runoff $=21.04$ cfs @ 12.14 hrs, Volume $=\quad 74,387$ cf, Depth> 4.40"
Routed to Link AP2-P : AP2-P
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description			
142,635	70	Woods, Good, HSG C			
45,615	74	>75\% Grass cover, Good, HSG C			
10,360	55	Woods, Good, HSG B			
3,340	61	>75\% Grass cover, Good, HSG B			
1,060	98	Unconnected roofs, HSG B			
203,010	70	Weighted Average			
201,950		99.48\% Pervious Area			
1,060		0.52\% Impervious Area			
1,060		100.00\% Unconnected			
$\begin{array}{rr} \text { Tc } & \text { Length } \\ (\mathrm{min}) & (\text { feet }) \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
5.150	0.2000	0.16		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00$
0.790	0.2000	- 2.24		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
3.7290	0.0700	- 1.32		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.5430	Total				

Summary for Subcatchment P2.10: To RG4.1

Runoff $=\quad 3.77$ cfs @ 12.10 hrs, Volume= $\quad 12,556 \mathrm{cf}$, Depth> 5.67"
Routed to Reach SW2.1 : Swale RG2.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description
12,070	90	Residential Lots, 65\% imp, HSG C
2,925	70	Woods, Good, HSG C
11,575	74	$>75 \%$ Grass cover, Good, HSG C
26,570	81	Weighted Average
18,725		70.47% Pervious Area
7,846		29.53% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
6.2	50	0.1200	0.13	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00 "$
1.0	100	0.1200	1.73	Shallow Concentrated Flow, Woodland Kv=5.0 fps	
7.2	150	Total			

Summary for Subcatchment P2.11: Lots 48-50

Runoff $=1.78$ cfs @ 12.07 hrs, Volume=
5,841 cf, Depth> 6.73"
Routed to Pond RG49-50 : Rain Gardens 49,50
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description $1 / 8$ acre lots, 65% imp, HSG C		
	5,915				
	955		1/8 acre lots, $65 \% \mathrm{imp}$, HSG C $1 / 8$ acre lots, $65 \% \mathrm{imp}$, HSG B		
	6,870	89	Weighted Average		
	2,405		35.00\% Pervious Area		
	4,466		65.00\% Im	pervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P2.14: Lots 30-33

Runoff = 3.67 cfs @ 12.07 hrs, Volume= 12,066 cf, Depth> 6.73"

Routed to Pond RG31-33 : Rain Gardens 31,32,33
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN D	Description		
*	21,505	90 R	Residential Lots, 65\% imp, HSG C		
	$\begin{array}{r} \hline 7,527 \\ 13,978 \end{array}$	35.00\% Pervious Area 65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P2.2: Lots 42-48

Runoff $=\quad 6.81$ cfs @ 12.07 hrs, Volume= 22,374 cf, Depth> 6.73"
Routed to Pond RG43-48 : Rain Garden 43-48
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description		
*	39,875	90	Residential Lots, 65\% imp, HSG C		
	13,956	35.00\% Pervious Area			
	25,919	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P2.3: Lots 41-42

Runoff $=2.17$ cfs @ 12.07 hrs, Volume=
7,134 cf, Depth> 6.73"
Routed to Pond RG42 : Rain Garden 42
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN D	Description		
	12,715	90	1/8 acre lots, 65% imp, HSG C		
	$\begin{aligned} & 4,450 \\ & 8,265 \end{aligned}$	35.00\% Pervious Area 65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P2.4: Lots 40-41
Runoff = 1.28 cfs @ 12.07 hrs, Volume= 4,222 cf, Depth> 6.73"
Routed to Pond RG41 : Rain Garden 41
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN D	1/8 acre lots, 65% imp, HSG C		
	7,525	90			
	2,634	35.00\% Pervious Area			
	4,891	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P2.5: Lots 39-40

Runoff $=1.63$ cfs @ 12.07 hrs, Volume= 5,344 cf, Depth> 6.73"
Routed to Pond RG40 : Rain Garden 40
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description
9,525	90	$1 / 8$ acre lots, 65% imp, HSG C
3,334		35.00% Pervious Area
6,191		65.00% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P2.6: Lots 33-39

Runoff $=\quad 7.73 \mathrm{cfs} @ 12.07$ hrs, Volume= $\quad 25,409 \mathrm{cf}$, Depth> 6.73"
Routed to Pond RG34-39 : Rain Gardens 34-39
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN D	Description		
*	45,285	90			
	15,850	35.00\% Pervious Area			
	29,435	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P2.7: Upgradient Lots 35-39

Runoff $=\quad 3.63$ cfs @ 12.28 hrs, Volume $=16,636$ cf, Depth> 4.39"
Routed to Pond IT-35/39 : Interceptor Trench Lots 35-39
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)4,55040,950		CN Description			
		$\begin{aligned} & 74 \\ & 70 \\ & \hline \end{aligned}$	>75\% Grass cover, Good, HSG C Woods, Good, HSG C		
	$\begin{aligned} & 45,500 \\ & 45,500 \end{aligned}$	70	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.7	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.00$ "
7.1	560	0.0700	1.32		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.1	20	0.5000	4.95		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
19.9	630	Total			

Summary for Subcatchment P2.8: Upgradient Lots 30-35

Runoff $=7.86$ cfs @ 12.22 hrs, Volume= 33,209 cf, Depth> 4.50"
Routed to Pond IT-30/35 : Interceptor Trench Lots 30-35
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

	-ea (sf)	CN Description			
$\begin{aligned} & 11,085 \\ & 77,375 \\ & \hline \end{aligned}$			>75\% Grass cover, Good, HSG C Woods, Good, HSG C		
$\begin{aligned} & 88,460 \\ & 88,460 \end{aligned}$			Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.7	50	0.0200	0.07		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.00$ "
3.5	280	0.0700	1.32		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.1	30	0.5000	4.95		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
16.3	360	Total			

Summary for Subcatchment P2.9: Lots 51-53

Runoff $=\quad 4.31$ cfs @ 12.07 hrs, Volume= 13,577 cf, Depth> 5.79"
Routed to Pond RG52-54 : Rain Garden Lots 52,53,54
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN D	Description		
	2,430	901	1/8 acre lots, 65\% imp, HSG C		
	20,825	851	1/8 acre lots, $65 \% \mathrm{imp}$, HSG B		
	3,605	70	Woods, Good, HSG C		
	1,280	55	Woods, Good, HSG B		
	28,140	82	Weighted Average		
	13,024		46.28\% Pervious Area		
	15,116		53.72\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Reach SW2.1: Swale RG2.1

Inflow Area $=\quad 58,485$ sf, 48.88% Impervious, Inflow Depth > 8.24" for 100YearMass event Inflow $=10.45$ cfs @ 12.13 hrs , Volume= 40,149 cf
Outflow = 10.52 cfs @ 12.13 hrs , Volume=
$40,144 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.5 \mathrm{~min}$
Routed to Pond RG2.1 : Rain Garden 2.1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Max. Velocity= 10.50 fps , Min. Travel Time= 0.2 min
Avg. Velocity $=3.46 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 120 cf @ 12.13 hrs
Average Depth at Peak Storage $=0.50^{\prime}$, Surface Width=3.00'
Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 46.26 cfs
$1.00^{\prime} \times 1.00$ deep channel, $\mathrm{n}=0.025$ Earth, clean \& winding
Side Slope Z-value= 2.0 '/' Top Width= 5.00'
Length= 120.0' Slope= 0.1500 '/'
Inlet Invert= 722.00', Outlet Invert= 704.00'

Summary for Pond IT-30/35: Interceptor Trench Lots 30-35

Inflow Area =	88,460 sf,	0.00\% Impervious,	Inflow Depth > 4.50" for 100YearMass event
Inflow	7.86 cfs @	12.22 hrs , Volume=	33,209 cf
Outflow	7.38 cfs @	12.29 hrs , Volume=	$33,096 \mathrm{cf}$, Atten=6\%, Lag $=3.7 \mathrm{~min}$
Primary	7.38 cfs @	12.29 hrs , Volume=	33,096 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 734.18' @ 12.29 hrs Surf.Area= 1,470 sf Storage= 1,387 cf
Plug-Flow detention time $=6.2$ min calculated for 33,027 cf (99% of inflow)
Center-of-Mass det. time $=4.2 \mathrm{~min}(835.0-830.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1	732.00'	$1,696 \mathrm{cf}$	$3.00{ }^{\prime} \mathrm{W} \times 490.00{ }^{\text {L }}$ x 3.00'H Prismatoid
			4,410 cf Overall - 171 cf Embedded $=4,239 \mathrm{cf} \times 40.0 \%$ Voids
\#2	732.00'	171 cf	8.0" Round Pipe Storage Inside \#1
1,867 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	$732.00{ }^{\prime} 15.0$	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$

Inlet / Outlet Invert= 732.00' / 724.00' S= 0.0320 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=7.34 cfs @ 12.29 hrs HW=734.17' TW=0.00' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 7.34 cfs @ 5.98 fps)

Summary for Pond IT-35/39: Interceptor Trench Lots 35-39

Inflow Area =	45,500 sf,	0.00\% Impervious,	Inflow Depth > 4.39" for 100YearMass event
Inflow	3.63 cfs @	12.28 hrs , Volume=	16,636 cf
Outflow	3.10 cfs @	12.40 hrs , Volume=	$16,563 \mathrm{cf}$, Atten= $14 \%, \mathrm{Lag}=7.5 \mathrm{~min}$
Primary	3.10 cfs @	12.40 hrs , Volume=	16,563 cf

Routed to Link AP2-P : AP2-P
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 736.20' @ 12.40 hrs Surf.Area= 1,200 sf Storage= 1,139 cf
Plug-Flow detention time $=8.5 \mathrm{~min}$ calculated for 16,529 cf (99% of inflow)
Center-of-Mass det. time $=5.9 \mathrm{~min}(841.7-835.7)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	734.00	$1,384 \mathrm{cf}$	$3.00 ' \mathrm{~W} \times 400.00 ' \mathrm{~L} \times 3.00$ 'H Prismatoid $3,600 \mathrm{cf}$ Overall -140 cf Embedded $=3,460 \mathrm{cf} \times 40.0 \%$ Voids $\# 2$
	734.00	140 cf	8.0" Round Pipe Storage Inside \#1 L= 400.0'
	$1,524 \mathrm{cf}$	Total Available Storage	

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	734.00^{\prime}	$\mathbf{1 0 . 0 " \text { Round Culvert }}$
		$\mathrm{L}=80.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert $=734.00^{\prime} / 733.00^{\prime} \mathrm{S}=0.0125 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.55 \mathrm{sf}$	

Primary OutFlow Max=3.10 cfs @ 12.40 hrs HW=736.20' TW=0.00' (Dynamic Tailwater)
①=Culvert (Barrel Controls 3.10 cfs @ 5.69 fps)

Summary for Pond RG14: Rain Garden 14

 Routed to Pond RG2.1 : Rain Garden 2.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 705.09' @ 12.17 hrs Surf.Area= 878 sf Storage= 535 cf
Plug-Flow detention time $=16.3 \mathrm{~min}$ calculated for $3,763 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=13.6 \min (791.7-778.1)$

Summary for Pond RG2.1: Rain Garden 2.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 703.36' @ 12.33 hrs Surf.Area= 13,513 sf Storage= $11,958 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 52.4 min (846.6-794.2)

Volume	Invert	Avail.Storage	Storage Description
\#1	$698.75{ }^{\prime}$	67 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=85.0^{\prime}$
\#2	$698.75{ }^{\prime}$	5,073 cf	$50.00^{\prime} \mathrm{W} \times 85.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel
\#3	701.75'	531 cf	12,750 cf Overall -67 cf Embedded $=12,683$ cf $\times 40.0 \%$ Voids 50.00'W x $85.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch
			$1,063 \mathrm{cf}$ Overall $\times 50.0 \%$ Voids
\#4	702.00'	9,623 cf	50.00'W \times 85.00'L $\times 2.00$ 'H Ponding $\mathrm{Z}=2.0$
		15,294 cf Total Available Storage	
Device	Routing	Invert Outle	t Devices
\#1	Primary	701.00' $\begin{array}{ll}\text { 12.0' } \\ & \text { L= } \\ & \text { Inlet } \\ & \mathrm{n}=0 .\end{array}$	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 701.00' / 699.65' S=0.1350 '/' Cc=0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
\#2	Device 1	$703.00{ }^{10}$	Horiz. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#3	Device 1	701.00' 2.0	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	701.75' 6.	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#5	Secondary	703.75' $\begin{aligned} & \text { 10 } \\ & \\ & \\ & \\ & \mathrm{He} \\ & \mathrm{Co}\end{aligned}$	long x 10.0' breadth Broad-Crested Rectangular Weir
			(feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			(English) 2.492 .562 .702 .692 .682 .692 .672 .64
\#6	Discarded	$698.75{ }^{\prime} 2.410$	$\mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.75 cfs @ 12.33 hrs HW=703.36' (Free Discharge)
${ }^{4} \mathbf{6}=$ Exfiltration (Exfiltration Controls 0.75 cfs)
Primary OutFlow Max=5.15 cfs @ 12.33 hrs HW=703.36' TW=0.00' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 5.15 cfs @ 6.56 fps)
-2=Orifice/Grate (Passes < 3.14 cfs potential flow)
-3=Orifice/Grate (Passes < 0.32 cfs potential flow)
-4=Orifice/Grate (Passes < 2.20 cfs potential flow)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=698.75' TW=0.00' (Dynamic Tailwater)
$\Psi_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond RG31-33: Rain Gardens 31,32,33

Routed to Reach SW2.1 : Swale RG2.1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 732.28' @ 12.14 hrs Surf.Area= 2,791 sf Storage= 1,847 cf
Plug-Flow detention time= 16.1 min calculated for $12,013 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $14.6 \min (789.5-774.9)$
Prepared by Mcclure Engineeering Printed 5/1/2023

HydroCAD® 10.20-2g s/n 03362 © 2022 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
\#1	728.25'	141 cf $12 . \mathbf{0}^{\prime \prime}$ Round Pipe Storage $\times 3$ Inside \#2L= 60.0'	
\#2	$728.25{ }^{\prime}$	807 cf	4.00^{\prime} W $\times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 3 $2,160 \mathrm{cf}$ Overall -141 cf Embedded $=2,019 \mathrm{cf} \times 40.0 \%$ Voids
\#3	731.25'	90 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch $\times 3$ 180 cf Overall $\times 50.0 \%$ Voids
\#4	731.50'	$1,120 \mathrm{cf}$ 4.00' $\mathrm{W} \times \mathbf{6 0 . 0 0} \mathbf{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathbf{Z}=2.0 \times 3$	
$2,159 \mathrm{cf}$ Total Available Storage			
Device	Routing	Invert Outle	t Devices
\#1	Primary	$\begin{array}{ll} \hline 728.25 & \begin{array}{l} 6.0 " \\ \\ \\ \\ \\ \text { Inlet } \\ \\ \\ n=0 \end{array} \end{array}$	Round Culvert X 3.00 0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$ / Outlet Invert= 728.25' / 728.15' S=0.0100 '/' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$732.00{ }^{\text {' }}$ 6.0"	Horiz. Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#3	Device 1	$\begin{array}{ll} 728.25 & \begin{array}{l} \text { 2.0" } \\ \\ \\ \text { Limit } \end{array} \end{array}$	Vert. Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#4	Device 1	731.00' $\begin{array}{ll}\text { 3.0" } \\ & \text { Limit }\end{array}$	Vert. Orifice/Grate X $3.00 \mathrm{C}=0.600$ ed to weir flow at low heads

Primary OutFlow Max=2.87 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=732.27^{\prime}$ TW=722.50' (Dynamic Tailwater)
\&1=Culvert (Passes 2.87 cfs of 5.51 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 1.48 cfs @ 2.52 fps)
-3=Orifice/Grate (Orifice Controls 0.63 cfs @ 9.56 fps)
4=Orifice/Grate (Orifice Controls 0.76 cfs @ 5.16 fps)

Summary for Pond RG34-39: Rain Gardens 34-39

Primary OutFlow Max=3.99 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=732.32^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
—1 $_{1=C u l v e r t ~(P a s s e s ~}^{3.99} \mathrm{cfs}$ of 7.39 cfs potential flow)

- $3=$ Orifice/Grate (Orifice Controls 2.12 cfs @ 2.70 fps)
- $\mathbf{5}=$ Orifice/Grate (Orifice Controls 0.84 cfs @ 9.61 fps)
$\square_{7=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 1.03$ cfs @ 5.25 fps)
Secondary OutFlow Max=2.00 cfs @ 12.14 hrs HW=732.32' TW=722.50' (Dynamic Tailwater)
-2=Culvert (Passes 2.00 cfs of 3.69 cfs potential flow)
-4=Orifice/Grate (Orifice Controls 1.06 cfs @ 2.70 fps)
- $\mathbf{6 = O r i f i c e / G r a t e ~ (O r i f i c e ~ C o n t r o l s ~} 0.42$ cfs @ 9.61 fps)
—8=Orifice/Grate (Orifice Controls 0.52 cfs @ 5.25 fps)

Summary for Pond RG40: Rain Garden 40

Inflow Area =	9,525 sf	65.00\% Impervious,	Inflow Depth >	6.73" for 100YearMass event
Inflow	1.63 cfs @	12.07 hrs, Volume=	$5,344 \mathrm{cf}$	
Outflow	1.30 cfs @	12.13 hrs , Volume=	5,333 cf,	Atten= 20\%, Lag= 3.8 min
Primary	1.30 cfs @	12.13 hrs , Volume=	5,333 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 733.83' @ 12.13 hrs Surf.Area= 944 sf Storage= 637 cf
Plug-Flow detention time $=14.1 \mathrm{~min}$ calculated for 5,322 cf (100% of inflow)
Center-of-Mass det. time $=12.8 \mathrm{~min}(787.7-774.9)$

Primary OutFlow Max=1.28 cfs @ 12.13 hrs HW=733.82' TW=0.00' (Dynamic Tailwater)
L-1=Culvert (Passes 1.28 cfs of 2.11 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.53 cfs @ 2.71 fps)

- $3=$ Orifice/Grate (Orifice Controls 0.21 cfs @ 9.61 fps)
-4=Orifice/Grate (Orifice Controls 0.54 cfs @ 6.18 fps)

Summary for Pond RG41: Rain Garden 41

Volume	Invert	Avail.Storage	Storage Description
\#1	$728.25{ }^{\prime}$	47 cf 12.0" Round Pipe Storage Inside \#2$\mathrm{L}=60.0^{\prime}$	
\#2	$728.25{ }^{\prime}$	269 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Grave
			720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
\#3	$731.25{ }^{\prime}$	30 cf	$4.00^{\prime} \mathrm{W}$ x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	731.50'	373 cf	$4.00{ }^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
720 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	728.25' 2.410	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	730.25' $\quad \begin{array}{ll}\text { 6.0 } \\ \\ \\ \text { L= }\end{array}$	Round Culvert
		Inlet / Outlet Invert= 730.25' / 730.00' S=0.0096 '/' Cc= 0.900	
			Inlet / Outlet Invert= 730.25 ' / 730.00' $\quad \mathrm{S}=0.0096$ '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	732.00' 6	6.0" Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 2	730.25' 2.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Device 2	731.00' 3.0'	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.05 cfs @ 12.13 hrs HW=732.34' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=0.96 cfs @ $12.13 \mathrm{hrs} \mathrm{HW}=732.34^{\prime}$ TW=0.00' (Dynamic Tailwater)
$L_{2}=$ Culvert (Passes 0.96 cfs of 1.13 cfs potential flow)

- 3=Orifice/Grate (Orifice Controls 0.55 cfs @ 2.79 fps)
-4=Orifice/Grate (Orifice Controls 0.15 cfs @ 6.81 fps)
5=Orifice/Grate (Orifice Controls 0.26 cfs @ 5.30 fps)

Summary for Pond RG42: Rain Garden 42

Discarded OutFlow Max=0.04 cfs @ $12.13 \mathrm{hrs} \mathrm{HW}=732.40^{\prime} \quad$ (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.04 cfs)
Primary OutFlow Max=1.67 cfs @ $12.13 \mathrm{hrs} \mathrm{HW}=732.40^{\prime}$ TW=0.00' (Dynamic Tailwater)
$\downarrow_{2}=$ Culvert (Passes 1.67 cfs of 2.27 cfs potential flow)

- $3=$ Orifice/Grate (Orifice Controls 1.06 cfs @ 3.05 fps)
-4=Orifice/Grate (Orifice Controls 0.34 cfs @ 6.85 fps)
— $5=$ Orifice/Grate (Orifice Controls 0.27 cfs @ 5.44 fps)

Summary for Pond RG43-48: Rain Garden 43-48

Discarded OutFlow Max=0.16 cfs @ 12.14 hrs HW=733.74' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.16 cfs)
Primary OutFlow Max=4.29 cfs @ 12.14 hrs HW=733.74' TW=0.00' (Dynamic Tailwater)
$\sum_{2}=$ Culvert (Passes 4.29 cfs of 6.24 cfs potential flow)
-4=Orifice/Grate (Orifice Controls 2.32 cfs @ 2.36 fps)

- $\mathbf{6 = O r i f i c e / G r a t e ~ (O r i f i c e ~ C o n t r o l s ~} 0.73$ cfs @ 6.65 fps)
— $\mathbf{8 =}=$ Orifice/Grate (Orifice Controls 1.25 cfs @ 5.09 fps)
Secondary OutFlow Max=0.86 cfs @ 12.14 hrs HW=733.74' TW=722.50' (Dynamic Tailwater)
$3=$ Culvert (Passes 0.86 cfs of 1.25 cfs potential flow)
- $5=$ Orifice/Grate (Orifice Controls 0.46 cfs @ 2.36 fps)
-7=Orifice/Grate (Orifice Controls 0.15 cfs @ 6.65 fps)
-9=Orifice/Grate (Orifice Controls 0.25 cfs @ 5.09 fps)

Summary for Pond RG49-50: Rain Gardens 49,50

Device	Routing	Invert	Outlet Devices
\#1	Discarded	728.25'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	730.25'	6.0" Round Culvert X 2.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 730.25' $/ 730.15$ ' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	732.00'	6.0" Horiz. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 2	730.25'	2.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#5	Device 2	731.00'	3.0" Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.05 cfs @ 12.16 hrs HW=732.12' (Free Discharge)
1-1=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=1.18 cfs @ 12.16 hrs HW=732.12' TW=722.49' (Dynamic Tailwater)
L-2=Culvert (Passes 1.18 cfs of 2.41 cfs potential flow)

- $3=$ Orifice/Grate (Weir Controls 0.43 cfs @ 1.13 fps)
-4=Orifice/Grate (Orifice Controls 0.28 cfs @ 6.44 fps)
$-5=$ Orifice/Grate (Orifice Controls 0.47 cfs @ 4.80 fps)

Summary for Pond RG52-54: Rain Garden Lots 52,53,54

Device	Routing	Invert	Outlet Devices
\#1	Primary	686.75'	6.0" Round Culvert X 3.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=686.75' / 686.70' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	690.50'	6.0" Horiz. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$686.75{ }^{\prime}$	2.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	689.00'	4.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=3.43 cfs @ 12.14 hrs HW=690.69' TW=0.00' (Dynamic Tailwater)
\&1=Culvert (Passes 3.43 cfs of 5.45 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 1.25 cfs @ 2.12 fps)
-3=Orifice/Grate (Orifice Controls 0.62 cfs @ 9.46 fps)
—4=Orifice/Grate (Orifice Controls 1.56 cfs @ 5.95 fps)

Summary for Pond RG55: Rain Garden 55

Routed to Link AP2-P : AP2-P
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 689.28' @ 12.16 hrs Surf.Area= 793 sf Storage= 459 cf
Plug-Flow detention time $=16.1 \mathrm{~min}$ calculated for $3,050 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $14.4 \min (789.3-774.9)$

Primary OutFlow Max=0.64 cfs @ 12.16 hrs HW=689.27' TW=0.00' (Dynamic Tailwater)
$\Psi_{1}=$ Culvert (Passes 0.64 cfs of 1.71 cfs potential flow)
-2 $2=$ Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.19 cfs @ 8.93 fps)
—4=Orifice/Grate (Orifice Controls 0.44 cfs @ 5.06 fps)

Summary for Link AP2-P: AP2-P

Inflow Area $=\quad 550,840$ sf, 23.14% Impervious, Inflow Depth > 4.52" for 100YearMass event Inflow $=47.25 \mathrm{cfs}$ @ 12.16 hrs , Volume $=207,448 \mathrm{cf}$
Primary $=47.25$ cfs @ 12.16 hrs, Volume $=207,448 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Rain Garden 3.1
Lots 55-57

AP3 - To Wetland A
(A47-A56) / VP A2

Undetained To Wetland A (A47-A56) / VP A2

Summary for Subcatchment P3.1: Undetained To Wetland A (A47-A56) / VP A2

Runoff $=\quad 0.33$ cfs @ 12.35 hrs, Volume= $\quad 2,511 \mathrm{cf}$, Depth> 0.32"
Routed to Link AP3-P : AP3 - To Wetland A (A47-A56) / VP A2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 2YearMass Rainfall=3.24"

| Area (sf) | CN | Description | |
| ---: | ---: | :--- | :--- | :--- |
| 6,255 | 77 | Woods, Good, HSG D | |
| 75,890 | 55 | Woods, Good, HSG B | |
| 11,530 | 61 | >75\% Grass cover, Good, HSG B | |

Summary for Subcatchment P3.2: Lots 55-57

Runoff $=\quad 0.76$ cfs @ 12.07 hrs, Volume= $2,276 \mathrm{cf}$, Depth> 1.79"
Routed to Pond RG3.1 : Rain Garden 3.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Pond RG3.1: Rain Garden 3.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=684.88' @ 12.90 hrs Surf.Area= 1,430 sf Storage= 801 cf
Flood Elev=687.50' Surf.Area=4,668 sf Storage=3,120 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $79.4 \mathrm{~min}(903.4-824.0)$

Discarded OutFlow Max=0.08 cfs @ 11.79 hrs HW=683.55' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.08 cfs) $^{(1)}$
Primary OutFlow Max= $0.00 \mathrm{cfs} @ 0.00 \mathrm{hrs}$ HW=683.50' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Controls 0.00 cfs)
$\begin{aligned} &-3=\text { Orifice } / \text { Grate (Controls } 0.00 \mathrm{cfs}) \\ &-4=\text { Orifice } / \text { Grate (Controls } 0.00 \mathrm{cfs}) \\ & 5=\text { Orifice } / \text { Grate (Controls } 0.00 \mathrm{cfs} \text {) }\end{aligned}$
Summary for Link AP3-P: AP3 - To Wetland A (A47-A56) / VP A2

Inflow Area	108,930	9.10\% Impervious,	Depth > 0.28" for 2YearMass e
Inflow	0.33 cfs @	12.35 hrs , Volume=	2,511 cf
Primary	0.33 cfs @	12.35 hrs , Volume=	$2,511 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P3.1: Undetained To Wetland A (A47-A56) / VP A2

Runoff $=\quad 2.07$ cfs @ 12.17 hrs, Volume= $\quad 8,803 \mathrm{cf}$, Depth> 1.13"
Routed to Link AP3-P : AP3 - To Wetland A (A47-A56) / VP A2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 10YearMass Rainfall=5.05"

| Area (sf) | CN | Description | |
| ---: | ---: | :--- | :--- | :--- |
| 6,255 | 77 | Woods, Good, HSG D | |
| 75,890 | 55 | Woods, Good, HSG B | |
| 11,530 | 61 | >75\% Grass cover, Good, HSG B | |

Summary for Subcatchment P3.2: Lots 55-57

Runoff = 1.44 cfs @ 12.07 hrs, Volume= 4,337 cf, Depth> 3.41"
Routed to Pond RG3.1 : Rain Garden 3.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN	Description		
	15,255	85	1/8 acre lots, 65% imp, HSG B		
	5,339	35.00\% Pervious Area			
	9,916	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Pond RG3.1: Rain Garden 3.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=686.52' @ 12.63 hrs Surf.Area= 2,860 sf Storage= 1,744 cf
Flood Elev=687.50' Surf.Area=4,668 sf Storage=3,120 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=165.3 \min (970.9-805.7)$

Discarded OutFlow Max=0.16 cfs @ 12.51 hrs HW=686.50' (Free Discharge)
1-1=Exfiltration (Exfiltration Controls 0.16 cfs)
Primary OutFlow Max=0.02 cfs @ $12.63 \mathrm{hrs} \mathrm{HW}=686.52^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
$廿_{2}=$ Culvert (Passes 0.02 cfs of 2.49 cfs potential flow)

- $3=$ Orifice/Grate (Orifice Controls 0.02 cfs @ 4.82 fps)
-4=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.52 fps)
$-5=$ Orifice/Grate (Controls 0.00 cfs)

Summary for Link AP3-P: AP3 - To Wetland A (A47-A56) / VP A2

Inflow Area $=\quad 108,930 \mathrm{sf}, 9.10 \%$ Impervious, Inflow Depth > 1.00" for 10YearMass event
Inflow $=2.07$ cfs @ 12.17 hrs , Volume= $9,104 \mathrm{cf}$
Primary $=2.07 \mathrm{cfs} @ 12.17 \mathrm{hrs}$, Volume $=\quad 9,104 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Subcatchment P3.1: Undetained To Wetland A (A47-A56) / VP A2

Runoff $=\quad 3.56$ cfs @ 12.16 hrs, Volume $=13,905 \mathrm{cf}$, Depth> 1.78"
Routed to Link AP3-P : AP3 - To Wetland A (A47-A56) / VP A2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 25YearMass Rainfall=6.18"

| Area (sf) | CN | Description | |
| ---: | ---: | :--- | :--- | :--- |
| 6,255 | 77 | Woods, Good, HSG D | |
| 75,890 | 55 | Woods, Good, HSG B | |
| 11,530 | 61 | >75\% Grass cover, Good, HSG B | |

Summary for Subcatchment P3.2: Lots 55-57

Runoff = 1.86 cfs @ 12.07 hrs, Volume= $5,681 \mathrm{cf}$, Depth> 4.47"
Routed to Pond RG3.1 : Rain Garden 3.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN	Description		
	15,255		1/8 acre lots, 65% imp, HSG B		
	$\begin{aligned} & 5,339 \\ & 9,916 \end{aligned}$	35.00\% Pervious Area 65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Pond RG3.1: Rain Garden 3.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=686.80' @ 12.39 hrs Surf.Area= 4,313 sf Storage= 1,972 cf
Flood Elev=687.50' Surf.Area=4,668 sf Storage= 3,120 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=142.8 \mathrm{~min}(940.9-798.1)$

Discarded OutFlow Max=0.24 cfs @ 12.39 hrs HW=686.80' (Free Discharge)
——1=Exfiltration (Exfiltration Controls 0.24 cfs)

Summary for Link AP3-P: AP3 - To Wetland A (A47-A56) / VP A2
Inflow Area $=\quad 108,930 \mathrm{sf}, 9.10 \%$ Impervious, Inflow Depth > 1.63" for 25 YearMass event
Inflow = 3.58 cfs @ 12.16 hrs , Volume= $14,787 \mathrm{cf}$

Primary $=3.58 \mathrm{cfs} @ 12.16 \mathrm{hrs}$, Volume $=14,787 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P3.1: Undetained To Wetland A (A47-A56) / VP A2

Runoff $=\quad 6.21$ cfs @ 12.15 hrs , Volume= $\quad 22,989 \mathrm{cf}$, Depth> 2.94"
Routed to Link AP3-P : AP3 - To Wetland A (A47-A56) / VP A2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P3.2: Lots 55-57

Runoff $=\quad 2.52$ cfs @ 12.07 hrs, Volume= $7,807 \mathrm{cf}$, Depth> 6.14"
Routed to Pond RG3.1 : Rain Garden 3.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description		
	15,255	85	1/8 acre lots, 65% imp, HSG B		
	5,339	35.00\% Pervious Area			
	9,916	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Pond RG3.1: Rain Garden 3.1

Inflow Area =	15,255	65.00\% Impervious,	Inflow Depth > 6.14" for 100YearMass event
Inflow	2.52 cfs @	12.07 hrs , Volume=	7,807 cf
Outflow	0.81 cfs @	12.36 hrs , Volume=	$7,462 \mathrm{cf}$, Atten= 68\%, Lag= 17.3 min
Discarded	0.25 cfs @	12.36 hrs , Volume=	5,450 cf
Primary	0.56 cfs @	12.36 hrs , Volume=	2,013 cf
Routed to	3-P : AP3	To Wetland A (A47-	56) / VP A2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=687.19' @ 12.36 hrs Surf.Area= 4,507 sf Storage= 2,576 cf
Flood Elev=687.50' Surf.Area= 4,668 sf Storage $=3,120$ cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=102.0 \mathrm{~min}(891.3-789.3)$

Discarded OutFlow Max=0.25 cfs @ 12.36 hrs HW=687.19' (Free Discharge)
——1=Exfiltration (Exfiltration Controls 0.25 cfs)
Primary OutFlow Max=0.56 cfs @ $12.36 \mathrm{hrs} \mathrm{HW}=687.19^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
L2=Culvert (Passes 0.56 cfs of 3.40 cfs potential flow)

- $3=$ Orifice/Grate (Orifice Controls 0.03 cfs @ 6.21 fps)
-4=Orifice/Grate (Orifice Controls 0.53 cfs @ 3.60 fps)
$-5=$ Orifice/Grate (Controls 0.00 cfs)

Summary for Link AP3-P: AP3 - To Wetland A (A47-A56) / VP A2

Inflow Area $=$	$108,930 \mathrm{sf}$,	9.10% Impervious,	Inflow Depth $>$ 2.75" for 100 YearMass event
Inflow	$=$	$6.69 \mathrm{cfs} @$	12.15 hrs , Volume $=$
Primary	$=$	$6.69 \mathrm{cfs} @$	12.15 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Subcatchment P4.1: To Wetland A (A32-A47)

Runoff $=2.76$ cfs @ 12.11 hrs, Volume=
Routed to Link AP4-P : AP4 - To Wetland A (A32-A47)

9,132 cf, Depth= 1.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P4.10: To RG4.1

Runoff $=0.38$ cfs @ 12.08 hrs, Volume= $1,149 \mathrm{cf}$, Depth= $1.43^{\prime \prime}$
Routed to Pond RG-4.1 : Rain Garden 4.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description	
9,500	80	$>75 \%$ Grass cover, Good, HSG D	
125	61	$>75 \%$ Grass cover, Good, HSG B	
9,625	80	Weighted Average	
9,625		100.00\% Pervious Area	
Tc Length Slope Velocity Capacity (min) (feet) Description (ft/f) (ft/sec) (cfs)			
5.0			Direct Entry,

Summary for Subcatchment P4.11: To RG4.2
Runoff $=0.12$ cfs @ 12.14 hrs, Volume= 600 cf , Depth= $0.46{ }^{\prime \prime}$
Routed to Pond RG-4.2 : Rain Garden 4.2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN Description				
	$\begin{array}{r} \hline 15,520 \\ 110 \\ \hline \end{array}$	$61>75 \%$ Grass cover, Good, HSG B $80>75 \%$ Grass cover, Good, HSG D				
	$\begin{aligned} & 15,630 \\ & 15,630 \end{aligned}$	61 Weighted Average 100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope Velocity Capacity$(\mathrm{ft} / \mathrm{ft}) \quad(\mathrm{ft} / \mathrm{sec}) \quad(\mathrm{cfs})$			Description	
5.7	50	0.1500	0.15		Sheet Flow, Woods: Light underbrush n= 0.400 Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	$P 2=3.00 "$
1.3	150	0.1500	1.94			
7.0	200	Total				

Summary for Subcatchment P4.12: Lots 65

Runoff $=\quad 0.30$ cfs @ 12.07 hrs, Volume $=1,020 \mathrm{cf}$, Depth= $3.01^{\prime \prime}$
Routed to Pond RG65 : Rain Gardens 65
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN	Description		
	3,830	98 P	Paved roads w/curbs \& sewers, HSG C		
	240	98 P	Paved road	w/curbs \&	sewers, HSG C
	4,070	98 W	Weighted Average		
	4,070		100.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Summary for Subcatchment P4.13: Lots 6-8

Runoff $=1.17$ cfs @ 12.07 hrs, Volume= $\quad 3,501 \mathrm{cf}$, Depth= 1.79"
Routed to Pond RG6-7 : Rain Gardens 6,7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description
23,175	85	$1 / 8$ acre lots, 65% imp, HSG B
270	90	$1 / 8$ acre lots, 65% imp, HSG C
23,445	85	Weighted Average
8,206		35.00% Pervious Area
15,239		65.00% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P4.2: Lots 57-60

Runoff $=1.05$ cfs @ 12.07 hrs, Volume $=3,126 \mathrm{cf}$, Depth= 1.79"
Routed to Pond RG57-59 : Rain Gardens 57,58,59
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P4.5: Lots 8-12

Runoff $=\quad 1.55$ cfs @ 12.07 hrs, Volume= $4,629 \mathrm{cf}$, Depth= 1.79"
Routed to Pond RG8-11 : Rain Gardens 8-11
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description
31,000	85	$1 / 8$ acre lots, 65% imp, HSG B
10,850	35.00% Pervious Area	
20,150	65.00% Impervious Area	

Tc Length Slope Velocity Capacity Description

(min)	(feet)	$(\mathrm{ft} / \mathrm{ft})$	$(\mathrm{ft} / \mathrm{sec})$	(cfs)
5.0				

Summary for Subcatchment P4.6: Lots 12-13

Runoff $=\quad 0.51$ cfs @ 12.09 hrs, Volume= $\quad 1,594 \mathrm{cf}$, Depth= 1.79"
Routed to Pond RG12 : Rain Garden 12
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall=3.24"

	rea (sf)	CN	Description			
	10,675	851	1/8 acre lots, 65\% imp, HSG B			
	$\begin{aligned} & \hline 3,736 \\ & 6,939 \end{aligned}$	35.00\% Pervious Area 65.00\% Impervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description	
6.2	50	0.1200	0.13		Sheet Flow, Woods: Light underbrush $n=0.400$	P2= 3.00"
0.2	30	0.1000	2.21		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$	

$6.4 \quad 80$ Total

Summary for Subcatchment P4.7: Lot 13

Runoff $=\quad 0.50$ cfs @ 12.07 hrs, Volume= $\quad 1,487 \mathrm{cf}$, Depth= $1.87^{\prime \prime}$
Routed to Pond RG13 : Rain Garden 13
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description
7,505	85	$1 / 8$ acre lots, 65% imp, HSG B
2,040	90	$1 / 8$ acre lots, 65% imp, HSG C
9,545	86	Weighted Average
3,341		35.00\% Pervious Area
6,204		65.00% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P4.8: Upgradient Lots $\mathbf{8 - 1 2}$

Runoff $=0.11$ cfs @ 12.47 hrs, Volume= 935 cf , Depth= $0.29{ }^{\prime \prime}$
Routed to Pond IT-8/12 : Interceptor Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P4.9: Lot 51

Runoff $=\quad 0.48$ cfs @ 12.07 hrs, Volume= $\quad 1,419 \mathrm{cf}$, Depth= $1.87^{\prime \prime}$
Routed to Pond RG51 : Rain Garden 51
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN	Description $1 / 8$ acre lots, 65% imp, HSG C		
	1,910	9085			
	7,195		1/8 acre lots, $65 \% \mathrm{imp}$, HSG C$1 / 8$ acre lots, 65% imp, HSG B		
	9,105	86	Weighted Average		
	3,187		35.00\% Pervious Area		
	5,918		65.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry,

Summary for Pond IT-8/12: Interceptor Trench

Summary for Pond RG-4.1: Rain Garden 4.1

Inflow Area		102,460	s,	Inflow Depth =	nt
Inflow		2.43 cfs @	12.16 hrs , Volume=	11,675 cf	
Outflow	=	0.97 cfs @	12.79 hrs , Volume=	11,320 cf,	Atten $=60 \%, L a g=37.8 \mathrm{~min}$
Discarded	=	0.09 cfs @	11.28 hrs, Volume=	6,434 cf	
Primary	$=$	0.89 cfs @	12.79 hrs , Volume=	4,885 cf	
Routed to		AP4-P : AP4	To Wetland A (A32-A		
Secondary		0.00 cfs @	0.00 hrs , Volume=	0 cf	

Routed to Link AP4-P : AP4 - To Wetland A (A32-A47)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev=671.66' @ 12.79 hrs Surf.Area= 3,740 sf Storage= 4,351 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $205.2 \min (1,031.7-826.4)$

Discarded OutFlow Max=0.09 cfs @ 11.28 hrs HW=668.80' (Free Discharge)
L- $_{1=\text { Exfiltration (Exfiltration Controls } 0.09 \mathrm{cfs})}$
Primary OutFlow Max=0.89 cfs @ 12.79 hrs HW=671.66' TW=0.00' (Dynamic Tailwater)

- $2=$ Culvert (Passes 0.89 cfs of 2.97 cfs potential flow)
-4=Orifice/Grate (Orifice Controls 0.38 cfs @ 4.37 fps)
- $5=$ Orifice/Grate (Orifice Controls 0.50 cfs @ 2.56 fps)

6=Orifice/Grate (Controls 0.00 cfs)
-3=Culvert (Passes 0.00 cfs of 4.89 cfs potential flow)
$\Psi_{7=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=668.75' TW=0.00' (Dynamic Tailwater)
-8=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG-4.2: Rain Garden 4.2

Inflow Area $=$Inflow $=$		65,893	vious,	,	9" for 2YearMass event
		1.70 cfs @	12.19 hrs , Volume=	6,530 cf	
Outflow	=	0.52 cfs @	12.90 hrs , Volume=	6,436 cf,	Atten= 69\%, Lag= 42.6 min
Discarded	=	0.06 cfs @	11.65 hrs , Volume=	4,077 cf	
Primary	$=$	0.46 cfs @	12.90 hrs , Volume $=$	2,359 cf	
Routed		AP4-P : AP4	- To Wetland A (A32-A		
Secondary		0.00 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= $0.00-30.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 678.37' @ 12.90 hrs Surf.Area= 2,400 sf Storage= 2,516 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=229.7 \mathrm{~min}(1,060.1-830.3$)

Discarded OutFlow Max=0.06 cfs @ 11.65 hrs HW=675.80' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.06 cfs)
Primary OutFlow Max=0.46 cfs @ 12.90 hrs HW=678.37' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Passes 0.46 cfs of 2.11 cfs potential flow)

- 3=Orifice/Grate (Orifice Controls 0.31 cfs @ 3.53 fps)
-4=Orifice/Grate (Orifice Controls 0.16 cfs @ 1.19 fps)
-5=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=675.75' TW=0.00' (Dynamic Tailwater)
$\Psi_{6=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~}^{0.00} \mathrm{cfs}$)

Summary for Pond RG12: Rain Garden 12

Device	Routing	Invert	Outlet Devices
\#1	Primary	686.25'	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=686.25' / 686.15' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	690.00'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$686.25{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	688.50'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.35 cfs @ 12.18 hrs HW=688.86' TW=676.51' (Dynamic Tailwater)
$\Psi_{1}=$ Culvert (Passes 0.35 cfs of 1.45 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
$-3=$ Orifice/Grate (Orifice Controls 0.17 cfs @ 7.65 fps)
—4=Orifice/Grate (Orifice Controls 0.18 cfs @ 2.10 fps)

Summary for Pond RG13: Rain Garden 13

Inflow Area	9,545 sf,	65.00\% Impervious,	Inflow Depth = 1.87" for 2 YearMass event
Inflow	0.50 cfs @	12.07 hrs , Volume=	1,487 cf
Outflow	0.32 cfs @	12.16 hrs , Volume=	$1,487 \mathrm{cf}$, Atten= 35\%, Lag= 5.2 min
Primary	0.32 cfs @	12.16 hrs , Volume=	1,487 cf

Routed to Pond RG-4.2 : Rain Garden 4.2
Routing by Dyn-Stor-Ind method, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Peak Elev= 697.31' @ 12.16 hrs Surf.Area= 240 sf Storage= 264 cf
Plug-Flow detention time $=16.3 \mathrm{~min}$ calculated for $1,487 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time= $16.2 \mathrm{~min}(837.2-821.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1	694.75'	31 cf $\begin{aligned} & \text { 12.0" } \\ & L=40.0^{\prime}\end{aligned}$	
\#2	694.75'	275 cf	$6.00^{\prime} \mathrm{W} \times 40.00^{\prime} \mathrm{L} \times 3.00$ 'H Soil Media and Gravel 720 cf Overall -31 cf Embedded $=689$ cf $\times 40.0 \%$ Voids
\#3	697.75'	30 cf	$6.00^{\prime} \mathrm{W} \times 40.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	698.00'	337 cf	$6.00{ }^{\prime} \mathrm{W} \times 40.00{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
674 cf Total Available Storage			
Device	Routing	Invert Outl	t Devices
\#1	Primary	$\begin{array}{ll} \hline 694.75 & \begin{array}{l} 6.0 " \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ n=1 \end{array}=0 \end{array}$	Round Culvert 0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$ / Outlet Invert= 694.75' / 694.65' S=0.0100 '/l' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	698.50' 6.0"	Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#3	Device 1	694.75' 2.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	697.00' 4.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.32 cfs @ 12.16 hrs HW=697.31' TW=676.39' (Dynamic Tailwater)
亡-1=Culvert (Passes 0.32 cfs of 1.44 cfs potential flow)

- $2=$ Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.17 cfs @ 7.57 fps)
-4=Orifice/Grate (Orifice Controls 0.16 cfs @ 1.89 fps)

Summary for Pond RG51: Rain Garden 51

Inflow Area =	9,105 sf	65.00\% Impervious,	Inflow Depth = 1.87" for 2 YearMass event
Inflow	0.48 cfs @	12.07 hrs , Volume=	1,419 cf
Outflow	0.28 cfs @	12.18 hrs , Volume=	$1,419 \mathrm{cf}$, Atten= 42\%, Lag= 6.2 min
Primary	0.28 cfs @	12.18 hrs , Volume=	1,419 cf

Routed to Pond RG-4.2 : Rain Garden 4.2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev=694.24' @ 12.18 hrs Surf.Area= 240 sf Storage= 268 cf
Plug-Flow detention time $=17.4 \mathrm{~min}$ calculated for $1,418 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time= 17.3 min (838.4-821.1)

Volume	Invert	Avail.Storage	Storage Description			
\#1	691.75'	47 cf 12.0" Round Pipe Storage Inside \#2L= 60.0'				
\#2	691.75'	269 cf	4.00 'W x 60.00'L x 3.00'H Soil Media and Gravel			
			720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids			
\#3	$694.75{ }^{\prime}$	30 cf	$4.00^{\prime} \mathrm{W}$ x $\mathbf{6 0 . 0 0}^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids			
\#4	$695.00{ }^{\prime}$	373 cf 4.00'W \times 60.00'L $\times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$				
720 cf Total Available Storage						
Device	Routing	Invert Outlet Devices				
\#1	Primary	$691.75{ }^{\prime} \mathbf{6 . 0}$	6.0" Round Culvert			
		$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$				
		Inlet / Outlet Invert= 691.75' / 691.65' S=0.0100 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior Flow Area= 0.20 sf				
\#2	Device 1	695.50' 6.0' Horiz. Orifice/Grate C= 0.600				
Limited to weir flow at low heads						
\#3	Device 1	691.75' 2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads				
\#4	Device 1	694.00 ' 4.0" Vert. Orifice/Grate	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads			
-2=Orifice/Grate (Controls 0.00 cfs)						
-3=Orifice/Grate (Orifice Controls 0.16 cfs @ 7.47 fps)						
-4=Orifice/Grate (Orifice Controls 0.11 cfs @ 1.68 fps)						

Summary for Pond RG57-59: Rain Gardens 57,58,59

Device	Routing	Invert	Outlet Devices
\#1	Discarded	687.25'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$689.25{ }^{\prime}$	6.0" Round Culvert X 3.00
			$\mathrm{L}=10.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=689.25' / 689.00' S=0.0250 '/l' Cc=0.900 $n=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	691.00'	6.0" Horiz. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 2	689.25'	2.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#5	Device 2	689.75'	4.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads

Discarded OutFlow Max=0.04 cfs @ 11.37 hrs HW=687.29' (Free Discharge)
$\mathbf{L}_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.04 ~ c f s) ~}$
Primary OutFlow Max=0.48 cfs @ $12.22 \mathrm{hrs} \mathrm{HW}=689.94^{\prime}$ TW=676.73' (Dynamic Tailwater)
-2=Culvert (Passes 0.48 cfs of 1.89 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.25 cfs @ 3.76 fps)

Summary for Pond RG6-7: Rain Gardens 6,7

Inflow Area $=$	$23,445 \mathrm{sf}, 65.00 \%$		Impervious,	Inflow Depth $=1.79 "$
Inflow	$=$	$1.17 \mathrm{cfs} @$	12.07 hrs, Volume $=$	$3,501 \mathrm{cf}$
Outflow	$=$	$0.62 \mathrm{cfs} @$	12.20 hrs , Volume $=$	$3,500 \mathrm{cf}$, Atten $=47 \%$, Lag $=7.5 \mathrm{~min}$
Primary	$=$	$0.62 \mathrm{cfs} @$	12.20 hrs , Volume $=$	$3,500 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev=678.60' @ 12.20 hrs Surf.Area= 600 sf Storage= 500 cf
Plug-Flow detention time $=11.4 \mathrm{~min}$ calculated for $3,500 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=11.3$ min (835.9-824.6)

Volume	Invert	Avail.Storage	Storage Description
\#1	676.75'	94 cf	12.0" Round Pipe Storage x 2 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	676.75'	682 cf	$5.00^{\prime} \mathrm{W} \times 6.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 2 1,800 cf Overall - 94 cf Embedded $=1,706$ cf $\times 40.0 \%$ Voids
\#3	679.75'	75 cf	5.00'W x 60.00'L x 0.25'H Mulch x 2 150 cf Overall $\times 50.0 \%$ Voids
\#4	680.00'	871 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$

Device	Routing	Invert	Outlet Devices
\#1	Primary	$676.75{ }^{\prime}$	6.0" Round Culvert X 2.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=676.75' / 676.65' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf

\#2	Device 1	680.50	6.0" Horiz. Orifice/Grate X 2.00 Limited to weir flow at low heads\quad C= $=0.600$
\#3	Device 1	$676.75 '$	3.0" Vert. Orifice/Grate X 2.00 Limited to weir flow at low heads\quad C= 0.600
\#4	Device 1	$679.00 '$	4.0" Vert. Orifice/Grate X 2.00 Limited to weir flow at low heads

Primary OutFlow Max=0.62 cfs @ 12.20 hrs HW=678.60' TW=670.23' (Dynamic Tailwater)
L1=Culvert (Passes 0.62 cfs of 2.39 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- 3=Orifice/Grate (Orifice Controls 0.62 cfs @ 6.32 fps)
-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond RG60-64: Rain Gardens 60-64

 Routed to Pond RG-4.2 : Rain Garden 4.2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev=686.51' @ 12.17 hrs Surf.Area= 1,200 sf Storage= 1,465 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=112.3 \min (929.7-817.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1	683.75'	236 cf	12.0" Round Pipe Storage x 5 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$683.75{ }^{\prime}$	1,346 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 5 3,600 cf Overall - 236 cf Embedded $=3,364$ cf $\times 40.0 \%$ Voids
\#3	$686.75{ }^{\prime}$	150 cf	4.00^{\prime} W x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch x 5 300 cf Overall $\times 50.0 \%$ Voids
\#4	687.00^{\prime}	1,867 cf	4.00'W $\times 60.00^{\prime} \mathrm{L} \times 1.00$ 'H Ponding $\mathrm{Z}=2.0 \times 5$

Device	Routing	Invert	Outlet Devices
\#1	Discarded	683.75^{\prime}	$\mathbf{2 . 4 1 0}$ in/hr Exfiltration over Surface area
\#2	Primary	685.75^{\prime}	6.0" Round Culvert X 4.00

\#2 Primary 685.75' 6.0" Round Culvert X 4.00

$\mathrm{L}=10.0^{\prime} \quad \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert=685.75' / 684.65' S=0.1100 '/l' Cc=0.900
$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3 Secondary
685.75' 6.0" Round Culvert

L= 10.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert=685.75' / 684.65' S=0.1100 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf

\#5	Device 3		Limited to weir flow at low heads
		687.50'	6.0" Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ Limited to weir flow at low heads
\#6	Device 2	685.75'	2.0" Vert. Orifice/Grate X 4.00 C= 0.600
			Limited to weir flow at low heads
\#7	Device 3	685.75'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#8	Device 2	686.25'	4.0" Vert. Orifice/Grate X 4.00 C= 0.600
			Limited to weir flow at low heads
\#9	Device 3	686.25'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.07 cfs @ 11.22 hrs HW=683.79' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.07 cfs)
Primary OutFlow Max=0.84 cfs @ 12.17 hrs HW=686.51' TW=670.07' (Dynamic Tailwater)
L2=Culvert (Passes 0.84 cfs of 2.69 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{6 = O r i f i c e} /$ Grate (Orifice Controls 0.34 cfs @ 3.95 fps)
—8=Orifice/Grate (Orifice Controls 0.50 cfs @ 1.73 fps)
Secondary OutFlow Max=0.21 cfs @ 12.17 hrs HW=686.51' TW=676.45' (Dynamic Tailwater)
${ }^{-3}=$ Culvert (Passes 0.21 cfs of 0.67 cfs potential flow)
- $5=$ Orifice/Grate (Controls 0.00 cfs)
$-7=$ Orifice/Grate (Orifice Controls 0.09 cfs @ 3.95 fps)
-9=Orifice/Grate (Orifice Controls 0.12 cfs @ 1.73 fps)

Summary for Pond RG65: Rain Gardens 65

Device	Routing	Invert	Outlet Devices
\#1	Discarded	674.75'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$676.75{ }^{\prime}$	6.0" Round Culvert
			$L=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=676.75' / 675.15' S=0.1600 '/l' Cc=0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	678.50	6.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Device 2	$676.75{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#5	Device 2	$677.25{ }^{\prime}$	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.00 cfs @ 4.30 hrs HW=674.77' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.00 cfs)
Primary OutFlow Max=0.30 cfs @ 12.09 hrs HW=677.65' TW=669.63' (Dynamic Tailwater)
-2=Culvert (Passes 0.30 cfs of 0.76 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.09 cfs @ 4.34 fps)
— $5=$ Orifice/Grate (Orifice Controls 0.20 cfs @ 2.31 fps)

Summary for Pond RG8-11: Rain Gardens 8-11

Inflow Area $=$	31,000 sf, 65.00% Impervious,	Inflow Depth $=1.79 "$	for 2 YearMass event
Inflow	$=$	$1.55 \mathrm{cfs} @$	12.07 hrs , Volume $=$
Outflow	$=$	$0.57 \mathrm{cfs} @$	12.34 hrs , Volume $=$
Primary	$=$	$0.57 \mathrm{cfs} @$	12.34 hrs , Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 677.64' @ 12.34 hrs Surf.Area= 1,200 sf Storage= 1,021 cf
Plug-Flow detention time $=21.4 \mathrm{~min}$ calculated for $4,626 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time $=21.2 \min (845.9-824.6)$

Volume	Invert	Avail.Storage	Storage Description
\#1	675.75'	188 cf	12.0" Round Pipe Storage x 4 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	675.75'	1,365 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 4
\#3	678.75'	150 cf	3,600 cf Overall -188 cf Embedded $=3,412$ cf $\times 40.0 \%$ Voids 5.00'W x 60.00'L x 0.25'H Mulch $x 4$ 300 cf Overall $\times 50.0 \%$ Voids
\#4	679.00'	$1,741 \mathrm{cf}$	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 4$
		3,444 cf Total Available Storage	
Device	Routing	Invert Outl	t Devices
\#1	Primary	$675.75{ }^{\prime} \begin{array}{ll}\text { 6.0" } \\ \text { L= }\end{array}$	Round Culvert X 4.00
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 675.75' / 675.65'S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	679.50' ${ }^{6.0}$	Horiz. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads

```
#3 Device 1 675.75' 2.0" Vert. Orifice/Grate X 4.00 C= 0.600
    Limited to weir flow at low heads
#4 Device 1 678.00' 4.0" Vert. Orifice/Grate X 4.00 C= 0.600
    Limited to weir flow at low heads
```

Primary OutFlow Max=0.57 cfs @ $12.34 \mathrm{hrs} \mathrm{HW}=677.64^{\prime}$ TW=670.92' (Dynamic Tailwater)
L- $_{1=\text { Culvert (Passes }} 0.57$ cfs of 4.85 cfs potential flow)
-2 $\mathbf{2 = O r i f i c e / G r a t e ~ (~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)
-3=Orifice/Grate (Orifice Controls 0.57 cfs @ 6.48 fps)
4=Orifice/Grate (Controls 0.00 cfs)

Summary for Link AP4-P: AP4 - To Wetland A (A32-A47)

In	23 sf , 31.52\% Impervious,	w Depth $=0.69$ " for 2 YearMass event
Inflow	2.76 cfs @ 12.11 hrs, Volume=	17,309 cf
Primary	2.76 cfs @ 12.11 hrs, Volume=	17,309 cf, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Subcatchment P4.1: To Wetland A (A32-A47)

Runoff $=6.23$ cfs @ 12.10 hrs, Volume= 19,942 cf, Depth= 2.58"
Routed to Link AP4-P : AP4 - To Wetland A (A32-A47)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P4.10: To RG4.1

Runoff $=0.79$ cfs @ 12.07 hrs, Volume= $2,355 \mathrm{cf}$, Depth= 2.94"
Routed to Pond RG-4.1 : Rain Garden 4.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN D	Description		
	$\begin{array}{r} 9,500 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 61 \end{aligned}$	$>75 \%$ Grass cover, Good, HSG D$>75 \%$ Grass cover, Good, HSG B		
	$\begin{aligned} & \hline 9,625 \\ & 9,625 \end{aligned}$	80	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P4.11: To RG4.2

Runoff $=\quad 0.52$ cfs @ 12.11 hrs, Volume= $\quad 1,822$ cf, Depth= $1.40^{\prime \prime}$ Routed to Pond RG-4.2 : Rain Garden 4.2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN	Description			
	$\begin{array}{r} 15,520 \\ 110 \end{array}$		>75\% Grass cover, Good, HSG B $>75 \%$ Grass cover, Good, HSG D			
	$\begin{aligned} & 15,630 \\ & 15,630 \end{aligned}$	61	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.7	50	0.1500	0.15		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00{ }^{\prime \prime}$
1.3	150	0.1500	1.94		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
7.0	200	Total				

Summary for Subcatchment P4.12: Lots 65

Runoff $=\quad 0.48$ cfs @ 12.07 hrs, Volume $=1,632 \mathrm{cf}$, Depth= 4.81"
Routed to Pond RG65 : Rain Gardens 65
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN D	Description Paved roads w/curbs \& sewers, HSG C		
	3,830	98			
	240		Paved road	w/curbs \&	sewers, HSG C
	4,070	98	Weighted Average		
	4,070		100.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry,

Summary for Subcatchment P4.13: Lots 6-8

Runoff $=\quad 2.21 \mathrm{cfs}$ @ 12.07 hrs , Volume= $\quad 6,671 \mathrm{cf}$, Depth= $3.41^{\prime \prime}$
Routed to Pond RG6-7 : Rain Gardens 6,7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Description
23,175	85	$1 / 8$ acre lots, 65% imp, HSG B
270	90	$1 / 8$ acre lots, 65% imp, HSG C
23,445	85	Weighted Average
8,206		35.00% Pervious Area
15,239		65.00% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P4.2: Lots 57-60

Runoff = 1.97 cfs @ 12.07 hrs, Volume= 5,957 cf, Depth= 3.41"
Routed to Pond RG57-59 : Rain Gardens 57,58,59
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P4.5: Lots 8-12

Runoff $=\quad 2.92$ cfs @ 12.07 hrs, Volume $=8,820 \mathrm{cf}$, Depth= $3.41^{\prime \prime}$
Routed to Pond RG8-11 : Rain Gardens 8-11
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Description
31,000	85	1/8 acre lots, 65% imp, HSG B
10,850		35.00% Pervious Area
20,150		65.00% Impervious Area

Tc Length Slope Velocity Capacity Description

(min)	(feet)	$(\mathrm{ft} / \mathrm{ft})$	$(\mathrm{ft} / \mathrm{sec})$	(cfs)
5.0				

Summary for Subcatchment P4.6: Lots 12-13

Runoff $=\quad 0.96$ cfs @ 12.09 hrs, Volume= $\quad 3,037$ cf, Depth= 3.41"
Routed to Pond RG12 : Rain Garden 12
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10YearMass Rainfall=5.05"

	rea (sf)	CN	Description			
	10,675	851	1/8 acre lots, 65\% imp, HSG B			
	$\begin{aligned} & \hline 3,736 \\ & 6,939 \end{aligned}$	35.00\% Pervious Area 65.00\% Impervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description	
6.2	50	0.1200	0.13		Sheet Flow, Woods: Light underbrush $n=0.400$	P2=3.00"
0.2	30	0.1000	2.21		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$	

$6.4 \quad 80$ Total

Summary for Subcatchment P4.7: Lot 13

Runoff $=\quad 0.92$ cfs @ 12.07 hrs, Volume= $2,795 \mathrm{cf}$, Depth= 3.51"
Routed to Pond RG13 : Rain Garden 13
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Description
7,505	85	$1 / 8$ acre lots, 65% imp, HSG B
2,040	90	$1 / 8$ acre lots, 65% imp, HSG C
9,545	86	Weighted Average
3,341		35.00\% Pervious Area
6,204		65.00% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P4.8: Upgradient Lots 8-12
Runoff $=0.66$ cfs @ 12.26 hrs, Volume= $\quad 3,416$ cf, Depth= 1.07"
Routed to Pond IT-8/12 : Interceptor Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P4.9: Lot 51

Runoff $=0.88$ cfs @ 12.07 hrs, Volume $=2,666 \mathrm{cf}$, Depth= $3.51^{\prime \prime}$
Routed to Pond RG51 : Rain Garden 51
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN	Description		
	1,910	90	1/8 acre lots, $65 \% \mathrm{imp}$, HSG C$1 / 8$ acre lots, $65 \% \mathrm{imp}$, HSG B		
	7,195	85			
	9,105	86	Weighted Average		
	3,187		35.00\% Pervious Area		
	5,918		65.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry,

Summary for Pond IT-8/12: Interceptor Trench

Summary for Pond RG-4.1: Rain Garden 4.1

Inflow Area =	102,460	vious,	Depth =	79" for 10YearMass ev
Inflow	6.59 cfs @	12.12 hrs , Volume=	23,821 cf	Atten= 66\%, Lag= 22.7 min
Outflow	2.23 cfs @	12.50 hrs , Volume=	22,783 cf,	
Discarded	0.28 cfs @	12.50 hrs , Volume=	8,179 cf	
Primary	1.95 cfs @	12.50 hrs , Volume=	14,605 cf	
Routed to	AP4-P : AP4	To Wetland A (A32-A		
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0 cf	

Routed to Link AP4-P : AP4 - To Wetland A (A32-A47)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 672.80' @ 12.50 hrs Surf.Area= 11,989 sf Storage= 8,255 cf
Plug-Flow detention time $=134.7$ min calculated for 22,783 cf (96% of inflow)
Center-of-Mass det. time $=110.5 \mathrm{~min}$ (918.0-807.5)

Discarded OutFlow Max=0.28 cfs @ 12.50 hrs HW=672.80' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.28 cfs)
Primary OutFlow Max=1.95 cfs @ $12.50 \mathrm{hrs} \mathrm{HW}=672.80^{\prime}$ TW=0.00' (Dynamic Tailwater)
-2=Culvert (Passes 1.95 cfs of 5.07 cfs potential flow)
-4=Orifice/Grate (Orifice Controls 0.59 cfs @ 6.75 fps)

- $\mathbf{5 = O r i f i c e / G r a t e}$ (Orifice Controls 1.13 cfs @ 5.75 fps)

6=Orifice/Grate (Weir Controls 0.23 cfs @ 0.73 fps)
$-3=$ Culvert (Passes 0.00 cfs of 10.07 cfs potential flow)
$\Psi_{7=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=668.75' TW=0.00' (Dynamic Tailwater)
-8=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG-4.2: Rain Garden 4.2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 679.17' @ 12.34 hrs Surf.Area= 7,366 sf Storage= 3,590 cf
Plug-Flow detention time $=121.6 \mathrm{~min}$ calculated for $14,095 \mathrm{cf}$ (96% of inflow)
Center-of-Mass det. time= 99.0 min (909.3-810.4)

Discarded OutFlow Max=0.17 cfs @ 12.34 hrs HW=679.16' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.17 cfs)
Primary OutFlow Max=2.69 cfs @ 12.34 hrs HW=679.16' TW=0.00' (Dynamic Tailwater)
$\mathcal{L}_{2}=$ Culvert (Passes 2.69 cfs of 4.08 cfs potential flow)

- 3=Orifice/Grate (Orifice Controls 0.48 cfs @ 5.56 fps)
-4=Orifice/Grate (Orifice Controls 2.21 cfs @ 4.05 fps)
$-5=$ Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=675.75' TW=0.00' (Dynamic Tailwater)
$4_{6=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~}^{0.00}$ cfs)

Summary for Pond RG12: Rain Garden 12

Device	Routing	Invert	Outlet Devices
\#1	Primary	686.25'	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=686.25' / 686.15' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	690.00'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$686.25{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	688.50'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

```
Primary OutFlow Max=0.65 cfs @ 12.18 hrs HW=689.83' TW=678.97' (Dynamic Tailwater)
&-1=Culvert (Passes 0.65 cfs of 1.72 cfs potential flow)
    -2=Orifice/Grate (Controls 0.00 cfs)
    3=Orifice/Grate (Orifice Controls 0.20 cfs @ 9.00 fps)
    4=Orifice/Grate (Orifice Controls 0.45 cfs @ 5.19 fps)
```


Summary for Pond RG13: Rain Garden 13

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Peak Elev= 698.25' @ 12.15 hrs Surf.Area= 768 sf Storage= 404 cf
Plug-Flow detention time $=14.0 \mathrm{~min}$ calculated for $2,795 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time $=14.0 \mathrm{~min}(817.1-803.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1	694.75'	31 cf $\begin{aligned} & \text { 12.0" } \\ & \mathrm{L}=40.0^{\prime}\end{aligned}$	
\#2	$694.75{ }^{\prime}$	275 cf	$6.00^{\prime} \mathrm{W} \times 40.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 720 cf Overall -31 cf Embedded $=689$ cf $\times 40.0 \%$ Voids
\#3	$697.75{ }^{\prime}$	30 cf	$6.00^{\prime} \mathrm{W}$ x 40.00'L x 0.25'H Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	698.00^{\prime}	337 cf	6.00 'W x 40.00'L x 1.00'H Ponding $\mathrm{Z}=2.0$
674 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	694.75' $\begin{array}{ll} & \text { 6.0" } \\ & \mathrm{L}=10 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 694.75' / 694.65' S=0.0100 '/' Cc= 0.900
			.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$698.50{ }^{\prime} \quad \begin{aligned} & \text { 6.0' } \\ & \\ & \text { Lim }\end{aligned}$	Horiz. Orifice/Grate C=0.600
			ted to weir flow at low heads
\#3	Device 1	$694.75{ }^{\text {2 }}{ }^{\prime \prime}$	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#4	Device 1	697.00' 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.63 cfs @ 12.15 hrs HW=698.25' TW=678.79' (Dynamic Tailwater)
\& $1=$ Culvert (Passes 0.63 cfs of 1.71 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.19 cfs @ 8.90 fps)
—4=Orifice/Grate (Orifice Controls 0.44 cfs @ 5.02 fps)

Summary for Pond RG51: Rain Garden 51

Inflow Area $=$	$9,105 \mathrm{sf}, 65.00 \%$	Impervious,	Inflow Depth $=3.51 "$
Inflow	for 10 YearMass event		
Outflow	$=$	$0.88 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	$2,666 \mathrm{cf}$
Primary	$0.62 \mathrm{cfs} @$	12.15 hrs, Volume $=$	$2,666 \mathrm{cf}$, Atten $=30 \%$, Lag $=4.5 \mathrm{~min}$
	$0.62 \mathrm{cfs} @$	12.15 hrs, Volume $=$	$2,666 \mathrm{cf}$

Routed to Pond RG-4.2 : Rain Garden 4.2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 695.18' @ 12.15 hrs Surf.Area= 768 sf Storage= 395 cf
Plug-Flow detention time $=14.8 \mathrm{~min}$ calculated for $2,665 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $14.8 \mathrm{~min}(817.9-803.1)$

Summary for Pond RG57-59: Rain Gardens 57,58,59

Device	Routing	Invert	Outlet Devices
\#1	Discarded	687.25'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$689.25{ }^{\prime}$	6.0" Round Culvert X 3.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=689.25' / 689.00' S=0.0250 '/' Cc= 0.900
	Device 2	691.00'	$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf 6.0" Horiz OrificelGrate X $3.00 \quad \mathrm{C}=0.600$
\#3			Limited to weir flow at low heads
\#4	Device 2	$689.25{ }^{\prime}$	2.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#5	Device 2	689.75'	4.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads

Discarded OutFlow Max=0.12 cfs @ 12.13 hrs HW=690.60' (Free Discharge)

- $_{1=\text { Exfiltration }}$ (Exfiltration Controls 0.12 cfs)

Primary OutFlow Max=1.40 cfs @ $12.13 \mathrm{hrs} \mathrm{HW}=690.60^{\prime}$ TW=678.66' (Dynamic Tailwater)
\&2=Culvert (Passes 1.40 cfs of 2.98 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.36 cfs @ 5.42 fps)
— $5=$ Orifice/Grate (Orifice Controls 1.04 cfs @ 3.99 fps)

Summary for Pond RG6-7: Rain Gardens 6,7

Inflow Area $=\quad 23,445$ sf, 65.00% Impervious, Inflow Depth $=3.41^{\prime \prime}$ for 10YearMass event

Inflow	$=$	$2.21 \mathrm{cfs} @$	12.07 hrs , Volume $=$
Outflow	$=$	$1.61 \mathrm{cfs} @$	12.14 hrs , Volume $=$
Primary	$=$	$1.61 \mathrm{cfs} @$	670 cf, , Atten $=27 \%$, Lag $=4.1 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev=680.01' @ 12.14 hrs Surf.Area= 1,806 sf Storage= 858 cf
Plug-Flow detention time $=10.2 \mathrm{~min}$ calculated for $6,668 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time $=10.2 \min (816.4-806.2)$

Volume	Invert	Avail.Storage	Storage Description
\#1	676.75'	94 cf	12.0" Round Pipe Storage x 2 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$676.75{ }^{\prime}$	682 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 2 1,800 cf Overall - 94 cf Embedded $=1,706$ cf $\times 40.0 \%$ Voids
\#3	679.75'	75 cf	5.00^{\prime} W x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch x 2 150 cf Overall x 50.0% Voids
\#4	680.00^{\prime}	871 cf	$5.00^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
		1,722 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	676.75'	6.0" Round Culvert X 2.00
			$\mathrm{L}=10.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=676.75' / 676.65' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf

\#2	Device 1	680.50	6.0" Horiz. Orifice/Grate X 2.00 Limited to weir flow at low heads\quad C= 0.600
\#3	Device 1	$676.75 '$	3.0" Vert. Orifice/Grate X 2.00 Limited to weir flow at low heads\quad C=
\#4	Device 1	679.00	4.0" Vert. Orifice/Grate X 2.00 Limited to weir flow at low heads

Primary OutFlow Max=1.61 cfs @ 12.14 hrs HW=680.01' TW=672.10' (Dynamic Tailwater)
L-1=Culvert (Passes 1.61 cfs of 3.28 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.84 cfs @ 8.53 fps)
-4=Orifice/Grate (Orifice Controls 0.77 cfs @ 4.42 fps)

Summary for Pond RG60-64: Rain Gardens 60-64

Device	Routing	Invert	Outlet Devices
\#1	Discarded	$683.75{ }^{\prime}$	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	685.75 '	6.0" Round Culvert X 4.00
			$\mathrm{L}=10.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=685.75' / 684.65' $\mathrm{S}=0.1100$ '/' Cc=0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Secondary	685.75'	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=685.75' / 684.65' S=0.1100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#4	Device 2	687.50'	6.0" Horiz. Orifice/Grate X 4.00 C= 0.600

\#5	Device 3	687.50'	Limited to weir flow at low heads
			6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#6	Device 2	$685.75{ }^{\prime}$	2.0" Vert. Orifice/Grate X 4.00 C= 0.600
			Limited to weir flow at low heads
\#7	Device 3	$685.75{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#8	Device 2	$686.25 '$	4.0" Vert. Orifice/Grate X 4.00 C= 0.600
			Limited to weir flow at low heads
\#9	Device 3	$686.25{ }^{\prime}$	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.21 cfs @ 12.14 hrs HW=687.13' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.21 cfs)
Primary OutFlow Max=1.90 cfs @ 12.14 hrs HW=687.13' TW=672.07' (Dynamic Tailwater)
$廿_{2}=$ Culvert (Passes 1.90 cfs of 4.02 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{6 = O r i f i c e} /$ Grate (Orifice Controls 0.48 cfs @ 5.49 fps)
— $\mathbf{8 =}=$ Orifice/Grate (Orifice Controls 1.42 cfs @ 4.07 fps)
Secondary OutFlow Max=0.47 cfs @ 12.14 hrs HW=687.13' TW=678.67' (Dynamic Tailwater)
${ }^{-3}=$ Culvert (Passes 0.47 cfs of 1.01 cfs potential flow)
- $5=$ Orifice/Grate (Controls 0.00 cfs)
$-7=$ Orifice/Grate (Orifice Controls 0.12 cfs @ 5.49 fps)
$\square_{9=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 0.36$ cfs @ 4.07 fps)

Summary for Pond RG65: Rain Gardens 65

Device	Routing	Invert	Outlet Devices
\#1	Discarded	674.75'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$676.75{ }^{\prime}$	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=676.75' / 675.15' S=0.1600 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	$678.50{ }^{\prime}$	6.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Device 2	676.75	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#5	Device 2	$677.25{ }^{\prime}$	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 12.10 hrs HW=678.03' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=0.44 cfs @ 12.10 hrs HW=678.03' TW=671.76' (Dynamic Tailwater)
2=Culvert (Passes 0.44 cfs of 0.96 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.11 cfs @ 5.26 fps)
— $5=$ Orifice/Grate (Orifice Controls 0.33 cfs @ 3.76 fps)

Summary for Pond RG8-11: Rain Gardens 8-11

Inflow Area $=$	$31,000 \mathrm{sf}, 65.00 \%$	Impervious,	Inflow Depth $=3.41 "$
Inflow	for 10 YearMass event		
Outflow	$2.92 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	$8,820 \mathrm{cf}$	
Primary	$2.03 \mathrm{cfs} @$	12.15 hrs, Volume $=$	$8,819 \mathrm{cf}$, Atten $=30 \%$, Lag $=4.5 \mathrm{~min}$
	$2.03 \mathrm{cfs} @$	12.15 hrs, Volume $=$	$8,819 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev=678.78' @ 12.15 hrs Surf.Area= 2,400 sf Storage= 1,569 cf
Plug-Flow detention time $=19.0 \mathrm{~min}$ calculated for 8,816 cf (100% of inflow)
Center-of-Mass det. time $=19.0 \mathrm{~min}(825.2-806.2)$

Volume	Invert	Avail.Storage	Storage Description
\#1	675.75'	188 cf	12.0" Round Pipe Storage x 4 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	675.75'	1,365 cf	$5.00^{\prime} \mathrm{W} \times 60.00 ' \mathrm{~L} \times 3.00{ }^{\prime} \mathrm{H}$ Soil Media and Gravelx 4
			3,600 cf Overall - 188 cf Embedded $=3,412 \mathrm{cf} \mathrm{x} \mathrm{40.0} \mathrm{\%} \mathrm{Voids}$
\#3	678.75'	150 cf	$5.00^{\prime} \mathrm{W} \times 6.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch x 4 300 cf Overall $\times 50.0 \%$ Voids
\#4	679.00^{\prime}	1,741 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 4$
		3,444 cf Total Available Storage	
Device	Routing	Invert Outle	t Devices
\#1	Primary	675.75' $\begin{array}{ll}\text { 6.0" } \\ & \mathrm{L}=1 \\ & \text { Inlet }\end{array}$	Round Culvert X 4.00
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 675.75' / 675.65' S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	679.50' 6.	Horiz. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads

AP4
Prepared by Mcclure Engineeering
HydroCAD® 10.20-3c s/n 03362 © 2023 HydroCAD Software Solutions LLC
Type III 24-hr 10YearMass Rainfall=5.05"
Printed 6/28/2023
\#3 Device 1
675.75' 2.0" Vert. Orifice/Grate X $4.00 \quad \mathrm{C}=0.600$

Limited to weir flow at low heads
\#4 $\begin{array}{lllll} & \text { Device } 1 & 678.00^{\prime} & \text { 4.0" Vert. Orifice/Grate X } 4.00 \quad \mathrm{C}=0.600\end{array}$
Limited to weir flow at low heads

Primary OutFlow Max=2.03 cfs @ $12.15 \mathrm{hrs} \mathrm{HW}=678.78^{\prime}$ TW=672.13' (Dynamic Tailwater)
$廿_{1}=$ Culvert (Passes 2.03 cfs of 6.30 cfs potential flow)

- $2=$ Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.72 cfs @ 8.26 fps)
4=Orifice/Grate (Orifice Controls 1.31 cfs @ 3.76 fps)

Summary for Link AP4-P: AP4 - To Wetland A (A32-A47)

W	299,623 st, 31.52\% Impervious,	Depth = 1.90" for
Inflow	8.89 cfs @ 12.15 hrs , Volume=	47,486 cf
Primary	8.89 cfs @ 12.15 hrs, Volume=	$47,486 \mathrm{cf}, \mathrm{Atten}=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Subcatchment P4.1: To Wetland A (A32-A47)

Runoff $=8.56$ cfs @ 12.10 hrs , Volume=
Routed to Link AP4-P : AP4 - To Wetland A (A32-A47)

27,365 cf, Depth= 3.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN Description				
	630	55	Woods, Good, HSG B			
	79,935		Woods, Good, HSG D			
	4,660	61 >75\% Gras		cover, Go	od, HSG B	
	7,645	80 >75\% Gras		cover, Go	od, HSG D	
92,870		76	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.7	50	0.1500	0.15		Sheet Flow, Woods: Light underbrush $n=0.400$	P2=3.00"
1.2	135	0.1500	1.94		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
6.9	185	Total				

Summary for Subcatchment P4.10: To RG4.1

Runoff $=1.05$ cfs @ 12.07 hrs, Volume= 3,163 cf, Depth= 3.94"
Routed to Pond RG-4.1 : Rain Garden 4.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN D	Description		
	$\begin{array}{r} 9,500 \\ 125 \\ \hline \end{array}$	$\begin{array}{ll} 80 \\ 61 & > \end{array}$	>75\% Grass cover, Good, HSG D $>75 \%$ Grass cover, Good, HSG B		
	$\begin{aligned} & \hline 9,625 \\ & 9,625 \end{aligned}$	80	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P4.11: To RG4.2

Runoff = 0.83 cfs @ 12.11 hrs, Volume= 2,770 cf, Depth= 2.13" Routed to Pond RG-4.2 : Rain Garden 4.2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN	Description			
	$\begin{array}{r} 15,520 \\ 110 \end{array}$		>75\% Grass cover, Good, HSG B $>75 \%$ Grass cover, Good, HSG D			
	$\begin{aligned} & 15,630 \\ & 15,630 \end{aligned}$	61	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.7	50	0.1500	0.15		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00{ }^{\prime \prime}$
1.3	150	0.1500	1.94		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
7.0	200	Total				

Summary for Subcatchment P4.12: Lots 65

Runoff $=0.59$ cfs @ 12.07 hrs, Volume= $2,015 \mathrm{cf}$, Depth= $5.94{ }^{\prime \prime}$
Routed to Pond RG65 : Rain Gardens 65
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN D	Paved roads w/curbs \& sewers, HSG C		
	3,830	9898			
	240		Paved road	w/curbs \&	sewers, HSG C
	4,070	98	Weighted Average 100.00\% Impervious Area		
	4,070				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Summary for Subcatchment P4.13: Lots 6-8

Runoff $=\quad 2.86$ cfs @ 12.07 hrs, Volume $=\quad 8,738 \mathrm{cf}$, Depth= 4.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)	CN	Description
23,175	85	$1 / 8$ acre lots, 65% imp, HSG B
270	90	$1 / 8$ acre lots, 65% imp, HSG C
23,445	85	Weighted Average
8,206		35.00% Pervious Area
15,239		65.00% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P4.2: Lots 57-60

Runoff $=\quad 2.56$ cfs @ 12.07 hrs, Volume= 7,804 cf, Depth= 4.47"
Routed to Pond RG57-59 : Rain Gardens 57,58,59
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment P4.5: Lots 8-12

Runoff $=\quad 3.79$ cfs @ 12.07 hrs, Volume= $\quad 11,554 \mathrm{cf}$, Depth= 4.47"
Routed to Pond RG8-11 : Rain Gardens 8-11
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)	CN	Description
31,000	85	$1 / 8$ acre lots, 65% imp, HSG B
10,850	35.00% Pervious Area	
20,150	65.00% Impervious Area	

Tc Length Slope Velocity Capacity Description

(min)	(feet)	$(\mathrm{ft} / \mathrm{ft})$	$(\mathrm{ft} / \mathrm{sec})$	(cfs)
5.0				

Summary for Subcatchment P4.6: Lots 12-13

Runoff $=\quad 1.24$ cfs @ 12.09 hrs, Volume= $3,979 \mathrm{cf}$, Depth= 4.47"
Routed to Pond RG12 : Rain Garden 12
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf) CN Description						
10,675		85 1/8 acre lots, 65\% imp, HSG B				
	$\begin{aligned} & \hline 3,736 \\ & 6,939 \end{aligned}$	35.00\% Pervious Area 65.00\% Impervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description	
6.2	50	0.1200	0.13		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00{ }^{\prime \prime}$
0.2	30	0.1000	2.21		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps	

$6.4 \quad 80$ Total

Summary for Subcatchment P4.7: Lot 13

Runoff $=1.19$ cfs @ 12.07 hrs, Volume= $3,644 \mathrm{cf}$, Depth= 4.58"
Routed to Pond RG13 : Rain Garden 13
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)	CN	Description
7,505	85	$1 / 8$ acre lots, 65% imp, HSG B
2,040	90	$1 / 8$ acre lots, 65% imp, HSG C
9,545	86	Weighted Average
3,341		35.00\% Pervious Area
6,204		65.00% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P4.8: Upgradient Lots 8-12
Runoff $=1.17$ cfs @ 12.25 hrs, Volume= $\quad 5,452 \mathrm{cf}$, Depth= $1.70^{\prime \prime}$
Routed to Pond IT-8/12 : Interceptor Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment P4.9: Lot 51

Runoff $=1.13$ cfs @ 12.07 hrs, Volume= $\quad 3,476 \mathrm{cf}$, Depth= 4.58"
Routed to Pond RG51 : Rain Garden 51
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN	Description $1 / 8$ acre lots, 65% imp, HSG C		
	1,910	9085			
	7,195		1/8 acre lots, $65 \% \mathrm{imp}$, HSG C$1 / 8$ acre lots, 65% imp, HSG B		
	9,105	86	Weighted Average		
	3,187		35.00\% Pervious Area		
	5,918		65.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry,

Summary for Pond IT-8/12: Interceptor Trench

Primary OutFlow Max=1.06 cfs @ 12.33 hrs HW=681.03' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 1.06 cfs @ 3.03 fps)

Summary for Pond RG-4.1: Rain Garden 4.1

Inflow Area =	102,460 sf,	60.28\% Impervious,	,	73" for 25YearMass event
Inflow	7.77 cfs @	12.12 hrs , Volume=	31,862 cf	
Outflow	4.66 cfs @	12.40 hrs , Volume=	30,679 cf,	Atten= 40\%, Lag= 17.2 min
Discarded	0.29 cfs @	12.40 hrs , Volume=	8,714 cf	
Primary	4.37 cfs @	12.40 hrs , Volume $=$	21,965 cf	
Routed to Link AP4-P : AP4 - To Wetland A (A32-A47)				
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0 cf	

Routed to Link AP4-P : AP4 - To Wetland A (A32-A47)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 673.17' @ 12.40 hrs Surf.Area= 12,354 sf Storage= $10,005 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $88.0 \min (888.9-800.8)$

Discarded OutFlow Max=0.29 cfs @ 12.40 hrs HW=673.17' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.29 cfs)
Primary OutFlow Max=4.37 cfs @ $12.40 \mathrm{hrs} \mathrm{HW}=673.17^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)

- $2=$ Culvert (Passes 4.37 cfs of 5.57 cfs potential flow)
—4=Orifice/Grate (Orifice Controls 0.64 cfs @ 7.37 fps)
- $\mathbf{5}=$ Orifice/Grate (Orifice Controls 1.27 cfs @ 6.46 fps)

6=Orifice/Grate (Orifice Controls 2.46 cfs @ 3.13 fps)
$-3=$ Culvert (Passes 0.00 cfs of 11.16 cfs potential flow)
$\Psi_{7=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=668.75' TW=0.00' (Dynamic Tailwater)
-8=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG-4.2: Rain Garden 4.2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 679.59' @ 12.40 hrs Surf.Area= 7,796 sf Storage=4,771 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=73.8 \mathrm{~min}(878.5-804.8)$

Discarded OutFlow Max=0.18 cfs @ 12.40 hrs HW=679.59' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.18 cfs)
Primary OutFlow Max=3.35 cfs @ 12.40 hrs HW=679.59' TW=0.00' (Dynamic Tailwater)
L-2 $_{2}=$ Culvert (Passes 3.35 cfs of 4.77 cfs potential flow)

- $3=$ Orifice/Grate (Orifice Controls 0.56 cfs @ 6.38 fps)
-4=Orifice/Grate (Orifice Controls 2.79 cfs @ 5.12 fps)
$\square_{5=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max $=0.00$ cfs @ 0.00 hrs HW=675.75' TW=0.00' (Dynamic Tailwater)
$\Psi_{6=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~}^{0.00} \mathrm{cfs}$)

Summary for Pond RG12: Rain Garden 12

Device	Routing	Invert	Outlet Devices
\#1	Primary	686.25'	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=686.25' / 686.15' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	690.00'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$686.25{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	688.50'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.93 cfs @ 12.16 hrs HW=690.12' TW=679.29' (Dynamic Tailwater)
\& $1=$ Culvert (Passes 0.93 cfs of 1.80 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.22 cfs @ 1.14 fps)
-3=Orifice/Grate (Orifice Controls 0.20 cfs @ 9.37 fps)
$\left\llcorner_{4}=\right.$ Orifice/Grate (Orifice Controls 0.51 cfs @ 5.81 fps)

Summary for Pond RG13: Rain Garden 13

Routed to Pond RG-4.2 : Rain Garden 4.2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Peak Elev= 698.59' @ 12.15 hrs Surf.Area= 833 sf Storage= 510 cf
Plug-Flow detention time $=13.9 \mathrm{~min}$ calculated for $3,643 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time= 13.8 min (809.5-795.7)

Volume	Invert	Avail.Storage	Storage Description
\#1	694.75'	31 cf $\begin{aligned} & \text { 12.0" } \\ & \mathrm{L}=40.0^{\prime}\end{aligned}$	
\#2	$694.75{ }^{\prime}$	275 cf	$6.00^{\prime} \mathrm{W} \times 40.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 720 cf Overall -31 cf Embedded $=689$ cf $\times 40.0 \%$ Voids
\#3	$697.75{ }^{\prime}$	30 cf	$6.00^{\prime} \mathrm{W}$ x 40.00'L x 0.25'H Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	698.00^{\prime}	337 cf	6.00 'W x 40.00'L x 1.00'H Ponding $\mathrm{Z}=2.0$
674 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	694.75' $\begin{array}{ll} & \text { 6.0" } \\ & \mathrm{L}=10 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 694.75' / 694.65' S=0.0100 '/' Cc= 0.900
			.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$698.50{ }^{\prime} \quad \begin{aligned} & \text { 6.0' } \\ & \\ & \text { Lim }\end{aligned}$	Horiz. Orifice/Grate C=0.600
			ted to weir flow at low heads
\#3	Device 1	$694.75{ }^{\text {2 }}{ }^{\prime \prime}$	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#4	Device 1	697.00' 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.83 cfs @ 12.15 hrs HW=698.59' TW=679.24' (Dynamic Tailwater)
$\mathcal{L 1}_{1}=$ Culvert (Passes 0.83 cfs of 1.79 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.13 cfs @ 0.96 fps)
-3=Orifice/Grate (Orifice Controls 0.20 cfs @ 9.33 fps)
—4=Orifice/Grate (Orifice Controls 0.50 cfs @ 5.74 fps)

Summary for Pond RG51: Rain Garden 51

Inflow Area $=\quad 9,105$ sf, 65.00% Impervious, Inflow Depth $=4.58$ " for 25 YearMass event
Inflow $=1.13$ cfs @ 12.07 hrs, Volume $=\quad 3,476 \mathrm{cf}$
Outflow $=\quad 0.71 \mathrm{cfs} @ 12.16 \mathrm{hrs}$, Volume $=\quad 3,475 \mathrm{cf}$, Atten= 37%, Lag $=5.3 \mathrm{~min}$
Primary $=0.71$ cfs @ 12.16 hrs , Volume $=\quad 3,475 \mathrm{cf}$
Routed to Pond RG-4.2 : Rain Garden 4.2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 695.53' @ 12.16 hrs Surf.Area= 859 sf Storage= 509 cf
Plug-Flow detention time $=14.6 \mathrm{~min}$ calculated for $3,474 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time= $14.6 \min (810.3-795.7)$

Volume	Invert	Avail.Storage	Storage Description
\#1	691.75	47 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$691.75{ }^{\prime}$	269 cf	$4.00^{\prime} \mathrm{W} \times 6.00^{\prime} \mathrm{L} \times 3.00$ 'H Soil Media and Gravel 720 cf Overall -47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
\#3	694.75'	30 cf	$4.00^{\prime} \mathrm{W}$ x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	$695.00{ }^{\prime}$	373 cf	$4.00{ }^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
		720 cf	Total Available Storage
Device	Routing	Invert Outle	t Devices
\#1	Primary	691.75' $\begin{array}{ll}\text { 6.0" } \\ & \mathrm{L}=1 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert 0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$ / Outlet Invert=691.75' / 691.65' S=0.0100 '/l' Cc=0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$695.50{ }^{\text {' }} \begin{aligned} & \text { 6.0" } \\ & \text { Limit }\end{aligned}$	Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#3	Device 1	$691.75{ }^{\prime}$ 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	694.00' 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
Primary OutFlow Max=0.71 cfs @ 12.16 hrs HW=695.53' TW=679.28' (Dynamic Tailwater) $\mathcal{L}_{1}=$ Culvert (Passes 0.71 cfs of 1.78 cfs potential flow)			
-2=Orifice/Grate (Weir Controls 0.02 cfs @ 0.54 fps)			
-3=Orifice/Grate (Orifice Controls 0.20 cfs @ 9.25 fps)			
4=Orifice/Grate (Orifice Controls 0.49 cfs @ 5.62 fps)			

Summary for Pond RG57-59: Rain Gardens 57,58,59

Inflow Area =		20,938 sf, 65.00	Impervious, Inflow Depth = 4.47" for 25YearMass event
Inflow		2.56 cfs @ 12.07	hrs, Volume= $\quad 7,804 \mathrm{cf}$
Outflow	1	1.74 cfs @ 12.15	hrs, Volume $=\quad 7,804 \mathrm{cf}$, Atten= 32\%, Lag= 4.7 min
Discarded		0.14 cfs @ 12.15	hrs, Volume $=\quad 3,026 \mathrm{cf}$
Primary Routed	$\begin{array}{ll} = & 1 \\ \text { o Pond } R \end{array}$	1.60 cfs @ 12.15 RG-4.2 : Rain Gard	hrs, Volume $=\quad 4,778 \mathrm{cf}$ 4.2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$			
Peak Elev= 690.84' @ 12.15 hrs Surf.Area= 2,430 sf Storage= 1,333 cf			
Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 77.0 min (875.6-798.6)			
Volume	Invert	t Avail.Storage	Storage Description
\#1	687.25'	' 141 cf	12.0" Round Pipe Storage x 3 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	687.25'	' 807 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 3 2,160 cf Overall - 141 cf Embedded $=2,019$ cf $\times 40.0 \%$ Voids
\#3	690.25'	' 90 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch $\times 3$ 180 cf Overall x 50.0\% Voids
\#4	690.50'	' 1,120 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 3$
		2,159 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Discarded	687.25'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$689.25{ }^{\prime}$	6.0" Round Culvert X 3.00
			$\mathrm{L}=10.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=689.25' / 689.00' S=0.0250 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	691.00'	6.0" Horiz. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 2	$689.25{ }^{\prime}$	2.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#5	Device 2	689.75'	4.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads

Discarded OutFlow Max=0.14 cfs @ 12.15 hrs HW=690.84' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.14 cfs) 2
Primary OutFlow Max=1.60 cfs @ $12.15 \mathrm{hrs} \mathrm{HW}=690.84^{\prime}$ TW=679.25' (Dynamic Tailwater)
\&2=Culvert (Passes 1.60 cfs of 3.29 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.39 cfs @ 5.92 fps)
-5=Orifice/Grate (Orifice Controls 1.21 cfs @ 4.64 fps)

Summary for Pond RG6-7: Rain Gardens 6,7

		23,445 sf, 65.00\% Impervious, Inflow Depth = 4.47" for 25YearMass event	
Inflow Area = Inflow =		2.86 cfs @ 12.07 h	rs, Volume $=\quad 8,738 \mathrm{cf}$
Outflow		1.83 cfs @ 12.16 h	rs, Volume $=\quad 8,738 \mathrm{cf}$, Atten= $=36 \%$, Lag= 5.2 min
Primary = 1		1.83 cfs @ 12.16	rs, Volume $=\quad 8,738 \mathrm{cf}$
Routed to Pond RG-4.1 : Rain Garden 4.1			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$			
Peak Elev=680.41' @ 12.16 hrs Surf.Area= 2,020 sf Storage= 1,145 cf			
Plug-Flow detention time $=9.9$ min calculated for 8,738 cf (100% of inflow) Center-of-Mass det. time= 9.9 min (808.5-798.6)			
Volume	Invert	t Avail.Storage	Storage Description
\#1	676.75'	' 94 cf	12.0" Round Pipe Storage x 2 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$676.75{ }^{\prime}$	' 682 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 2 $1,800 \mathrm{cf}$ Overall -94 cf Embedded $=1,706 \mathrm{cf} \times 40.0 \%$ Voids
\#3	679.75'	' 75 cf	5.00'W x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch $\times 2$ 150 cf Overall $\times 50.0 \%$ Voids
\#4	680.00'	' 871 cf	$5.00{ }^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$

Device	Routing	Invert	Outlet Devices
\#1	Primary	676.75'	6.0" Round Culvert X 2.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=676.75' / 676.65' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf

\#2	Device 1	680.50	6.0" Horiz. Orifice/Grate X 2.00 Limited to weir flow at low heads\quad C= 0.600
\#3	Device 1	$676.75 '$	3.0" Vert. Orifice/Grate X 2.00 Limited to weir flow at low heads\quad C=
\#4	Device 1	679.00	4.0" Vert. Orifice/Grate X 2.00 Limited to weir flow at low heads

Primary OutFlow Max=1.83 cfs @ 12.16 hrs HW=680.41' TW=672.69' (Dynamic Tailwater)
L1=Culvert (Passes 1.83 cfs of 3.49 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- 3=Orifice/Grate (Orifice Controls 0.89 cfs @ 9.06 fps)
-4=Orifice/Grate (Orifice Controls 0.94 cfs @ 5.38 fps)

Summary for Pond RG60-64: Rain Gardens 60-64

Device	Routing	Invert	Outlet Devices
\#1	Discarded	$683.75{ }^{\prime}$	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	685.75 '	6.0" Round Culvert X 4.00
			$\mathrm{L}=10.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=685.75' / 684.65' $\mathrm{S}=0.1100$ '/' Cc=0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Secondary	685.75'	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=685.75' / 684.65' S=0.1100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#4	Device 2	687.50'	6.0" Horiz. Orifice/Grate X 4.00 C= 0.600

\#5	Device 3	687.50'	Limited to weir flow at low heads
			6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#6	Device 2	$685.75{ }^{\prime}$	2.0" Vert. Orifice/Grate X 4.00 C= 0.600
			Limited to weir flow at low heads
\#7	Device 3	$685.75{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#8	Device 2	$686.25 '$	4.0" Vert. Orifice/Grate X 4.00 C= 0.600
			Limited to weir flow at low heads
\#9	Device 3	$686.25{ }^{\prime}$	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.23 cfs @ 12.15 hrs HW=687.37' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.23 cfs)
Primary OutFlow Max=2.16 cfs @ 12.15 hrs HW=687.37' TW=672.66' (Dynamic Tailwater)
廿-2=Culvert (Passes 2.16 cfs of 4.42 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{6 = O r i f i c e / G r a t e ~ (O r i f i c e ~ C o n t r o l s ~} 0.52$ cfs @ 5.96 fps)
— $\mathbf{8 =}=$ Orifice/Grate (Orifice Controls 1.64 cfs @ 4.69 fps)
Secondary OutFlow Max=0.54 cfs @ 12.15 hrs HW=687.37' TW=679.25' (Dynamic Tailwater)
${ }^{2}=$ Culvert (Passes 0.54 cfs of 1.11 cfs potential flow)
-5=Orifice/Grate (Controls 0.00 cfs)
$-7=$ Orifice/Grate (Orifice Controls 0.13 cfs @ 5.96 fps)
$\square_{9=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 0.41$ cfs @ 4.69 fps)

Summary for Pond RG65: Rain Gardens 65

Inflow Area =		4,070 sf,100.00\% Impervious, Inflow Depth = 5.94" for 25YearMass event	
Inflow		0.59 cfs @ 12.07 h	rs, Volume= 2,015 cf
Outflow		0.51 cfs @ 12.11 h	rs , Volume $=1,985 \mathrm{cf}$, Atten= 13\%, Lag= 2.5 min
Discarded =		0.01 cfs @ 12.11	rs, Volume $=187 \mathrm{cf}$
Primary = Routed to	Pond	0.51 cfs @ 12.11 RG-4.1 : Rain Gard	$\begin{aligned} & \text { Irs, Volume }= \\ & \text { en 4.1 } \end{aligned} \quad 1,798 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span=0.00-30.00 hrs, dt= 0.01 hrs			
Plug-Flow detention time $=44.3$ min calculated for 1,984 cf (98% of inflow) Center-of-Mass det. time $=34.5 \mathrm{~min}(778.3-743.8)$			
Volume	Invert	t Avail.Storage	Storage Description
\#1 6	674.75'	' 12 cf	12.0" Round Pipe Storage Inside \#2 L= 15.0'
\#2 6	674.75'	' 85 cf	$5.00^{\prime} \mathrm{W} \times 15.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 225 cf Overall - 12 cf Embedded = 213 cf x 40.0\% Voids
\#3 67	677.75'	' 9 cf	$5.00^{\prime} \mathrm{W}$ x $15.00^{\prime} \mathrm{L}$ x $0.25^{\prime} \mathrm{H}$ Mulch 19 cf Overall x 50.0\% Voids
\#4 6	678.00'	120 cf	5.00'W x 15.00'L x 1.00'H Ponding $\mathrm{Z}=2.0$
227 cf Total Available Storage			

Device	Routing	Invert	Outlet Devices
\#1	Discarded	674.75'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	676.75	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=676.75' / 675.15' S=0.1600 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	678.50'	6.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Device 2	676.75'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#5	Device 2	$677.25{ }^{\prime}$	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 12.11 hrs HW=678.24' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=0.51 cfs @ 12.11 hrs HW=678.24' TW=672.46' (Dynamic Tailwater)
2=Culvert (Passes 0.51 cfs of 1.05 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.12 cfs @ 5.72 fps)
— $5=$ Orifice/Grate (Orifice Controls 0.38 cfs @ 4.38 fps)

Summary for Pond RG8-11: Rain Gardens 8-11

Inflow Area $=$	31,000 sf, 65.00% Impervious,	Inflow Depth $=4.47 "$ for 25 YearMass event	
Inflow	$=$	$3.79 \mathrm{cfs} @$	12.07 hrs, Volume $=$
Outflow	$=$	$2.46 \mathrm{cfs} @$	12.16 hrs, Volume $=$
Primary	$=$	$2.46 \mathrm{cfs} @$	12.16 hrs , Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 679.18' @ 12.16 hrs Surf.Area= 3,793 sf Storage= 1,941 cf
Plug-Flow detention time $=18.1$ min calculated for 11,553 cf (100% of inflow)
Center-of-Mass det. time $=18.0 \mathrm{~min}$ (816.7-798.6)

Volume	Invert	Avail.Storage	Storage Description
\#1	675.75'	188 cf	12.0" Round Pipe Storage x 4 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	675.75'	1,365 cf	$5.00^{\prime} \mathrm{W} \times 60.00 ' \mathrm{~L} \times 3.00{ }^{\prime} \mathrm{H}$ Soil Media and Gravelx 4
			3,600 cf Overall - 188 cf Embedded $=3,412 \mathrm{cf} \mathrm{x} \mathrm{40.0} \mathrm{\%} \mathrm{Voids}$
\#3	678.75'	150 cf	$5.00^{\prime} \mathrm{W} \times 6.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch x 4 300 cf Overall $\times 50.0 \%$ Voids
\#4	679.00^{\prime}	1,741 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 4$
		3,444 cf Total Available Storage	
Device	Routing	Invert Outle	t Devices
\#1	Primary	675.75' $\begin{array}{ll}\text { 6.0" } \\ & \mathrm{L}=1 \\ & \text { Inlet }\end{array}$	Round Culvert X 4.00
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 675.75' / 675.65' S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	679.50' 6.	Horiz. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads

AP4
Prepared by Mcclure Engineeering
HydroCAD® 10.20-3c s/n 03362 © 2023 HydroCAD Software Solutions LLC
Type III 24-hr 25YearMass Rainfall=6.18"
Printed 6/28/2023
$\begin{array}{llll}\text { \#3 } & \text { Device 1 } & 675.75 & \begin{array}{l}\text { 2.0" Vert. Orifice/Grate X 4.00 } \\ \text { Limited to weir flow at low heads }\end{array} \\ \text { \#4 } & \text { Device 1 } & 678.00 & \begin{array}{l}\text { 4.0" Vert. Orifice/Grate X 4.00 } \\ \text { Limited to weir flow at low heads }\end{array}\end{array}$
Primary OutFlow Max=2.46 cfs @ 12.16 hrs HW=679.18' TW=672.68' (Dynamic Tailwater)
L- $_{1=\text { Culvert (Passes }} 2.46$ cfs of 6.75 cfs potential flow)
-2 $\mathbf{2 = O r i f i c e / G r a t e ~ (C o n t r o l s ~} 0.00 \mathrm{cfs}$)
-3=Orifice/Grate (Orifice Controls 0.77 cfs @ 8.81 fps)
4=Orifice/Grate (Orifice Controls 1.69 cfs @ 4.85 fps)

Summary for Link AP4-P: AP4 - To Wetland A (A32-A47)

Inflow Area = 299,623 sf, 31.52\% Impervious, Inflow Depth $=2.78$ " for 25YearMass event
Inflow $=13.06$ cfs @ 12.11 hrs , Volume $=\quad 69,466 \mathrm{cf}$
Primary $=13.06$ cfs @ 12.11 hrs , Volume $=\quad 69,466 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P4.1: To Wetland A (A32-A47)

Runoff $=12.27$ cfs @ 12.10 hrs , Volume=
Routed to Link AP4-P : AP4 - To Wetland A (A32-A47)

39,425 cf, Depth= 5.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P4.10: To RG4.1

Runoff $=1.47$ cfs @ 12.07 hrs, Volume=
4,459 cf, Depth= 5.56"
Routed to Pond RG-4.1 : Rain Garden 4.1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN D	Description		
	$\begin{array}{r} 9,500 \\ 125 \\ \hline \end{array}$	$\begin{array}{ll} 80 \\ 61 & > \end{array}$	>75\% Grass cover, Good, HSG D $>75 \%$ Grass cover, Good, HSG B		
	$\begin{aligned} & \hline 9,625 \\ & 9,625 \end{aligned}$	80	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P4.11: To RG4.2

Runoff = 1.36 cfs @ 12.11 hrs, Volume= 4,417 cf, Depth= 3.39" Routed to Pond RG-4.2 : Rain Garden 4.2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN Description				
	$\begin{array}{r} \hline 15,520 \\ 110 \\ \hline \end{array}$	$61>75 \%$ Grass cover, Good, HSG B $80>75 \%$ Grass cover, Good, HSG D				
	$\begin{aligned} & 15,630 \\ & 15,630 \end{aligned}$	61 Weighted Average 100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope Velocity Capacity$(\mathrm{ft} / \mathrm{ft}) \quad(\mathrm{ft} / \mathrm{sec}) \quad(\mathrm{cfs})$			Description	
5.7	50	0.1500	0.15		Sheet Flow, Woods: Light underbrush n= 0.400 Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	$P 2=3.00 "$
1.3	150	0.1500	1.94			
7.0	200	Total				

Summary for Subcatchment P4.12: Lots 65

Runoff $=\quad 0.75$ cfs @ 12.07 hrs, Volume= $\quad 2,608 \mathrm{cf}$, Depth= 7.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description		
	3,830	98	Paved roads w/curbs \& sewers, HSG C		
	240		Paved road	s w/curbs	sewers, HSG C
	4,070	98	Weighted Average		
	4,070		100.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry,

Summary for Subcatchment P4.13: Lots 6-8

Runoff $=3.88$ cfs @ 12.07 hrs, Volume= 12,007 cf, Depth= $6.1^{\prime \prime}$
Routed to Pond RG6-7 : Rain Gardens 6,7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description
23,175	85	$1 / 8$ acre lots, 65% imp, HSG B
270	90	$1 / 8$ acre lots, 65% imp, HSG C
23,445	85	Weighted Average
8,206		35.00% Pervious Area
15,239		65.00% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P4.2: Lots 57-60
Runoff $=3.46$ cfs @ 12.07 hrs, Volume= $\quad 10,723 \mathrm{cf}$, Depth= 6.15"
Routed to Pond RG57-59 : Rain Gardens 57,58,59
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P4.5: Lots 8-12

Runoff $=\quad 5.13$ cfs @ 12.07 hrs, Volume= $\quad 15,876$ cf, Depth= $6.15^{\prime \prime}$
Routed to Pond RG8-11 : Rain Gardens 8-11
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description
31,000	85	1/8 acre lots, 65% imp, HSG B
10,850		35.00% Pervious Area
20,150		65.00% Impervious Area

Tc Length Slope Velocity Capacity Description

(min)	(feet)	$(\mathrm{ft} / \mathrm{ft})$	$(\mathrm{ft} / \mathrm{sec})$	(cfs)
5.0				

Summary for Subcatchment P4.6: Lots 12-13

Runoff $=\quad 1.68$ cfs @ 12.09 hrs, Volume= 5,467 cf, Depth= 6.15"
Routed to Pond RG12 : Rain Garden 12
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf) CN Description						
10,675		85	1/8 acre lots, 65\% imp, HSG B			
	$\begin{aligned} & \hline 3,736 \\ & 6,939 \end{aligned}$		$\begin{aligned} & 5.00 \% \mathrm{Pe} \\ & 5.00 \% \mathrm{Imp} \end{aligned}$	vious Area ervious Ar		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.2	50	0.1200	0.13		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00{ }^{\prime \prime}$
0.2	30	0.1000	2.21		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$	

$6.4 \quad 80$ Total

Summary for Subcatchment P4.7: Lot 13

Runoff $=\quad 1.60$ cfs @ 12.07 hrs, Volume= $4,982 \mathrm{cf}$, Depth= 6.26"
Routed to Pond RG13 : Rain Garden 13
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description
7,505	85	$1 / 8$ acre lots, 65% imp, HSG B
2,040	90	$1 / 8$ acre lots, 65% imp, HSG C
9,545	86	Weighted Average
3,341		35.00% Pervious Area
6,204		65.00% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P4.8: Upgradient Lots 8-12

Runoff $=\quad 2.07$ cfs @ 12.23 hrs, Volume= $\quad 9,101 \mathrm{cf}$, Depth= $2.84{ }^{\prime \prime}$
Routed to Pond IT-8/12 : Interceptor Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P4.9: Lot 51

Runoff $=\quad 1.53$ cfs @ 12.07 hrs, Volume $=\quad 4,752 \mathrm{cf}$, Depth= $6.26{ }^{\prime \prime}$
Routed to Pond RG51 : Rain Garden 51
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description		
	1,910	$\begin{aligned} & \hline 90 \\ & 85 \end{aligned}$	1/8 acre lots, 65\% imp, HSG C		
	7,195		1/8 acre lots, 65% imp, HSG B		
	9,105	86	Weighted Average		
	3,187		35.00\% Pervious Area		
	5,918		65.00\% Imp	ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Pond IT-8/12: Interceptor Trench

Primary OutFlow Max=1.77 cfs @ 12.34 hrs HW=681.75' TW=0.00' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 1.77 cfs @ 5.08 fps)

Summary for Pond RG-4.1: Rain Garden 4.1

Discarded OutFlow Max=0.30 cfs @ 12.28 hrs HW=673.45' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.30 cfs)
Primary OutFlow Max=7.44 cfs @ $12.28 \mathrm{hrs} \mathrm{HW}=673.45^{\prime}$ TW=0.00' (Dynamic Tailwater)

- $2=$ Culvert (Passes 5.20 cfs of 5.92 cfs potential flow)
-4=Orifice/Grate (Orifice Controls 0.68 cfs @ 7.78 fps)
- $\mathbf{5}=$ Orifice/Grate (Orifice Controls 1.36 cfs @ 6.93 fps)

6=Orifice/Grate (Orifice Controls 3.16 cfs @ 4.02 fps)

- 3=Culvert (Passes 2.25 cfs of 11.90 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=668.75' TW=0.00' (Dynamic Tailwater)
8=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG-4.2: Rain Garden 4.2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 680.19' @ 12.43 hrs Surf.Area= 8,417 sf Storage= 6,767 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 57.4 min (856.8-799.5)

Discarded OutFlow Max=0.20 cfs @ 12.43 hrs HW=680.19' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.20 cfs)
Primary OutFlow Max=4.11 cfs @ 12.43 hrs HW=680.19' TW=0.00' (Dynamic Tailwater)
$\mathcal{L}_{2}=$ Culvert (Passes 4.11 cfs of 5.60 cfs potential flow)

- 3=Orifice/Grate (Orifice Controls 0.65 cfs @ 7.40 fps)
-4=Orifice/Grate (Orifice Controls 3.46 cfs @ 6.34 fps)
$\square_{5=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=675.75' TW=0.00' (Dynamic Tailwater)
$\Psi_{6=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~}^{0.00} \mathrm{cfs}$)

Summary for Pond RG12: Rain Garden 12

Inflow Are		10,675 sf, 65.00% Impervious, Inflow Depth $=6.15{ }^{\prime \prime}$ for 100YearMass event	
Inflow	$=1$.		
Outflow	1	1.33 cfs @ 12.15	$5,467 \mathrm{cf}$, Atten $=21 \%, L a g=3.8 \mathrm{~min}$
Primary		1.33 cfs @ 12.15 hrs, Volume=	5,467 cf
Routed to Pond RG-4.2 : Rain Garden 4.2			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$			
Peak Elev=690.36' @ 12.15 hrs Surf.Area= 953 sf Storage= 652 cf			
Plug-Flow detention time $=14.1$ min calculated for $5,465 \mathrm{cf}$ (100% of inflow)			
Center-of-Mass det. time= 14.1 min (805.3-791.1)			
Volume	Invert	t Avail.Storage	Storage Description
\#1	$686.25{ }^{\prime}$	' 47 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$686.25{ }^{\prime}$	' 269 cf	4.00^{\prime} W x $60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
\#3	$689.25{ }^{\prime}$	' 30 cf	$4.00^{\prime} \mathrm{W}$ x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	$689.50{ }^{\prime}$	' 373 cf	$4.00{ }^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
		720 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	686.25'	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=686.25' / 686.15' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	690.00'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$686.25{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	688.50'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=1.33 cfs @ 12.15 hrs HW=690.36' TW=679.77' (Dynamic Tailwater)
亡1=Culvert (Passes 1.33 cfs of 1.86 cfs potential flow)
——2=Orifice/Grate (Orifice Controls 0.57 cfs @ 2.90 fps)
-3=Orifice/Grate (Orifice Controls 0.21 cfs @ 9.66 fps)
-4=Orifice/Grate (Orifice Controls 0.55 cfs @ 6.27 fps)

Summary for Pond RG13: Rain Garden 13

Inflow Area =	9,545	65.00\% Impervious,	Depth $=6$	6.26" for 100YearMass event
Inflow	1.60 cfs @	12.07 hrs , Volume=	4,982 cf	
Outflow	1.28 cfs @	12.13 hrs , Volume=	4,982 cf,	Atten= 20\%, Lag= 3.4 min
Primary	1.28 cfs @	12.13 hrs , Volume=	4,982 cf	

Routed to Pond RG-4.2 : Rain Garden 4.2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Peak Elev= 698.81' @ 12.13 hrs Surf.Area= 880 sf Storage= 596 cf
Plug-Flow detention time $=13.5 \mathrm{~min}$ calculated for $4,982 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time= 13.4 min (800.6-787.1)

Volume	Invert	Avail.Storage	Storage Description
\#1	694.75'	31 cf 12.0" Round Pipe Storage Inside \#2L= 40.0'	
\#2	$694.75{ }^{\prime}$	275 cf	$6.00^{\prime} \mathrm{W} \times 40.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 720 cf Overall - 31 cf Embedded $=689$ cf $\times 40.0 \%$ Voids
\#3	$697.75{ }^{\prime}$	30 cf	$6.00^{\prime} \mathrm{W} \times 40.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	698.00'	337 cf	$6.00{ }^{\prime} \mathrm{W} \times 40.00{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
674 cf Total Available Storage			
Device	Routing	Invert Outle	t Devices
\#1	Primary	$\begin{array}{ll} \hline 694.75 & \begin{array}{l} 6.0 " \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ n=1 \\ n=0 \end{array} \\ \hline \end{array}$	Round Culvert .0' CPP, square edge headwall, $\mathrm{Ke}=0.500$ / Outlet Invert=694.75' / 694.65' S=0.0100 '/l' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	698.50 ' $\begin{aligned} & \text { 6.0" } \\ & \text { Limit }\end{aligned}$	Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#3	Device 1	694.75' 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	697.00' 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=1.28 cfs @ 12.13 hrs HW=698.81' TW=679.63' (Dynamic Tailwater)
$\left\llcorner_{1}=\right.$ Culvert (Passes 1.28 cfs of 1.85 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.53 cfs @ 2.69 fps)
-3=Orifice/Grate (Orifice Controls 0.21 cfs @ 9.60 fps)
—4=Orifice/Grate (Orifice Controls 0.54 cfs @ 6.18 fps)

Summary for Pond RG51: Rain Garden 51

Inflow Area =	9,105 sf, 65.00\% Impervious	th $=6.26 "$
Inflow	1.53 cfs @ 12.07 hrs, Volume=	4,752 cf
Outflow	1.20 cfs @ 12.13 hrs , Volume=	4,752 cf, Att
Primary	1.20 cfs @ 12.13 hrs , Volume=	4,752 cf
Routed to	RG-4.2 : Rain Garden 4.2	
Routing by Dy	-Ind method, Time Span= 0.00-3	$\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 69	@ 12.13 hrs Surf.Area= 920 sf	599 cf
Plug-Flow det Center-of-Mas	$\begin{aligned} & \text { time }=14.2 \mathrm{~min} \text { calculated for } 4,7 \\ & \text { time }=14.2 \mathrm{~min}(801.4-787.1) \end{aligned}$	0% of inflow)

Summary for Pond RG57-59: Rain Gardens 57,58,59

Device	Routing	Invert	Outlet Devices
\#1	Discarded	687.25'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$689.25{ }^{\prime}$	6.0" Round Culvert X 3.00
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=689.25' / 689.00' S=0.0250 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	691.00'	6.0" Horiz. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 2	689.25'	2.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
\#5	Device 2	689.75'	4.0" Vert. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads

Discarded OutFlow Max=0.15 cfs @ 12.14 hrs HW=691.12' (Free Discharge)

- $_{\mathbf{1}=\text { Exfiltration (Exfiltration Controls } 0.15 \mathrm{cfs} \text {) }}$

Primary OutFlow Max=2.45 cfs @ 12.14 hrs HW=691.12' TW=679.68' (Dynamic Tailwater)
-2=Culvert (Passes 2.45 cfs of 3.61 cfs potential flow)

- $3=$ Orifice/Grate (Weir Controls 0.65 cfs @ 1.14 fps)
-4=Orifice/Grate (Orifice Controls 0.42 cfs @ 6.44 fps)

Summary for Pond RG6-7: Rain Gardens 6,7

Inflow Area =	23,4	65.00\% Impervious,	Inflow Depth = 6.15" for 100YearMass event
Inflow	3.88 cfs @	12.07 hrs , Volume=	12,007 cf
Outflow	2.93 cfs @	12.14 hrs , Volume=	12,006 cf, Atten= 24\%, Lag= 3.8 min
Primary	2.93 cfs @	12.14 hrs , Volume=	12,006 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev=680.75' @ 12.14 hrs Surf.Area= 2,207 sf Storage= 1,450 cf
Plug-Flow detention time $=9.6 \mathrm{~min}$ calculated for $12,006 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=9.5 \mathrm{~min}$ (799.4-789.8)

Volume	Invert	Avail.Storage	Storage Description
\#1	676.75'	94 cf	12.0" Round Pipe Storage x 2 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	676.75'	682 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 2 1,800 cf Overall - 94 cf Embedded $=1,706$ cf $\times 40.0 \%$ Voids
\#3	679.75'	75 cf	5.00'W x 60.00'L x 0.25'H Mulch $\times 2$ 150 cf Overall $\times 50.0 \%$ Voids
\#4	680.00'	871 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
		1,722 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	676.75'	6.0" Round Culvert X 2.00
			$\mathrm{L}=10.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=676.75' / 676.65' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf

\#2	Device 1	680.50	6.0" Horiz. Orifice/Grate X 2.00 Limited to weir flow at low heads\quad C= 0.600
\#3	Device 1	676.75	3.0" Vert. Orifice/Grate X 2.00 Limited to weir flow at low heads\quad C= $=0.600$
\#4	Device 1	679.00^{\prime}	4.0" Vert. Orifice/Grate X 2.00 Limited to weir flow at low heads

Primary OutFlow Max=2.93 cfs @ 12.14 hrs HW=680.75' TW=673.15' (Dynamic Tailwater)
\&1=Culvert (Passes 2.93 cfs of 3.66 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.94 cfs @ 2.39 fps)

- $3=$ Orifice/Grate (Orifice Controls 0.93 cfs @ 9.47 fps)
-4=Orifice/Grate (Orifice Controls 1.06 cfs @ 6.05 fps)

Summary for Pond RG60-64: Rain Gardens 60-64

Device	Routing	Invert	Outlet Devices
\#1	Discarded	$683.75{ }^{\prime}$	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	685.75 '	6.0" Round Culvert X 4.00
			$\mathrm{L}=10.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=685.75' / 684.65' $\mathrm{S}=0.1100$ '/' Cc=0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Secondary	685.75'	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=685.75' / 684.65' S=0.1100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#4	Device 2	687.50'	6.0" Horiz. Orifice/Grate X 4.00 C= 0.600

Limited to weir flow at low heads
\#5 Device 3 687.50' 6.0" Horiz. Orifice/Grate C=0.600
Limited to weir flow at low heads
\#6 Device 2 685.75'
2.0" Vert. Orifice/Grate X $4.00 \mathrm{C}=0.600$

Limited to weir flow at low heads
\#7 Device 3 685.75' 2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#8 Device 2 686.25'
4.0" Vert. Orifice/Grate X 4.00 C= 0.600

Limited to weir flow at low heads
\#9 Device $3 \quad 686.25^{\prime}$
4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.25 cfs @ 12.13 hrs HW=687.63' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.25 cfs)
Primary OutFlow Max=3.34 cfs @ 12.13 hrs HW=687.63' TW=673.15' (Dynamic Tailwater)
$廿_{2}=$ Culvert (Passes 3.34 cfs of 4.82 cfs potential flow)
-4=Orifice/Grate (Weir Controls 0.93 cfs @ 1.17 fps)

- $\mathbf{6 = O r i f i c e} /$ Grate (Orifice Controls 0.56 cfs @ 6.45 fps)
—8=Orifice/Grate (Orifice Controls 1.85 cfs @ 5.30 fps)
Secondary OutFlow Max=0.84 cfs @ 12.13 hrs HW=687.63' TW=679.67' (Dynamic Tailwater)
${ }^{-3}=$ Culvert (Passes 0.84 cfs of 1.21 cfs potential flow)
-5=Orifice/Grate (Weir Controls 0.23 cfs @ 1.17 fps)
-7=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.45 fps)
-9=Orifice/Grate (Orifice Controls 0.46 cfs @ 5.30 fps)

Summary for Pond RG65: Rain Gardens 65

Device	Routing	Invert	Outlet Devices
\#1	Discarded	674.75'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$676.75{ }^{\prime}$	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=676.75' / 675.15' S=0.1600 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	678.50'	6.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Device 2	$676.75{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#5	Device 2	677.25'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 12.11 hrs HW=678.56' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=0.66 cfs @ 12.11 hrs HW=678.56' TW=673.03' (Dynamic Tailwater)
-2=Culvert (Passes 0.66 cfs of 1.18 cfs potential flow)

- $3=$ Orifice/Grate (Weir Controls 0.07 cfs @ 0.78 fps)
-4=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.32 fps)
— $5=$ Orifice/Grate (Orifice Controls 0.45 cfs @ 5.14 fps)

Summary for Pond RG8-11: Rain Gardens 8-11

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Peak Elev= 679.58' @ 12.16 hrs Surf.Area= 4,226 sf Storage= 2,580 cf
Plug-Flow detention time $=17.9$ min calculated for $15,875 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=17.8 \mathrm{~min}(807.6-789.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1	675.75'	188 cf	12.0" Round Pipe Storage x 4 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	675.75'	1,365 cf	5.00 'W x 60.00'L x 3.00 'H Soil Media and Gravelx 4
\#3	678.75'	150 cf	3,600 cf Overall - 188 cf Embedded $=3,412$ cf x 40.0\% Voids 5.00'W x 60.00'L x 0.25'H Mulch x 4 300 cf Overall x 50.0\% Voids
\#4	$679.00{ }^{\prime}$	$1,741 \mathrm{cf}$	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 4$
		3,444 cf Total Available Storage	
Device	Routing	Invert Outl	t Devices
\#1	Primary	675.75' $\begin{array}{ll} & \mathbf{6 . 0 "} \\ & \mathrm{L}=1 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert X 4.00
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 675.75' / 675.65' S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$679.50 ' \begin{aligned} & \text { 6.0" } \\ & \text { Limit }\end{aligned}$	Horiz. Orifice/Grate X 4.00 $\quad \mathrm{C}=0.600$
			ed to weir flow at low heads

```
#3 Device 1 675.75' 2.0" Vert. Orifice/Grate X 4.00 C= 0.600
    Limited to weir flow at low heads
#4 Device 1 678.00' 4.0" Vert. Orifice/Grate X 4.00 C= 0.600
    Limited to weir flow at low heads
```

Primary OutFlow Max=3.28 cfs @ $12.16 \mathrm{hrs} \mathrm{HW}=679.58^{\prime}$ TW=673.26' (Dynamic Tailwater)
-1=Culvert (Passes 3.28 cfs of 7.16 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.47 cfs @ 0.93 fps)
$-\mathbf{3 = O r i f i c e} /$ Grate (Orifice Controls 0.81 cfs @ 9.32 fps)
4=Orifice/Grate (Orifice Controls 2.00 cfs @ 5.73 fps)

Summary for Link AP4-P: AP4 - To Wetland A (A32-A47)

Inflow Area $=\quad 299,623$ sf, 31.52% Impervious, Inflow Depth $=4.24$ " for 100YearMass event Inflow $=20.28$ cfs @ 12.12 hrs , Volume $=105,921 \mathrm{cf}$
Primary $=20.28$ cfs @ 12.12 hrs , Volume $=105,921 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P5.1: To Wetland A (A23-A32) / VP A1

Runoff $=\quad 2.32$ cfs @ 12.14 hrs, Volume= 8,481 cf, Depth> 1.06"
Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Wescription			
37,235	70				
47,100	77	Woods, Good, HSG C Woods, Good, HSG D			
960	$80>$	>75\% Grass cover, Good, HSG D			
9,640	$74>$	>75\% Grass cover, Good, HSG C			
950	98	Unconnected roofs, HSG C			
95,885	74	Weighted Average			
94,935		99.01\% Pervious Area			
950		0.99\% Impervious Area			
950		100.00\% Unconnected			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
7.550	0.0750	0.11		Sheet Flow,	
				Woods: Light underbrush $\mathrm{n}=0.400$	$P 2=3.00 "$
1.8150	0.0750	-1.37		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.3200	Total				

Summary for Subcatchment P5.2: Upgradient Lots 6-8

Runoff $=\quad 0.06$ cfs @ 12.32 hrs, Volume $=$
518 cf, Depth> 0.29"
Routed to Pond IT-5/8 : Interceptor Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description
300	61	$>75 \%$ Grass cover, Good, HSG B
485	74	$>75 \%$ Grass cover, Good, HSG C
19,455	55	Woods, Good, HSG B
1,085	70	Woods, Good, HSG C
21,325	56	Weighted Average
21,325		100.00% Pervious Area

Tc	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
6.7	50	0.1000	0.12	Sheet Flow, Woods: Light underbrush n= 0.9	85
0.1000	1.58	Shallow Concentrated Flow,			
0.0	5	0.1000	2.21	Woodland Kv=5.0 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0	
7.6	140	Total			

Summary for Subcatchment P5.3: To RG5.1

Runoff $=\quad 1.31$ cfs @ 12.07 hrs, Volume= 3,957 cf, Depth> 2.20"
Routed to Pond TD1 : Trench Drain
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description
21,545	90	$1 / 8$ acre lots, 65% imp, HSG C
7,541	35.00% Pervious Area	
14,004	65.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P5.4: Lot 4

Runoff $=0.38$ cfs @ 12.07 hrs, Volume= $1,148 \mathrm{cf}$, Depth> 2.03"
Routed to Pond RG3 : Rain Garden 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN D	Description		
	6,030	901	1/8 acre lots, 65% imp, HSG C Woods, Good, HSG C		
	750	70 W			
	6,780	88 W	Weighted Average		
	2,861		42.19\% Pervious Area		
	3,920		57.81\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P5.5: Lot 69

Runoff $=\quad 0.10$ cfs @ 12.07 hrs, Volume= 342 cf, Depth> 3.01"

Routed to Pond RG69 : Rain Garden 69
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P5.7: Lot 70

Runoff $=0.33$ cfs @ 12.07 hrs, Volume= 994 cf, Depth> 2.20"
Routed to Pond RG70 : Rain Garden 70
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN	Description		
	6,820	$90 \quad 1$	1/8 acre lots, 65% imp, HSG C		
	2,387	35.00\% Pervious Area			
	4,433	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P5.9: Lot 2

Runoff $=\quad 0.47$ cfs @ 12.07 hrs, Volume= $\quad 1,418 \mathrm{cf}$, Depth> 2.20" Routed to Pond RG1 : Rain Garden 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN	Description		
	7,720	$90 \quad 1$	1/8 acre lots, 65\% imp, HSG C		
	$\begin{aligned} & 2,702 \\ & 5,018 \end{aligned}$	35.00\% Pervious Area 65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{tt})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P6.1: To Wetland B (off-site)

Runoff $=1.28$ cfs @ 12.14 hrs , Volume=
4,951 cf, Depth> 0.85"
Routed to Link AP6 : AP6 - To Wetland B (off-site)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P6.2: Upgradient Lots 1-5

Runoff $=0.28$ cfs @ 12.20 hrs, Volume= $1,599 \mathrm{cf}$, Depth> $0.46{ }^{\prime \prime}$ Routed to Pond IT-1/5 : Interceptor Trench

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	ea (sf)	CN Description					
$\begin{array}{r} \hline 2,130 \\ 24,405 \\ 15,310 \\ \hline \end{array}$			>75\% Grass cover, Good, HSG C Woods, Good, HSG B Woods, Good, HSG C				
$\begin{aligned} & 41,845 \\ & 41,845 \end{aligned}$			61	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)		Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description	
8.2	50	0.0600	0.10		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$P 2=3.00 "$	
2.7	160	0.0400	1.00		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$		

[^6]
Summary for Reach AC: Amphibian Crossing

Inflow Area $=\quad 22,605 \mathrm{sf}, \quad 0.00 \%$ Impervious, Inflow Depth >0.50 " for 2YearMass event Inflow $=0.19$ cfs @ 12.15 hrs , Volume= 936 cf Outflow = 0.19 cfs @ 12.17 hrs , Volume= 934 cf , Atten= 2\%, Lag= 1.3 min

Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Max. Velocity $=0.28 \mathrm{fps}$, Min. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=0.14 \mathrm{fps}$, Avg. Travel Time $=3.6 \mathrm{~min}$
Peak Storage= 20 cf @ 12.17 hrs
Average Depth at Peak Storage= 0.11' , Surface Width=6.00'
Bank-Full Depth $=3.50$ ' Flow Area $=21.0$ sf, Capacity $=35.65$ cfs
6.00' x 3.50' deep channel, n= 0.022 Earth, clean \& straight

Length=30.0' Slope= 0.0003 '/'
Inlet Invert= 675.83', Outlet Invert= 675.82'

Summary for Pond DMH1: Manhole

Inflow Area =	21,320 sf, 62.71\% Impervious,	Inflow Depth > 2.13" for 2YearMass event
Inflow =	0.48 cfs @ 12.25 hrs, Volume=	3,791 cf
Outflow	0.48 cfs @ 12.25 hrs , Volume=	$3,791 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	0.48 cfs @ 12.25 hrs, Volume=	3,791 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 673.20' @ 12.54 hrs
Flood Elev= 675.70'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	671.50	12.0" Round Culvert

\#1 Primary
12.0" Round Culvert
$\mathrm{L}=50.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert=671.50' / 671.00' S=0.0100 '/' Cc=0.900
$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79 \mathrm{sf}$
Primary OutFlow Max=0.32 cfs @ 12.25 hrs HW=673.06' TW=673.05' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 0.32 cfs @ 0.41 fps)

Summary for Pond DMH2: Manhole

Inflow Area =	13,600 sf, 61.42\% Impervious,	Inflow Depth > 2.10" for 2YearMass event
Inflow =	0.28 cfs @ 12.34 hrs, Volume=	2,385 cf
Outflow	0.28 cfs @ 12.34 hrs, Volume=	$2,385 \mathrm{cf}$, Atten $=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Primary	0.28 cfs @ 12.34 hrs , Volume=	2,385 cf
Routed to	DMH1 : Manhole	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 673.78' @ 12.45 hrs
Flood Elev=678.20'

Device	Routing	Invert	Outlet Devices
\#1	Primary	673.50'	12.0" Round Culvert
			$\mathrm{L}=80.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=673.50' / 671.60' S=0.0237 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.28 cfs @ 12.34 hrs HW=673.78' TW=673.13' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 0.28 cfs @ 2.31 fps)

Summary for Pond IT-1/5: Interceptor Trench

952 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	$677.00{ }^{\prime}$	8.0" Round Culvert
			$\mathrm{L}=220.0{ }^{\text {' }}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=677.00' / 668.00' S=0.0409 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.24 cfs @ 12.34 hrs HW=677.28' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 0.24 cfs @ 1.79 fps)

Summary for Pond IT-5/8: Interceptor Trench

Inflow Area =	21,325 sf,	0.00\% Impervious,	Inflow Depth > 0.29" for 2YearMass event
Inflow	0.06 cfs @	12.32 hrs , Volume=	518 cf
Outflow	0.06 cfs @	12.43 hrs , Volume=	510 cf, Atten $=9 \%, L a g=6.7 \mathrm{~min}$
Primary	0.06 cfs @	12.43 hrs , Volume=	510 cf
Routed to	5 : AP5-To	o Wetland A (A23-A32)	/ VP A1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=680.14' @ 12.43 hrs Surf.Area= 465 sf Storage= 31 cf
Plug-Flow detention time $=16.8$ min calculated for 510 cf (99% of inflow)
Center-of-Mass det. time $=9.5 \mathrm{~min}(954.2-944.6)$

Volume	Invert	Avail.Storage	Storage Description
\#1	680.00'	546 cf	3.00 'W x 155.00'L x 3.00'H Prismatoid
			1,395 cf Overall - 30 cf Embedded $=1,365$ cf $\times 40.0 \%$ Voids
\#2	680.00'	30 cf	6.0" Round Pipe Storage Inside \#1
			L= 155.0'
576 cf Total Available Storage			
Device	Routing	Invert Outl	Outlet Devices
\#1	Primary	680.00'	6.0" Round Culvert$L=110.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert=680.00' / 678.00' S=0.0182 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.06 cfs @ 12.43 hrs HW=680.14' TW=0.00' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 0.06 cfs @ 1.28 fps)

Summary for Pond RG-5.1: Rain Garden 5.1

Routing by Dyn-Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev= 673.19' @ 12.54 hrs Surf.Area= 3,821 sf Storage= 2,867 cf
Plug-Flow detention time $=142.6 \mathrm{~min}$ calculated for $6,160 \mathrm{cf}$ (80% of inflow)
Center-of-Mass det. time $=67.6 \min (886.1-818.5)$

Volume	Invert	Avail.Storage	Storage Description
\#1	669.75'	47 cf	12.0" Round Pipe Storage Inside \#3 $\mathrm{L}=60.0^{\prime}$
\#2	669.75'	1,123 cf	$24.00^{\prime} \mathrm{W} \times 39.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and GraveHImpervious 2,808 cf Overall $\times 40.0 \%$ Voids
\#3	669.75'	1,104 cf	$24.00^{\prime} \mathrm{W} \times 39.00^{\prime} \mathrm{L} \times 3.00$ 'H Soil Media and GraveHImpervious 2,808 cf Overall - 47 cf Embedded $=2,761$ cf $\times 40.0 \%$ Voids
\#4	672.75'	234 cf	$24.00^{\prime} \mathrm{W}$ x 78.00 ' $\mathrm{L} \times \mathbf{0 . 2 5}$ 'H Mulch 468 cf Overall $\times 50.0 \%$ Voids
\#5	673.00'	4,603 cf	$24.00^{\prime} \mathrm{W} \times 78.00$ 'L x 2.00'H Ponding $\mathrm{Z}=2.0$
7,111 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	$672.75{ }^{\prime} 2.41$	in/hr Exfiltration over Wetted area
\#2	Primary	671.75' $\begin{aligned} & \text { 12, } \\ & \text { L } \\ & \text { In } \\ & \\ & \mathrm{n}=\end{aligned}$	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Outlet Invert=671.75' / 668.00' $\mathrm{S}=0.0500$ '/' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
\#3	Device 2	$671.75{ }^{\prime} \quad 2$.	Vert. Orifice/Grate X 3.00 C=0.600
			ed to weir flow at low heads
\#4	Device 2	$674.25{ }^{\text {12 }}$	Horiz. Orifice/Grate X 3.00 C= 0.600
			ed to weir flow at low heads
\#5	Secondary	674.50'	Iong $\times 10.0$ ' breadth Broad-Crested Rectangular Weir
			(feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			(English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.22 cfs @ 12.54 hrs HW=673.19' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.22 cfs)
Primary OutFlow Max=0.37 cfs @ 12.54 hrs HW=673.19' TW=0.00' (Dynamic Tailwater)
\& 2 = Culvert (Passes 0.37 cfs of 3.66 cfs potential flow)
$-3=$ Orifice/Grate (Orifice Controls 0.37 cfs @ 5.60 fps)
4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=669.75' TW=0.00' (Dynamic Tailwater)
${ }^{\text {- }} \mathbf{5 =}$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG1: Rain Garden 1

Inflow Area =	7,720 sf	65.00\% Impervious,	Inflow Depth	2.20" for 2YearMass event
Inflow	0.47 cfs @	12.07 hrs , Volume=	1,418 cf	
Outflow	0.21 cfs @	12.24 hrs , Volume=	1,406 cf,	, Atten= 56\%, Lag= 10.0 min
Primary	0.21 cfs @	12.24 hrs , Volume=	1,406 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 674.22' @ 12.24 hrs Surf.Area= 300 sf Storage= 324 cf
Plug-Flow detention time= 37.2 min calculated for 1,406 cf (99% of inflow)
Center-of-Mass det. time= $32.2 \mathrm{~min}(837.1-805.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	671.75'	47 cf	12.0" Round Pipe Storage Inside \#2 $L=60.0^{\prime}$
\#2	671.75'	341 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel
\#3	674.75'	38 cf	$900 \mathrm{cf} \mathrm{Overall}-47 \mathrm{cf} \mathrm{Embedded}=853 \mathrm{cf} \times 40.0 \%$ Voids 5.00'W $\times 6000{ }^{\text {' }} \times$ 0.25'H Mulch
			75 cf Overall $\times 50.0 \%$ Voids
\#4	675.00'	435 cf	$5.00{ }^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
		861 cf	Total Available Storage
Device	Routing	Invert Outle	t Devices
\#1	Primary	671.75 '6.0"	Round Culvert
			0^{\prime} CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert=671.75' / 671.60' S=0.0250 '/' Cc=0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	675.50 '6.0"	Horiz. Orifice/Grate C=0.600
		Limit	ed to weir flow at low heads
\#3	Device 1	671.75' 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	674.00' 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
Primary OutFlow Max=0.21 cfs @ 12.24 hrs HW=674.22' TW=673.05' (Dynamic Tailwater) -1=Culvert (Passes 0.21 cfs of 1.02 cfs potential flow)			
-2=Orifice/Grate (Controls 0.00 cfs)			
-3=Orifice/Grate (Orifice Controls 0.11 cfs @ 5.20 fps)			
4=Orifice/Grate (Orifice Controls 0.09 cfs @ 1.58 fps)			

Summary for Pond RG2: Rain Garden 2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=675.40' @ 12.37 hrs Surf.Area= 440 sf Storage= 316 cf
Plug-Flow detention time $=28.9 \mathrm{~min}$ calculated for $1,243 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=24.3 \min (829.2-805.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	673.75'	43 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=55.0^{\prime}$
\#2	$673.75{ }^{\prime}$	511 cf	$8.00^{\prime} \mathrm{W} \times 55.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 1,320 cf Overall -43 cf Embedded $=1,277$ cf $\times 40.0 \%$ Voids
\#3	$676.75{ }^{\prime}$	55 cf	$8.00^{\prime} \mathrm{W} \times 55.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 110 cf Overall $\times 50.0 \%$ Voids
\#4	677.00'	571 cf	$8.00{ }^{\prime} \mathrm{W} \times 55.00^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$

Device	Routing	Invert	Outlet Devices
\#1	Primary	673.75'	6.0" Round Culvert
			$\mathrm{L}=6.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 673.75' / 673.60' S=0.0250 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	677.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	673.75'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	676.00'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.13 cfs @ 12.37 hrs HW=675.40' TW=673.78' (Dynamic Tailwater)
-1=Culvert (Passes 0.13 cfs of 1.12 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.13 cfs @ 6.03 fps)
-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond RG3: Rain Garden 3

Inflow Area =	6,780 sf,	57.81\% Impervious,	Inflow Depth > 2.03" for 2YearMass event
Inflow	0.38 cfs @	12.07 hrs , Volume=	1,148 cf
Outflow	0.15 cfs @	12.31 hrs, Volume=	1,142 cf, Atten= 62\%, Lag= 14.4 min
Primary	0.15 cfs @	12.31 hrs , Volume=	1,142 cf

Routed to Pond DMH2 : Manhole
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 677.75' @ 12.31 hrs Surf.Area= 280 sf Storage= 241 cf
Plug-Flow detention time= 19.2 min calculated for $1,141 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=16.0 \mathrm{~min}(829.1-813.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1	675.75'	27 cf 12.0" Round Pipe Storage Inside \#2$\text { L= } 35.0^{\prime}$	
\#2	675.75'	325 cf	$8.00^{\prime} \mathrm{W} \times 35.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 840 cf Overall -27 cf Embedded $=813$ cf x 40.0% Voids
\#3	678.75'	35 cf	$8.00^{\prime} \mathrm{W} \times 35.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 70 cf Overall $\times 50.0 \%$ Voids
\#4	679.00'	371 cf	$8.00{ }^{\prime} \mathrm{W} \times 35.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
759 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	675.75' $\begin{array}{ll}\text { 6.0" } \\ & \mathrm{L}=76 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert
			6.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert=675.75' / 673.60' S=0.0283 '/' Cc= 0.900
			.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$679.50{ }^{\prime} \quad \mathbf{6 . 0}{ }^{\prime \prime}$	Horiz. Orifice/Grate C=0.600
			ted to weir flow at low heads
\#3	Device 1	$675.75{ }^{\prime}$ 2.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	$678.00{ }^{\prime}$ 4.0"	Vert. Orifice/Grate $\quad \mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.15 cfs @ 12.31 hrs HW=677.75' TW=673.78' (Dynamic Tailwater)
\& $1=$ Culvert (Passes 0.15 cfs of 1.10 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.15 cfs @ 6.67 fps)
-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond RG69: Rain Garden 69

Inflow Area		1,365 sf,100.00\% Impervious, Inflow Depth > 3.01" for 2YearMass event	
Inflow		0.10 cfs @ 12.07 h	rs, Volume= 342 cf
Outflow	0	0.01 cfs @ 12.86 h	hrs, Volume $=\quad 342 \mathrm{cf}$, Atten= 91\%, Lag= 47.5 min
Discarded	0	0.01 cfs @ 11.57 h	hrs, Volume $=340 \mathrm{cf}$
Primary Routed	$\begin{array}{lr} = & 0 \\ 0 & \text { Link AP } \end{array}$	0.00 cfs @ 12.86 P5 : AP5 - To Wetla	$\begin{aligned} & \text { ars, Volume }= \\ & \text { and A (A23-A32) / VP A1 } \end{aligned}$
Routing by Peak Elev=	$\begin{aligned} & \text { Dyn-Stor- } \\ & 677.28^{\prime} \end{aligned}$	r-Ind method, Time @ 12.86 hrs Surf.	$\begin{aligned} & \text { Span }=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs} \\ & \text { Area= }=144 \mathrm{sf} \text { Storage }=122 \mathrm{cf} \end{aligned}$
Plug-Flow Center-of-M	etention ass det.	$\begin{aligned} & \text { time }=\text { (not calculate } \\ & \text { time }=107.5 \mathrm{~min}(8 \end{aligned}$	d: outflow precedes inflow) $362.2-754.8 \text {) }$
Volume	Invert	t Avail.Storage	Storage Description
\#1	$675.25{ }^{\prime}$		12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=12.0^{\prime}$
\#2	$675.25{ }^{\prime}$	' 169 cf	$12.00^{\prime} \mathrm{W} \times 12.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 432 cf Overall -9 cf Embedded $=423$ cf $\times 40.0 \%$ Voids
\#3	$678.25{ }^{\prime}$	' 18 cf	$12.00^{\prime} \mathrm{W}$ x $12.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 36 cf Overall $\times 50.0 \%$ Voids
\#4	678.50'	' 197 cf	12.00 ' $\mathrm{W} \times 12.00^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$

Device	Routing	Invert	Outlet Devices
\#1	Discarded	675.25'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$677.25{ }^{\prime}$	6.0" Round Culvert
			$\mathrm{L}=26.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=677.25' 677.00 ' S=0.0096 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#3	Device 2	679.00'	6.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Device 2	$677.25{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#5	Device 2	677.75'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 11.57 hrs HW=675.29' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=0.00 cfs @ 12.86 hrs HW=677.28' TW=0.00' (Dynamic Tailwater)
亡2=Culvert (Passes 0.00 cfs of 0.00 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.57 fps)
-5=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond RG70: Rain Garden 70

Discarded OutFlow Max=0.02 cfs @ 11.35 hrs HW=671.29' (Free Discharge)

Primary OutFlow Max=0.11 cfs @ 12.32 hrs HW=673.86' TW=0.00' (Dynamic Tailwater)
-2=Culvert (Passes 0.11 cfs of 0.57 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.08 cfs @ 3.51 fps)
5=Orifice/Grate (Orifice Controls 0.03 cfs @ 1.15 fps)

Summary for Pond TD1: Trench Drain

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	673.10^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L=2.0}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= 673.10 ' $/ 673.00$ ' $\mathrm{S}=0.0500 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=1.31 cfs @ 12.08 hrs HW=673.77' TW=672.45' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 1.31 cfs @ 3.32 fps)

Summary for Link AP5: AP5 - To Wetland A (A23-A32) / VP A1

Inflow Area =	,	w Depth > 0.97" for 2YearMass event
Inflow	2.86 cfs @ 12.15 hrs, Volume=	15,359 cf
Primary	2.86 cfs @ 12.15 hrs, Volume=	15,359 cf, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link AP6: AP6 - To Wetland B (off-site)

Inflow Area =	111,800 sf,	0.00\% Impervious,	Depth > 0.70"
Inflow	1.37 cfs @	12.16 hrs , Volume=	6,530 cf
Primary	1.37 cfs @	12.16 hrs, Volume $=$	$6,530 \mathrm{cf}$, Atten $=0 \%, \quad$ Lag $=0.0 \mathrm{mi}$

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P5.1: To Wetland A (A23-A32) / VP A1

Runoff $=\quad 5.51 \mathrm{cfs} @ 12.13 \mathrm{hrs}$, Volume= $\quad 19,172 \mathrm{cf}$, Depth> 2.40"
Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Wescription			
37,235	70				
47,100	77	Woods, Good, HSG C Woods, Good, HSG D			
960	$80>$	>75\% Grass cover, Good, HSG D			
9,640	$74>$	>75\% Grass cover, Good, HSG C			
950	98	Unconnected roofs, HSG C			
95,885	74	Weighted Average			
94,935		99.01\% Pervious Area			
950		0.99\% Impervious Area			
950		100.00\% Unconnected			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
7.550	0.0750	0.11		Sheet Flow,	
				Woods: Light underbrush $\mathrm{n}=0.400$	$P 2=3.00 "$
1.8150	0.0750	-1.37		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.3200	Total				

Summary for Subcatchment P5.2: Upgradient Lots 6-8

Runoff $=\quad 0.48$ cfs @ 12.13 hrs, Volume= $\quad 1,892 \mathrm{cf}$, Depth> 1.06"
Routed to Pond IT-5/8 : Interceptor Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Description
300	61	$>75 \%$ Grass cover, Good, HSG B
485	74	$>75 \%$ Grass cover, Good, HSG C
19,455	55	Woods, Good, HSG B
1,085	70	Woods, Good, HSG C
21,325	56	Weighted Average
21,325		100.00% Pervious Area

Tc	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
6.7	50	0.1000	0.12	Sheet Flow, Woods: Light underbrush n= 0.9	85
0.1000	1.58	Shallow Concentrated Flow,			
0.0	5	0.1000	2.21	Woodland Kv=5.0 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0	
7.6	140	Total			

Summary for Subcatchment P5.3: To RG5.1

Runoff = 2.27 cfs @ 12.07 hrs, Volume= $7,041 \mathrm{cf}$, Depth> 3.92"
Routed to Pond TD1 : Trench Drain
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Description
21,545	90	$1 / 8$ acre lots, 65% imp, HSG C
7,541	35.00% Pervious Area	
14,004		65.00% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)

Summary for Subcatchment P5.4: Lot 4

Runoff $=0.69$ cfs @ 12.07 hrs, Volume= $2,098 \mathrm{cf}$, Depth> 3.71"
Routed to Pond RG3 : Rain Garden 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN D	Description		
	6,030	901	1/8 acre lots, 65% imp, HSG C Woods, Good, HSG C		
	750	70 W			
	6,780	88 W	Weighted Average		
	2,861		42.19\% Pervious Area		
	3,920		57.81\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P5.5: Lot 69

Runoff $=\quad 0.16$ cfs @ 12.07 hrs, Volume= 547 cf , Depth> 4.81"
Routed to Pond RG69 : Rain Garden 69
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P5.7: Lot 70

Runoff $=\quad 0.57$ cfs @ 12.07 hrs, Volume= $1,770 \mathrm{cf}$, Depth> 3.92"
Routed to Pond RG70 : Rain Garden 70
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN D	Description		
	6,820	90	1/8 acre lots, 65% imp, HSG C		
	2,387	35.00\% Pervious Area			
	4,433	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P5.9: Lot 2

Runoff $=\quad 0.81 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= $\quad 2,523 \mathrm{cf}$, Depth> 3.92"
Routed to Pond RG1 : Rain Garden 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN	Description		
	7,720	$90 \quad 1$	1/8 acre lots, 65\% imp, HSG C		
	$\begin{aligned} & 2,702 \\ & 5,018 \end{aligned}$	35.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P6.1: To Wetland B (off-site)

Runoff $=3.43$ cfs @ 12.13 hrs , Volume= $12,062 \mathrm{cf}$, Depth> 2.07"
Routed to Link AP6 : AP6 - To Wetland B (off-site)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P6.2: Upgradient Lots 1-5

Runoff $=1.21$ cfs @ 12.17 hrs, Volume= Routed to Pond IT-1/5 : Interceptor Trench

4,864 cf, Depth> 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"
$\left.\begin{array}{rrll}\text { Area (sf) } & \text { CN } & \text { Description } \\ 2,130 & 74 & >75 \% \text { Grass cover, Good, HSG C } \\ 24,405 & 55 & \text { Woods, Good, HSG B } \\ 15,310 & 70 & \text { Woods, Good, HSG C }\end{array}\right]$

Summary for Reach AC: Amphibian Crossing

Inflow Area $=\quad 22,605$ sf, 0.00% Impervious, Inflow Depth > 1.47" for 10YearMass event Inflow $=0.76$ cfs @ 12.13 hrs , Volume= $2,762 \mathrm{cf}$ Outflow = $0.75 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume= $\quad 2,758 \mathrm{cf}$, Atten= 1%, Lag= 0.7 min

Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Max. Velocity $=0.48 \mathrm{fps}$, Min. Travel Time $=1.0 \mathrm{~min}$
Avg. Velocity $=0.16 \mathrm{fps}$, Avg. Travel Time $=3.0 \mathrm{~min}$
Peak Storage= 47 cf @ 12.14 hrs
Average Depth at Peak Storage= 0.26^{\prime}, Surface Width= 6.00'
Bank-Full Depth $=3.50$ ' Flow Area $=21.0$ sf, Capacity $=35.65$ cfs
6.00 ' x 3.50' deep channel, n= 0.022 Earth, clean \& straight

Length=30.0' Slope= 0.0003 '/'
Inlet Invert= 675.83', Outlet Invert= 675.82'

Summary for Pond DMH1: Manhole

Inflow Area =	21,320 sf, 62.71\% Impervious,	Inflow Depth > 3.84" for 10YearMass event
Inflow =	1.41 cfs @ 12.16 hrs, Volume=	6,815 cf
Outflow	1.41 cfs @ 12.16 hrs, Volume=	$6,815 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	1.41 cfs @ 12.16 hrs, Volume=	6,815 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 674.33' @ 12.45 hrs
Flood Elev= 675.70'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	671.50	12.0" Round Culvert

\#1 Primary
$\mathrm{L}=50.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert=671.50' / 671.00' S=0.0100 '/' Cc=0.900
$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79$ sf
Primary OutFlow Max=1.22 cfs @ 12.16 hrs HW=673.89' TW=673.77' (Dynamic Tailwater)
$\leftarrow_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{1.22}$ cfs @ 1.56 fps)

Summary for Pond DMH2: Manhole

Primary OutFlow Max=0.82 cfs @ 12.16 hrs HW=674.17' TW=673.90' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 0.82 cfs @ 2.08 fps)

Summary for Pond IT-1/5: Interceptor Trench

952 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	677.00'	8.0" Round Culvert
			$\mathrm{L}=220.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=677.00' / 668.00' S=0.0409 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=1.10 cfs @ 12.22 hrs HW=677.76' TW=0.00' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 1.10 cfs @ 3.14 fps)

Summary for Pond IT-5/8: Interceptor Trench

Summary for Pond RG-5.1: Rain Garden 5.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 674.30' @ 12.47 hrs Surf.Area= 4,303 sf Storage= 5,305 cf
Plug-Flow detention time $=129.3 \mathrm{~min}$ calculated for $12,248 \mathrm{cf}$ (88% of inflow)
Center-of-Mass det. time= $77.1 \mathrm{~min}(880.1$ - 803.0 $)$

Volume	Invert	Avail.Storage	Storage Description
\#1	669.75'	47 cf	12.0" Round Pipe Storage Inside \#3 $\mathrm{L}=60.0^{\prime}$
\#2	669.75'	1,123 cf	$24.00^{\prime} \mathrm{W} \times 39.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and GraveHImpervious 2,808 cf Overall $\times 40.0 \%$ Voids
\#3	669.75'	1,104 cf	$24.00^{\prime} \mathrm{W} \times 39.00^{\prime} \mathrm{L} \times 3.00$ 'H Soil Media and GraveHImpervious 2,808 cf Overall - 47 cf Embedded $=2,761$ cf $\times 40.0 \%$ Voids
\#4	672.75'	234 cf	$24.00^{\prime} \mathrm{W}$ x 78.00 ' $\mathrm{L} \times \mathbf{0 . 2 5}$ 'H Mulch 468 cf Overall $\times 50.0 \%$ Voids
\#5	673.00'	4,603 cf	$24.00^{\prime} \mathrm{W} \times 78.00$ 'L x 2.00'H Ponding $\mathrm{Z}=2.0$
7,111 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	$672.75{ }^{\prime} 2.41$	in/hr Exfiltration over Wetted area
\#2	Primary	671.75' $\begin{aligned} & \text { 12, } \\ & \text { L } \\ & \text { In } \\ & \\ & \mathrm{n}=\end{aligned}$	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Outlet Invert=671.75' / 668.00' $\mathrm{S}=0.0500$ '/' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
\#3	Device 2	$671.75{ }^{\prime} \quad 2$.	Vert. Orifice/Grate X 3.00 C=0.600
			ed to weir flow at low heads
\#4	Device 2	$674.25{ }^{\text {12 }}$	Horiz. Orifice/Grate X 3.00 C= 0.600
			ed to weir flow at low heads
\#5	Secondary	674.50'	Iong $\times 10.0$ ' breadth Broad-Crested Rectangular Weir
			(feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			(English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.25 cfs @ 12.47 hrs HW=674.30' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.25 cfs)
Primary OutFlow Max=0.87 cfs @ 12.47 hrs HW=674.30' TW=0.00' (Dynamic Tailwater)
$\downarrow_{2}=$ Culvert (Passes 0.87 cfs of 5.42 cfs potential flow)
$-3=$ Orifice/Grate (Orifice Controls 0.50 cfs @ 7.57 fps)
4=Orifice/Grate (Weir Controls 0.37 cfs @ 0.75 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=669.75' TW=0.00' (Dynamic Tailwater)

Summary for Pond RG1: Rain Garden 1

Inflow Area =	7,720	0\% Impervious,	Depth >	92" for 10YearMass event
Inflow	0.81 cfs @	12.07 hrs , Volume=	2,523 cf	
Outflow	0.53 cfs @	12.13 hrs , Volume=	2,508 cf,	Atten $=34 \%, L a g=3.8 \mathrm{~min}$
Primary	0.53 cfs @	12.13 hrs , Volume=	2,508 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 675.13' @ 12.15 hrs Surf.Area= 935 sf Storage= 468 cf
Plug-Flow detention time $=37.8 \mathrm{~min}$ calculated for $2,508 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=34.0 \mathrm{~min}(822.9-789.0)$

Volume	Invert	Avail.Storage	Storage Description	
\#1	671.75'	47 cf 12.0" Round Pipe Storage Inside \#2$\mathrm{L}=60.0^{\prime}$		
\#2	671.75'	341 cf	$5.00^{\prime} \mathrm{W} \times 60.0 \mathbf{l}^{\prime} \mathrm{L} \times 3.00$ 'H Soil Media and Grave	
			900 cf Overall - 47 cf Embedded $=853$ cf $\times 40.0 \%$ Voids	
\#3	674.75'	38 cf	$5.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 75 cf Overall $\times 50.0 \%$ Voids	
\#4	675.00'	435 cf	$5.00{ }^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$	
861 cf Total Available Storage				
Device	Routing	Invert Outlet Devices		
\#1	Primary	671.75' $\begin{array}{ll}\text { 6.0" } \\ & \mathrm{L}=6 . \\ & \text { Inlet } \\ & \mathrm{n}=0.0\end{array}$	Round Culvert	
			0^{\prime} CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			/ Outlet Invert= 671.75' / 671.60' S=0.0250 '/' Cc= 0.900	
			0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf	
\#2	Device 1	$675.50{ }^{\prime} \begin{aligned} & \text { 6.0" } \\ & \text { Limit }\end{aligned}$	Horiz. Orifice/Grate C= 0.600	
			ed to weir flow at low heads	
\#3	Device 1	$671.75{ }^{\prime}$ 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads	
\#4	Device 1	$674.00{ }^{\prime}$ 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads	
Primary OutFlow Max=0.53 cfs @ $12.13 \mathrm{hrs} \mathrm{HW}=675.12{ }^{\text {' }}$ TW=673.79' ${ }^{\text {c }}$ (Dynamic Tailwater)				
-2=Orifice/Grate (Controls 0.00 cfs)				
-3=Orifice/Grate (Orifice Controls 0.12 cfs @ 5.55 fps)				
-4=Orifice/Grate (Orifice Controls 0.41 cfs @ 4.71 fps)				

Summary for Pond RG2: Rain Garden 2

Device	Routing	Invert	Outlet Devices
\#1	Primary	673.75'	6.0" Round Culvert
			$\mathrm{L}=6.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 673.75' / 673.60' S=0.0250 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	677.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	673.75'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	676.00'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.39 cfs @ 12.18 hrs HW=676.46' TW=674.20' (Dynamic Tailwater)
L1=Culvert (Passes 0.39 cfs of 1.42 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $3=$ Orifice/Grate (Orifice Controls 0.16 cfs @ 7.24 fps)
—4=Orifice/Grate (Orifice Controls 0.23 cfs @ 2.61 fps)

Summary for Pond RG3: Rain Garden 3

Device	Routing	Invert	Outlet Devices
\#1	Primary	675.75'	6.0" Round Culvert
			$\mathrm{L}=76.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 675.75' / 673.60' S=0.0283 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	679.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$675.75{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	678.00'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.50 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=678.75^{\prime}$ TW=674.13' (Dynamic Tailwater)
L1=Culvert (Passes 0.50 cfs of 1.24 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.18 cfs @ 8.22 fps)
—4=Orifice/Grate (Orifice Controls 0.32 cfs @ 3.67 fps)

Summary for Pond RG69: Rain Garden 69

Inflow Area =	1,3	00.00\% Impervious,	Inflow Depth > 4.81" for 10YearMass event
Inflow	0.16 cfs @	12.07 hrs , Volume=	547 cf
Outflow	0.07 cfs @	12.22 hrs , Volume=	547 cf , Atten= 55\%, Lag= 9.1 min
Discarded	0.01 cfs @	10.81 hrs, Volume=	430 cf
Primary	0.06 cfs @	12.22 hrs , Volume=	117 cf

Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 677.71' @ 12.22 hrs Surf.Area= 144 sf Storage= 147 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 91.1 min (837.5-746.5)

Volume	Invert	Avail.Storage	Storage Description	
\#1	675.25'	9 cf $\begin{aligned} & \text { 12.0" Round Pipe Storage Inside \#2 } \\ & \mathrm{L=}=12.0^{\prime}\end{aligned}$		
\#2	$675.25{ }^{\prime}$	169 cf	$12.00^{\prime} \mathrm{W} \times 12.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 432 cf Overall -9 cf Embedded $=423$ cf $\times 40.0 \%$ Voids	
\#3	678.25'	18 cf	$12.00^{\prime} \mathrm{W}$ x $12.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 36 cf Overall $\times 50.0 \%$ Voids	
\#4	678.50'	197 cf	$12.00^{\prime} \mathrm{W} \times 12.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$	
394 cf Total Available Storage				
Device	Routing	Invert Outlet Devices		
\#1	Discarded	$\begin{array}{ll}675.25 ' & \mathbf{2 . 4 1 0} \\ 677.25 ' & 6.0 "\end{array}$	2.410 in/hr Exfiltration over Surface area	
\#2	Primary		L= 26.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert=677.25' / 677.00' S=0.0096 '/l' Cc=0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf		
\#3	Device 2	$679.00{ }^{\prime} \mathbf{6 . 0}$	Horiz. Orifice/Grate $\mathrm{C}=0.600$	
Limited to weir flow at low heads				
\#4	Device 2	$677.25{ }^{\prime}$ 2.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads	
\#5	Device 2	$677.75{ }^{\prime}$ 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads	

Discarded OutFlow Max=0.01 cfs @ 10.81 hrs HW=675.29' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=0.06 cfs @ 12.22 hrs HW=677.71' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Passes 0.06 cfs of 0.39 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Orifice Controls 0.06 cfs @ 2.95 fps)
-5=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond RG70: Rain Garden 70

Discarded OutFlow Max=0.03 cfs @ 12.06 hrs HW=674.28' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.42 cfs @ $12.13 \mathrm{hrs} \mathrm{HW}=674.46^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
$廿_{2}=$ Culvert (Passes 0.42 cfs of 0.88 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.11 cfs @ 5.11 fps)
$\mathbf{5}=$ Orifice/Grate (Orifice Controls 0.31 cfs @ 3.55 fps)

Summary for Pond TD1: Trench Drain

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	673.10^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L=2.0}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= 673.10 ' $/ 673.00$ ' $\mathrm{S}=0.0500 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=2.27 cfs @ 12.07 hrs HW=674.06' TW=673.41' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 2.27 cfs @ 3.76 fps)

Summary for Link AP5: AP5 - To Wetland A (A23-A32) / VP A1

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link AP6: AP6 - To Wetland B (off-site)

Inflow Area =	111,800 sf,	rvious,	"
Inflo	4.34 cfs @	12.15 hrs , Volume=	16,896 cf
Primary	4.34 cfs @	12.15 hrs , Volume=	16,896 cf, Atten $=0 \%, L a g=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P5.1: To Wetland A (A23-A32) / VP A1

Runoff $=7.69$ cfs @ 12.13 hrs, Volume= $\quad 26,613 \mathrm{cf}$, Depth> 3.33"
Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)	CN	Wescription			
37,235	70				
47,100	77	Woods, Good, HSG C Woods, Good, HSG D			
960	$80>$	>75\% Grass cover, Good, HSG D			
9,640	$74>$	>75\% Grass cover, Good, HSG C			
950	98	Unconnected roofs, HSG C			
95,885	74	Weighted Average			
94,935		99.01\% Pervious Area			
950		0.99\% Impervious Area			
950		100.00\% Unconnected			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
7.550	0.0750	0.11		Sheet Flow,	
				Woods: Light underbrush $\mathrm{n}=0.400$	$P 2=3.00 "$
1.8150	0.0750	-1.37		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.3200	Total				

Summary for Subcatchment P5.2: Upgradient Lots 6-8

Runoff $=\quad 0.84$ cfs @ 12.12 hrs, Volume= $3,021 \mathrm{cf}$, Depth> 1.70"
Routed to Pond IT-5/8 : Interceptor Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 25 YearMass Rainfall=6.18"

Area (sf)	CN	Description
300	61	$>75 \%$ Grass cover, Good, HSG B
485	74	$>75 \%$ Grass cover, Good, HSG C
19,455	55	Woods, Good, HSG B
1,085	70	Woods, Good, HSG C
21,325	56	Weighted Average
21,325		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
6.7	50	0.1000	0.12	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.00 "$ 0.9	85
0.1000	1.58	Shallow Concentrated Flow,			
0.0	5	0.1000	2.21	Woodland Kv=5.0 fps Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps	
7.6	140	Total			

Summary for Subcatchment P5.3: To RG5.1

Runoff $=\quad 2.87$ cfs @ 12.07 hrs, Volume= $9,009 \mathrm{cf}$, Depth> 5.02"
Routed to Pond TD1 : Trench Drain
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)	CN	Description
21,545	90	$1 / 8$ acre lots, 65% imp, HSG C
7,541	35.00% Pervious Area	
14,004	65.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P5.4: Lot 4

Runoff $=0.88$ cfs @ 12.07 hrs, Volume= $2,710 \mathrm{cf}$, Depth> 4.80"
Routed to Pond RG3 : Rain Garden 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN D	Description		
	6,030	901	1/8 acre lots, 65% imp, HSG C Woods, Good, HSG C		
	750	70 W			
	6,780	88 W	Weighted Average		
	2,861		42.19\% Pervious Area		
	3,920		57.81\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P5.5: Lot 69

Runoff $=\quad 0.20 \mathrm{cfs} @ 12.07$ hrs, Volume= 675 cf , Depth> 5.94"
Routed to Pond RG69 : Rain Garden 69
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment P5.7: Lot 70

Runoff $=\quad 0.72$ cfs @ 12.07 hrs, Volume= 2,264 cf, Depth> 5.02"
Routed to Pond RG70 : Rain Garden 70
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN	Description		
	6,820	$90 \quad 1$	1/8 acre lots, 65% imp, HSG C		
	2,387	35.00\% Pervious Area			
	4,433	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P5.9: Lot 2

Runoff $=\quad 1.03 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= $\quad 3,228 \mathrm{cf}$, Depth> 5.02" Routed to Pond RG1 : Rain Garden 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25 YearMass Rainfall $=6.18$ "

	Area (sf)	CN	Description		
	7,720	$90 \quad 1$	1/8 acre lots, 65\% imp, HSG C		
	$\begin{aligned} & 2,702 \\ & 5,018 \end{aligned}$	35.00\% Pervious Area 65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{tt})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P6.1: To Wetland B (off-site)

Runoff $=4.95$ cfs @ 12.13 hrs, Volume=
Routed to Link AP6 : AP6 - To Wetland B (off-site)

17,156 cf, Depth> 2.94"
17.156

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN Description				
	$\begin{array}{r} 6,465 \\ 1,875 \\ 61,615 \end{array}$	74 $>$ 55 70	>75\% Grass cover, Good, HSG C Woods, Good, HSG B Woods, Good, HSG C			
	$\begin{aligned} & \hline 69,955 \\ & 69,955 \end{aligned}$	70	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
5.5	50	0.1600	0.15		Sheet Flow, Woods: Light underbrush $n=0.400$	P2=3.00"
0.3	45	0.2200	2.35		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
3.4	290	0.0800	1.41		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.2	385	Total				

Summary for Subcatchment P6.2: Upgradient Lots 1-5

Runoff $=1.94$ cfs @ 12.16 hrs, Volume=
7,396 cf, Depth> 2.12" Routed to Pond IT-1/5 : Interceptor Trench

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Reach AC: Amphibian Crossing

Inflow Area $=\quad 22,605 \mathrm{sf}, \quad 0.00 \%$ Impervious, Inflow Depth >2.21 " for 25 YearMass event Inflow = 1.19 cfs @ 12.13 hrs , Volume= $4,163 \mathrm{cf}$ Outflow = 1.19 cfs @ 12.14 hrs , Volume= $4,158 \mathrm{cf}$, Atten= 0%, Lag= 0.6 min

Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Max. Velocity $=0.57 \mathrm{fps}$, Min. Travel Time $=0.9 \mathrm{~min}$
Avg. Velocity $=0.18 \mathrm{fps}$, Avg. Travel Time $=2.8 \mathrm{~min}$
Peak Storage= 63 cf @ 12.14 hrs
Average Depth at Peak Storage= 0.35^{\prime}, Surface Width= 6.00'
Bank-Full Depth $=3.50^{\prime}$ Flow Area $=21.0$ sf, Capacity $=35.65$ cfs
6.00 ' x 3.50' deep channel, n= 0.022 Earth, clean \& straight

Length=30.0' Slope= 0.0003 '/'
Inlet Invert= 675.83', Outlet Invert= 675.82'

Summary for Pond DMH1: Manhole

Inflow Area =	21,320 sf, 62.71\% Impervious,	Inflow Depth > 4.92" for 25YearMass event
Inflow	1.69 cfs @ 12.13 hrs , Volume=	8,750 cf
Outflow	1.69 cfs @ 12.13 hrs , Volume=	$8,750 \mathrm{cf}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Primary	1.69 cfs @ 12.13 hrs , Volume=	8,750 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 674.58' @ 12.25 hrs
Flood Elev= 675.70'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	671.50^{\prime}	$12.0^{\prime \prime}$ Round Culvert

$\mathrm{L}=50.0^{\prime} \quad \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert=671.50' / 671.00' S=0.0100 '//' Cc=0.900
$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79$ sf
Primary OutFlow Max=1.49 cfs @ 12.13 hrs HW=674.28' TW=674.11' (Dynamic Tailwater)
$\leftarrow_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{1.49}$ cfs @ 1.90 fps)

Summary for Pond DMH2: Manhole

Primary OutFlow Max=0.97 cfs @ 12.16 hrs HW=674.51' TW=674.39' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 0.97 cfs @ 1.52 fps)

Summary for Pond IT-1/5: Interceptor Trench

952 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	$677.00{ }^{\prime}$	8.0" Round Culvert
			$\mathrm{L}=220.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=677.00' / 668.00' S=0.0409 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=1.68 cfs @ 12.23 hrs HW=678.33' TW=0.00' (Dynamic Tailwater)
$廿_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{1.68} \mathrm{cfs} @ 4.81 \mathrm{fps}$)

Summary for Pond IT-5/8: Interceptor Trench

Summary for Pond RG-5.1: Rain Garden 5.1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=674.40' @ 12.28 hrs Surf.Area= 4,348 sf Storage= 5,553 cf
Plug-Flow detention time $=113.6 \mathrm{~min}$ calculated for $16,146 \mathrm{cf}$ (91% of inflow)
Center-of-Mass det. time= 69.4 $\min (865.1-795.7$)

Volume	Invert	Avail.Storage	Storage Description
\#1	669.75'	$\begin{array}{ll}47 \text { cf } & \begin{array}{l}\text { 12.0" Round Pipe Storage Inside \#3 } \\ \mathrm{L}=60.0^{\prime}\end{array}\end{array}$	
\#2	669.75'	1,123 cf	$24.00^{\prime} \mathrm{W} \times 39.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Graverlmpervious 2,808 cf Overall $\times 40.0 \%$ Voids
\#3	669.75	1,104 cf	$24.00^{\prime} \mathrm{W} \times 39.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Grave Hmpervious 2,808 cf Overall - 47 cf Embedded $=2,761$ cf $\times 40.0 \%$ Voids
\#4	672.75'	234 cf	$24.00^{\prime} \mathrm{W} \times 78.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 468 cf Overall $\times 50.0 \%$ Voids
\#5	673.00^{\prime}	4,603 cf	$24.00^{\prime} \mathrm{W} \times 78.00^{\prime} \mathrm{L} \times 2.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
7,111 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded Primary	$\begin{array}{ll} \hline 672.75 ' & \mathbf{2 . 4 1} \\ 671.75 ' & \mathbf{1 2 . 0} \end{array}$	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Wetted area
\#2			' Round Culvert
			5.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert=671.75' / 668.00' S=0.0500 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
\#3	Device 2	$671.75{ }^{\prime} \quad 2.0$	Vert. Orifice/Grate X 3.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 2	$674.25 \quad 12$	Horiz. Orifice/Grate X 3.00 C= 0.600
			ed to weir flow at low heads
\#5	Secondary	674.50' $\begin{array}{cc}\text { 10 } \\ & \mathrm{He} \\ & \mathrm{Co}\end{array}$	long x 10.0' breadth Broad-Crested Rectangular Weir
			$\begin{array}{llllllll}\text { (feet) } & 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 \\ 1.60\end{array}$
			(English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.25 cfs @ 12.28 hrs HW=674.40' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.25 cfs)
Primary OutFlow Max=2.36 cfs @ 12.28 hrs HW=674.40' TW=0.00' (Dynamic Tailwater)
$\downarrow_{2}=$ Culvert (Passes 2.36 cfs of 5.55 cfs potential flow)
$-3=$ Orifice/Grate (Orifice Controls 0.51 cfs @ 7.72 fps)
4=Orifice/Grate (Weir Controls 1.85 cfs @ 1.28 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=669.75' TW=0.00' (Dynamic Tailwater)
${ }^{4} \mathbf{5}_{5}$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG1: Rain Garden 1

Routed to Pond DMH1 : Manhole
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=675.45' @ 12.20 hrs Surf.Area= 1,021 sf Storage= 589 cf
Plug-Flow detention time $=35.8 \mathrm{~min}$ calculated for $3,211 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=32.3 \mathrm{~min}$ (814.6-782.3)

Volume	Invert	Avail.Storage	Storage Description
\#1	671.75'	47 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=60 . \mathrm{O}^{\prime}$
\#2	671.75'	341 cf	5.00 'W x $60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel
			900 cf Overall - 47 cf Embedded $=853$ cf $\times 40.0 \%$ Voids
\#3	674.75	38 cf	5.00'W x 60.00'L x 0.25'H Mulch 75 cf Overall x 50.0% Voids
\#4	675.00'	435 cf	$5.00{ }^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
		861 cf	Total Available Storage
Device	Routing	Invert Outle	t Devices
\#1	Primary	671.75 ' 6.0"	Round Culvert
			0^{\prime} CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 671.75' / 671.60' S=0.0250 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	675.50 ' 6.0"	Horiz. Orifice/Grate C=0.600
		Limit	ed to weir flow at low heads
\#3	Device 1	671.75 ' 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	674.00 ' 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
$\begin{aligned} & \text { Primary OutFlow Max=0.57 cfs @ } 12.12 \mathrm{hrs} \mathrm{HW}=675.37 \text { ' TW=674.20' } \\ & \text { 1=Culvert (Passes } 0.57 \mathrm{cfs} \text { of } 1.02 \mathrm{cfs} \text { potential flow) } \\ & \text { - } 2=\text { Orifice/Grate (Controls } 0.00 \mathrm{cfs} \text {) } \\ & \text { - } 3=\text { Orifice/Grate (Orifice Controls } 0.11 \mathrm{cfs} @ 5.20 \mathrm{fps} \text {) } \\ & 4=\text { Orifice/Grate (Orifice Controls } 0.45 \mathrm{cfs} @ 5.20 \mathrm{fps} \text {) } \end{aligned}$			

Summary for Pond RG2: Rain Garden 2

Device	Routing	Invert	Outlet Devices
\#1	Primary	673.75'	6.0" Round Culvert
			$\mathrm{L}=6.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 673.75' / 673.60' S=0.0250 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	677.50'	6.0" Horiz. Orifice/Grate C=0.600
			Limited to weir flow at low heads
\#3	Device 1	673.75'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	676.00	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.53 cfs @ 12.16 hrs HW=676.93' TW=674.53' (Dynamic Tailwater)
L1=Culvert (Passes 0.53 cfs of 1.46 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.16 cfs @ 7.46 fps)
—4=Orifice/Grate (Orifice Controls 0.37 cfs @ 4.22 fps)

Summary for Pond RG3: Rain Garden 3

Device	Routing	Invert	Outlet Devices
\#1	Primary	675.75'	6.0" Round Culvert
			$\mathrm{L}=76.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 675.75' / 673.60' S=0.0283 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	679.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$675.75{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	678.00'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.60 cfs @ 12.15 hrs HW=679.13' TW=674.48' (Dynamic Tailwater)
\& $1=$ Culvert (Passes 0.60 cfs of 1.24 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.19 cfs @ 8.74 fps)
—4=Orifice/Grate (Orifice Controls 0.41 cfs @ 4.72 fps)

Summary for Pond RG69: Rain Garden 69

Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 677.93' @ 12.13 hrs Surf.Area= 144 sf Storage= 160 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=84.7 \mathrm{~min}(828.1-743.3)$

Volume	Invert	Avail.Storage	Storage Description	
\#1	675.25'	9 cf $\begin{aligned} & \text { 12.0" Round Pipe Storage Inside \#2 } \\ & \mathrm{L=}=12.0^{\prime}\end{aligned}$		
\#2	$675.25{ }^{\prime}$	169 cf	$12.00^{\prime} \mathrm{W} \times 12.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 432 cf Overall -9 cf Embedded $=423$ cf $\times 40.0 \%$ Voids	
\#3	678.25'	18 cf	$12.00^{\prime} \mathrm{W}$ x $12.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 36 cf Overall $\times 50.0 \%$ Voids	
\#4	678.50'	197 cf	$12.00^{\prime} \mathrm{W} \times 12.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$	
394 cf Total Available Storage				
Device	Routing	Invert Outlet Devices		
\#1	Discarded	$\begin{array}{ll}675.25 ' & \mathbf{2 . 4 1 0} \\ 677.25 ' & 6.0 "\end{array}$	2.410 in/hr Exfiltration over Surface area	
\#2	Primary		L= 26.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert=677.25' / 677.00' S=0.0096 '/l' Cc=0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf		
\#3	Device 2	$679.00{ }^{\prime} \mathbf{6 . 0}$	Horiz. Orifice/Grate $\mathrm{C}=0.600$	
Limited to weir flow at low heads				
\#4	Device 2	$677.25{ }^{\prime}$ 2.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads	
\#5	Device 2	$677.75{ }^{\prime}$ 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads	

Discarded OutFlow Max=0.01 cfs @ 10.27 hrs HW=675.29' (Free Discharge)
L- $_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.01 ~ c f s) ~}$
Primary OutFlow Max=0.15 cfs @ 12.13 hrs HW=677.93' TW=0.00' (Dynamic Tailwater)
亡-2=Culvert (Passes 0.15 cfs of 0.55 cfs potential flow)
${ }^{2}-3=$ Orifice/Grate (Controls 0.00 cfs)
4=Orifice/Grate (Orifice Controls 0.08 cfs @ 3.71 fps)
-5=Orifice/Grate (Orifice Controls 0.07 cfs @ 1.44 fps)

Summary for Pond RG70: Rain Garden 70

Discarded OutFlow Max=0.05 cfs @ 12.14 hrs HW=674.65' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=0.48 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=674.65^{\prime} \mathrm{TW}=0.00^{\prime} \quad$ (Dynamic Tailwater)
廿2=Culvert (Passes 0.48 cfs of 0.96 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.12 cfs @ 5.52 fps)
$-5=$ Orifice/Grate (Orifice Controls 0.36 cfs @ 4.12 fps)

Summary for Pond TD1: Trench Drain

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	673.10^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L=2.0}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= 673.10 ' $/ 673.00$ ' $\mathrm{S}=0.0500 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79 \mathrm{sf}$	

Primary OutFlow Max=2.69 cfs @ 12.07 hrs HW=674.25' TW=673.75' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 2.69 cfs @ 3.42 fps)

Summary for Link AP5: AP5 - To Wetland A (A23-A32) / VP A1

Inflow Area $=$	$189,460 \mathrm{sf}$,	17.53%	Impervious,	Inflow Depth $>$
Inflow	$=$	$10.66 \mathrm{cfs} @$	12.14 hrs, Volume $=$	$48,019 \mathrm{cf}$
Primary	$=$	$10.66 \mathrm{cfs} @$	12.14 hrs , Volume $=$	$48,019 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link AP6: AP6 - To Wetland B (off-site)

Inflow Area =	111,800 sf,	0.00\% Impervious,	-
Inflow	6.35 cfs @	12.14 hrs , Volume=	24,517 cf
Primary	6.35 cfs @	12.14 hrs , Volume=	$24,517 \mathrm{cf}$, Atten $=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P5.1: To Wetland A (A23-A32) / VP A1

Runoff = 11.19 cfs @ 12.13 hrs, Volume= $38,791 \mathrm{cf}$, Depth> 4.85"
Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Wescription			
37,235	70				
47,100	77	Woods, Good, HSG C Woods, Good, HSG D			
960	$80>$	>75\% Grass cover, Good, HSG D			
9,640	$74>$	>75\% Grass cover, Good, HSG C			
950	98	Unconnected roofs, HSG C			
95,885	74	Weighted Average			
94,935		99.01\% Pervious Area			
950		0.99\% Impervious Area			
950		100.00\% Unconnected			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
7.550	0.0750	0.11		Sheet Flow,	
				Woods: Light underbrush $\mathrm{n}=0.400$	$P 2=3.00 "$
1.8150	0.0750	-1.37		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.3200	Total				

Summary for Subcatchment P5.2: Upgradient Lots 6-8

Runoff $=\quad 1.49$ cfs @ 12.12 hrs, Volume= $\quad 5,045 \mathrm{cf}$, Depth> 2.84"
Routed to Pond IT-5/8 : Interceptor Trench
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description
300	61	$>75 \%$ Grass cover, Good, HSG B
485	74	$>75 \%$ Grass cover, Good, HSG C
19,455	55	Woods, Good, HSG B
1,085	70	Woods, Good, HSG C
21,325	56	Weighted Average
21,325		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
6.7	50	0.1000	0.12	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.00 "$ 0.9	85
0.1000	1.58	Shallow Concentrated Flow,			
0.0	5	0.1000	2.21	Woodland Kv=5.0 fps Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps	
7.6	140	Total			

Summary for Subcatchment P5.3: To RG5.1

Runoff = 3.79 cfs @ 12.07 hrs, Volume= 12,086 cf, Depth> 6.73"
Routed to Pond TD1: Trench Drain
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description
21,545	90	$1 / 8$ acre lots, 65% imp, HSG C
7,541	35.00% Pervious Area	
14,004	65.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P5.4: Lot 4

Runoff $=1.17$ cfs @ 12.07 hrs, Volume= $3,670 \mathrm{cf}$, Depth> 6.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN D	Description		
	6,030	901	1/8 acre lots, 65% imp, HSG C Woods, Good, HSG C		
	750	70 W			
	6,780	88 W	Weighted Average		
	2,861		42.19\% Pervious Area		
	3,920		57.81\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P5.5: Lot 69

Runoff $=\quad 0.25$ cfs @ 12.07 hrs, Volume= 874 cf, Depth> 7.69"

Routed to Pond RG69 : Rain Garden 69
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P5.7: Lot 70

Runoff $=\quad 0.95$ cfs @ 12.07 hrs, Volume= $3,038 \mathrm{cf}$, Depth> 6.73"
Routed to Pond RG70 : Rain Garden 70
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)		CN Description			
	5,415	90	8 acre lot	65\% imp	HSG C
$\begin{aligned} & 1,895 \\ & 3,520 \end{aligned}$		35.00% Pervious Area 65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Runoff $=1.20 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= $\quad 3,826 \mathrm{cf}$, Depth> 6.73"
Routed to Pond RG2 : Rain Garden 2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN Description			
	6,820	$90 \quad 1$	1/8 acre lots	, 65\% imp	HSG C
	2,387	35.00\% Pervious Area			
	4,433	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
5.0					Direct Entry

Summary for Subcatchment P5.9: Lot 2

Runoff $=\quad 1.36 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= $\quad 4,331 \mathrm{cf}$, Depth> 6.73"

Routed to Pond RG1 : Rain Garden 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description		
	7,720	$90 \quad 1$	1/8 acre lots, 65\% imp, HSG C		
	$\begin{aligned} & 2,702 \\ & 5,018 \end{aligned}$	35.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P6.1: To Wetland B (off-site)

Runoff $=\quad 7.44$ cfs @ 12.13 hrs, Volume= $\quad 25,628 \mathrm{cf}$, Depth> 4.40"
Routed to Link AP6 : AP6 - To Wetland B (off-site)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P6.2: Upgradient Lots 1-5

Runoff $=3.19$ cfs @ 12.15 hrs, Volume= 11,797 cf, Depth> 3.38" Routed to Pond IT-1/5 : Interceptor Trench

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	ea (sf)	CN	Description			
	2,130	74	>75\% Grass cover, Good, HSG C Woods, Good, HSG B			
	24,405					
	15,310	70	Woods, Good, HSG C			
	$\begin{aligned} & 41,845 \\ & 41,845 \end{aligned}$	61	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
8.2	50	0.0600	0.10		Sheet Flow, Woods: Light underbrush $n=0.400$	P2=3.00"
2.7	160	0.0400	1.00		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Summary for Reach AC: Amphibian Crossing

Inflow Area $=\quad 22,605$ sf, 0.00% Impervious, Inflow Depth > 3.50" for 100YearMass event Inflow = 1.94 cfs @ 12.12 hrs , Volume= $6,585 \mathrm{cf}$ Outflow = 1.93 cfs @ 12.13 hrs , Volume= $6,579 \mathrm{cf}$, Atten= 0%, Lag= 0.5 min

Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Max. Velocity $=0.68 \mathrm{fps}$, Min. Travel Time $=0.7 \mathrm{~min}$
Avg. Velocity $=0.21 \mathrm{fps}$, Avg. Travel Time $=2.4 \mathrm{~min}$
Peak Storage $=85$ cf @ 12.13 hrs
Average Depth at Peak Storage= 0.47' , Surface Width= 6.00'
Bank-Full Depth $=3.50^{\prime}$ Flow Area $=21.0$ sf, Capacity $=35.65$ cfs
6.00 ' x 3.50' deep channel, n= 0.022 Earth, clean \& straight

Length=30.0' Slope= 0.0003 '/'
Inlet Invert= 675.83', Outlet Invert= 675.82'

Summary for Pond DMH1: Manhole

Primary OutFlow Max=2.21 cfs @ 12.16 hrs HW=674.88' TW=674.51' (Dynamic Tailwater)
——1=Culvert (Outlet Controls 2.21 cfs @ 2.81 fps)

Summary for Pond DMH2: Manhole

Primary OutFlow Max=1.33 cfs @ 12.16 hrs HW=675.06' TW=674.88' (Dynamic Tailwater)
_-1=Culvert (Outlet Controls 1.33 cfs @ 1.69 fps)

Summary for Pond IT-1/5: Interceptor Trench

952 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	677.00'	8.0" Round Culvert
			$\mathrm{L}=220.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=677.00' / 668.00' S=0.0409 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=2.54 cfs @ 12.25 hrs HW=679.67' TW=0.00' (Dynamic Tailwater)
亡-1=Culvert (Barrel Controls 2.54 cfs @ 7.28 fps)

Summary for Pond IT-5/8: Interceptor Trench

Summary for Pond RG-5.1: Rain Garden 5.1

Routing by Dyn-Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev=674.51' @ 12.15 hrs Surf.Area= 4,395 sf Storage= 5,808 cf
Plug-Flow detention time $=97.4$ min calculated for $22,238 \mathrm{cf}$ (93% of inflow)
Center-of-Mass det. time= 61.7 min (849.3-787.6)

Volume	Invert	Avail.Storage	Storage Description
\#1	669.75'	47 cf	12.0" Round Pipe Storage Inside \#3 $\mathrm{L}=60.0^{\prime}$
\#2	669.75'	1,123 cf	$24.00^{\prime} \mathrm{W} \times 39.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and GraveHImpervious 2,808 cf Overall $\times 40.0 \%$ Voids
\#3	669.75'	1,104 cf	$24.00^{\prime} \mathrm{W} \times 39.00^{\prime} \mathrm{L} \times 3.00$ 'H Soil Media and GraveHImpervious 2,808 cf Overall - 47 cf Embedded $=2,761$ cf $\times 40.0 \%$ Voids
\#4	672.75'	234 cf	$24.00^{\prime} \mathrm{W}$ x 78.00 ' $\mathrm{L} \times \mathbf{0 . 2 5}$ 'H Mulch 468 cf Overall $\times 50.0 \%$ Voids
\#5	673.00'	4,603 cf	$24.00^{\prime} \mathrm{W} \times 78.00$ 'L x 2.00'H Ponding $\mathrm{Z}=2.0$
7,111 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	$672.75{ }^{\prime} 2.41$	in/hr Exfiltration over Wetted area
\#2	Primary	671.75' $\begin{aligned} & \text { 12, } \\ & \text { L } \\ & \text { In } \\ & \\ & \mathrm{n}=\end{aligned}$	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Outlet Invert=671.75' / 668.00' $\mathrm{S}=0.0500$ '/' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
\#3	Device 2	$671.75{ }^{\prime} \quad 2$.	Vert. Orifice/Grate X 3.00 C=0.600
			ed to weir flow at low heads
\#4	Device 2	$674.25{ }^{\text {12 }}$	Horiz. Orifice/Grate X 3.00 C= 0.600
			ed to weir flow at low heads
\#5	Secondary	674.50'	Iong $\times 10.0$ ' breadth Broad-Crested Rectangular Weir
			(feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			(English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.25 cfs @ 12.15 hrs HW=674.51' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.25 cfs)
Primary OutFlow Max=4.49 cfs @ 12.15 hrs HW=674.51' TW=0.00' (Dynamic Tailwater)
\&2=Culvert (Passes 4.49 cfs of 5.68 cfs potential flow)
$-3=$ Orifice/Grate (Orifice Controls 0.52 cfs @ 7.87 fps)
4=Orifice/Grate (Weir Controls 3.98 cfs @ 1.65 fps)
Secondary OutFlow Max=0.01 cfs @ 12.15 hrs HW=674.51' TW=0.00' (Dynamic Tailwater)

Summary for Pond RG1: Rain Garden 1

Inflow Area =	7,720 sf	65.00\% Impervious,	-	6.73" for 100YearMass event
Inflow	1.36 cfs @	12.07 hrs , Volume=	4,331 cf	
Outflow	0.90 cfs @	12.12 hrs , Volume=	$4,310 \mathrm{cf}$,	Atten= 34\%, Lag= 2.8 min
Primary	0.90 cfs @	12.12 hrs , Volume=	4,310 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=675.73' @ 12.16 hrs Surf.Area= 1,097 sf Storage= 715 cf
Plug-Flow detention time $=33.5 \mathrm{~min}$ calculated for $4,308 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=30.3 \mathrm{~min}(805.1$ - 774.8)

Volume	Invert	Avail.Storage	Storage Description
\#1	671.75'	47 cf 12.0" Round Pipe Storage Inside \#2L= 60.0'	
\#2	671.75'	341 cf	$5.00^{\prime} \mathrm{W} \times 60.00$ 'L x 3.00'H Soil Media and Gravel
			900 cf Overall - 47 cf Embedded $=853$ cf $\times 40.0 \%$ Voids
\#3	674.75'	38 cf	$5.00^{\prime} \mathrm{W}$ x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 75 cf Overall $\times 50.0 \%$ Voids
\#4	675.00'	435 cf	$5.00{ }^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
861 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	671.75' 6.0'	6.0" Round Culvert
			0^{\prime} CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 671.75' / 671.60' S=0.0250 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	675.50 ' 6.0	Horiz. Orifice/Grate C= 0.600
			ed to weir flow at low heads
\#3	Device 1	671.75 ' 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	674.00' 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.88 cfs @ 12.12 hrs HW=675.69' TW=674.82' (Dynamic Tailwater)
-1=Culvert (Inlet Controls 0.88 cfs @ 4.49 fps)
-2=Orifice/Grate (Passes < 0.41 cfs potential flow)
-3=Orifice/Grate (Passes < 0.10 cfs potential flow)
4=Orifice/Grate (Passes < 0.39 cfs potential flow)

Summary for Pond RG2: Rain Garden 2

 Routed to Pond DMH2 : Manhole

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 677.35' @ 12.19 hrs Surf.Area= 1,410 sf Storage= 779 cf
Plug-Flow detention time $=27.0$ min calculated for $3,810 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=24.3$ min (799.0-774.8)

Volume	Invert	Avail.Storage	Storage Description
\#1	673.75'	43 cf	12.0" Round Pipe Storage Inside \#2 L= 55.0'
\#2	673.75'	511 cf	$8.00^{\prime} \mathrm{W} \times 55.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 1,320 cf Overall -43 cf Embedded $=1,277$ cf $\times 40.0 \%$ Voids
\#3	676.75'	55 cf	$8.00^{\prime} \mathrm{W} \times 55.00^{\prime} \mathrm{L} \times 0.25$ 'H Mulch 110 cf Overall $\times 50.0 \%$ Voids
\#4	677.00'	571 cf	$8.00^{\prime} \mathrm{W} \times 55.00{ }^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
		1,180 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	673.75'	6.0" Round Culvert
			$\mathrm{L}=6.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 673.75' / 673.60' S=0.0250 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	677.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	673.75'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	676.00'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.62 cfs @ 12.20 hrs HW=677.35' TW=675.04' (Dynamic Tailwater)
$\mathcal{L}_{1}=$ Culvert (Passes 0.62 cfs of 1.44 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.16 cfs @ 7.32 fps)
—4=Orifice/Grate (Orifice Controls 0.46 cfs @ 5.24 fps)

Summary for Pond RG3: Rain Garden 3

Device	Routing	Invert	Outlet Devices
\#1	Primary	675.75'	6.0" Round Culvert
			$\mathrm{L}=76.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=675.75' / 673.60' S=0.0283 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	679.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$675.75{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	$678.00{ }^{\prime}$	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.72 cfs @ 12.16 hrs HW=679.53' TW=675.06' (Dynamic Tailwater)
\&1=Culvert (Passes 0.72 cfs of 1.22 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.03 cfs @ 0.58 fps)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.20 cfs @ 9.26 fps)
—4=Orifice/Grate (Orifice Controls 0.49 cfs @ 5.63 fps)

Summary for Pond RG69: Rain Garden 69

Routed to Link AP5 : AP5 - To Wetland A (A23-A32) / VP A1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 678.04' @ 12.09 hrs Surf.Area= 144 sf Storage= 166 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 78.0 min (818.0-739.9)

Volume	Invert	Avail.Storage	Storage Description	
\#1	675.25'	9 cf $\begin{aligned} & \text { 12.0" Round Pipe Storage Inside \#2 } \\ & \mathrm{L=}=12.0^{\prime}\end{aligned}$		
\#2	$675.25{ }^{\prime}$	169 cf	$12.00^{\prime} \mathrm{W} \times 12.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 432 cf Overall -9 cf Embedded $=423$ cf $\times 40.0 \%$ Voids	
\#3	678.25'	18 cf	$12.00^{\prime} \mathrm{W}$ x $12.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 36 cf Overall $\times 50.0 \%$ Voids	
\#4	678.50'	197 cf	$12.00^{\prime} \mathrm{W} \times 12.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$	
394 cf Total Available Storage				
Device	Routing	Invert Outlet Devices		
\#1	Discarded	$\begin{array}{ll}675.25 ' & \mathbf{2 . 4 1 0} \\ 677.25 ' & 6.0 "\end{array}$	2.410 in/hr Exfiltration over Surface area	
\#2	Primary		L= 26.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert=677.25' / 677.00' S=0.0096 '/l' Cc=0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf		
\#3	Device 2	$679.00{ }^{\prime} \mathbf{6 . 0}$	Horiz. Orifice/Grate $\mathrm{C}=0.600$	
Limited to weir flow at low heads				
\#4	Device 2	$677.25{ }^{\prime}$ 2.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads	
\#5	Device 2	$677.75{ }^{\prime}$ 4.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads	

Discarded OutFlow Max=0.01 cfs @ 9.38 hrs HW=675.29' (Free Discharge)
L- $_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.01} \mathrm{cfs}$)
Primary OutFlow Max=0.23 cfs @ 12.09 hrs HW=678.04' TW=0.00' (Dynamic Tailwater)
\& 2 = Culvert (Passes 0.23 cfs of 0.61 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Orifice Controls 0.09 cfs @ 4.04 fps)
-5=Orifice/Grate (Orifice Controls 0.15 cfs @ 1.83 fps)

Summary for Pond RG70: Rain Garden 70

Discarded OutFlow Max=0.05 cfs @ 12.16 hrs HW=674.93' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=0.56 cfs @ 12.16 hrs HW=674.93' TW=0.00' (Dynamic Tailwater)
$\Psi_{2=C u l v e r t ~(P a s s e s ~} 0.56$ cfs of 1.07 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Orifice Controls 0.13 cfs @ 6.09 fps)
5=Orifice/Grate (Orifice Controls 0.42 cfs @ 4.85 fps)

Summary for Pond TD1: Trench Drain

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	673.10^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=2.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= 673.10 ' $/ 673.00$ ' $\mathrm{S}=0.0500 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=3.70 cfs @ 12.07 hrs HW=675.24' TW=674.29' (Dynamic Tailwater)
\&1=Culvert (Inlet Controls 3.70 cfs @ 4.70 fps)

Summary for Link AP5: AP5 - To Wetland A (A23-A32) / VP A1

Inflow Area $=$	189,460 sf,	17.53% Impervious,	Inflow Depth $>4.48 "$ for 100 YearMass event
Inflow	$=$	$19.16 \mathrm{cfs} @$	12.14 hrs , Volume
Primary	$=$	$19.16 \mathrm{cfs} @$	12.14 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link AP6: AP6 - To Wetland B (off-site)

Inflow Area $=\quad 111,800 \mathrm{sf}$, 0.00% Impervious, Inflow Depth > 4.01" for 100YearMass event Inflow = 9.54 cfs @ 12.14 hrs , Volume= $37,382 \mathrm{cf}$ Primary $=9.54$ cfs @ 12.14 hrs , Volume $=\quad 37,382 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P7.1: AP7 - To Wetland E

Runoff $=0.30$ cfs @ 12.34 hrs, Volume=
Routed to Link P7 : AP7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P7.10: Lot 27

Runoff $=\quad 0.36$ cfs @ 12.14 hrs, Volume= 1,287 cf, Depth> 1.43"
Routed to Pond RG27 : Rain Garden Lot 27
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN	Description
*	3,845	90	Residential Lots, 65\% imp, HSG C
	2,045	70	Woods, Good, HSG C
	940	89	Gravel roads, HSG C
	3,970	74	>75\% Grass cover, Good, HSG C
	10,800	80	Weighted Average
	8,301		76.86\% Pervious Area
	2,499		23.14\% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
9.7	50	0.0400	0.09	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.00 "$ 0.2	35
0.2000	3.13	Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps			
9.9	85	Total			

Summary for Subcatchment P7.11: Lot 28

Runoff $=0.64$ cfs @ 12.17 hrs, Volume= $2,534 \mathrm{cf}$, Depth> 1.06"
Routed to Pond RG28 : Rain Garden Lot 28
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN D	Description			
*	4,250	90 R				
	18,600	70 W	Residential Lots, 65\% imp, HSG CWoods, Good, HSG C			
	960	89 G	Gravel roads, HSG C			
	4,855	$74>$	>75\% Grass cover, Good, HSG C			
	28,665	74	Weighted Average			
	25,903		90.36\% Pervious Area 9.64\% Impervious Area			
	2,763					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
9.7	50	0.0400	0.09		Sheet Flow,	
					Woods: Light underbrush n=0.400	$\mathrm{P} 2=3.00{ }^{\prime \prime}$
1.7	100	0.0400	- 1.00		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
0.2	230	0.2000	- 3.13		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps	
11.6	180	Total				

Summary for Subcatchment P7.12: Lot 28-29

Runoff $=\quad 1.04$ cfs @ 12.07 hrs, Volume= 3,141 cf, Depth> 2.20"
Routed to Pond RG-28/29 : Rain Garden Lots 28-29
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN	Description
*	17,105	90	Residential Lots, 65\% imp, HSG C
	$\begin{array}{r} 5,987 \\ 11,118 \end{array}$		35.00\% Pervious Area 65.00\% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P7.13: Lot 30

Runoff $=\quad 0.41$ cfs @ 12.07 hrs, Volume= $1,238 \mathrm{cf}$, Depth> 2.20"
Routed to Pond RG30 : Rain Garden Lot 30
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf) CN Description

	rea (sf)	CN Description			
*	6,740	90 Residential Lots, $65 \% \mathrm{imp}$, HSG C			
	2,359	35.00\% Pervious Area 65.00\% Impervious Area			
	4,381				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P7.14: Clubhouse Parking Lot

Runoff $=\quad 0.57$ cfs @ 12.07 hrs, Volume= $\quad 1,776 \mathrm{cf}$, Depth> 2.58"
Routed to Pond CB1 : CB1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN D	>75\% Grass cover, Good, HSG C		
	1,410	74 >			
	750	98 R	>75\% Grass cover, Good, HSG C Roofs, HSG C		
	6,100	98 P	Paved parking, HSG C		
	8,260	94 V	Weighted Average		
	1,410		17.07\% Pervious Area		
	6,850		82.93\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P7.2: Lots 14-15

Runoff $=\quad 0.50$ cfs @ 12.07 hrs, Volume $=1,504$ cf, Depth> 2.20"
Routed to Pond RG15L : Rain Garden 15L
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)		CN Description			
8,190		90 Residential Lots, 65% imp, HSG C			
	2,867	35.00\% Pervious Area			
	5,324	65.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0		Direct Entry,			

Runoff $=\quad 0.27$ cfs @ 12.07 hrs, Volume= 909 cf , Depth> 3.01"

Routed to Pond RG21 : CB-D1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf) CN Description					
$\frac{3,630}{3,630}$		98	Paved roads w/curbs \& sewers, HSG C		
			00.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$	Description

Summary for Subcatchment P7.4: Lots 21-25

Runoff $=\quad 2.84$ cfs @ 12.18 hrs, Volume= $11,217 \mathrm{cf}$, Depth> $1.36^{\prime \prime}$
Routed to Pond RG22-25 : Rain Gardens 22-25
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall $=3.24$ "

Area (sf)	CN	Description
38,735	90	$1 / 8$ acre lots, 65% imp, HSG C
10,220	85	$1 / 8$ acre lots, 65\% imp, HSG B
*	79,505	70
320	74	Woods, Good, HSG C
98,780	79	Weigs Paver, Good, HSG C
66,959		67.79\% Perviouse Area
31,821		32.21% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description	
9.7	50	0.0400	0.09	Sheet Flow, Woods: Light underbrush n= 0.8	50	0.0400

Summary for Subcatchment P7.5: Basin 1

Runoff = 1.30 cfs @ 12.11 hrs, Volume= $4,573 \mathrm{cf}$, Depth> 0.85"
Routed to Pond IB 7.1 : Infiltration Basin
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P7.6: Lots 17-20

Runoff $=1.32$ cfs @ 12.07 hrs, Volume= 3,943 cf, Depth> 1.95"
Routed to Pond RG-16/20 : Rain Garden Lots 17-20
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN D	Description		
	11,200	901	1/8 acre lots, 65\% imp, HSG C		
	13,081	851	1/8 acre lots	, 65\% imp	HSG B
	24,281	87 V	Weighted Average		
	8,498		35.00\% Pervious Area		
	15,783		65.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P7.7: Lot 15

Runoff $=\quad 0.64$ cfs @ 12.07 hrs, Volume= $\quad 1,928 \mathrm{cf}$, Depth> 2.20"
Routed to Pond RG15H : Rain Garden 15H
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf) CN Description

$*$	10,500	90
3,675	Residential Lots, 65% imp, HSG C	
6,825	35.00% Pervious Area	
	65.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment P7.8: Lot 16

Runoff $=\quad 0.41$ cfs @ 12.07 hrs, Volume= $1,239 \mathrm{cf}$, Depth> 2.20"
Routed to Pond RG16 : Rain Garden Lot 16
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)		CN	Description		
*	6,745	90	esidential	Lots, 65\%	mp, HSG C
	$\begin{aligned} & \hline 2,361 \\ & 4,384 \end{aligned}$		$\begin{aligned} & 5.00 \% \mathrm{Pe} \\ & 5.00 \% \mathrm{Im} \end{aligned}$	vious Area ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description

Summary for Subcatchment P7.9: Lots 26-27

Runoff $=\quad 0.83$ cfs @ 12.07 hrs, Volume $=$
Routed to Pond RG-26/27 : Rain Garden Lots 26-27

2,499 cf, Depth> 2.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2YearMass Rainfall=3.24"

Primary OutFlow Max=0.57 cfs @ 12.07 hrs HW=727.39' TW=704.58' (Dynamic Tailwater)
\&1=Culvert (Barrel Controls 0.57 cfs @ 2.97 fps)

Summary for Pond IB 7.1: Infiltration Basin

Inflow Area =	301,876 sf,	40.36\% Impervious,	Inflow Depth > 1.29" for 2YearMass event
Inflow	6.38 cfs @	12.15 hrs , Volume=	32,412 cf
Outflow	1.70 cfs @	13.00 hrs , Volume=	28,313 cf, Atten $=73 \%$ Lag $=51.3 \mathrm{~min}$
Discarded	0.46 cfs @	13.00 hrs , Volume=	19,158 cf
Primary = Routed to	$\begin{aligned} & 1.24 \mathrm{cfs} @ \\ & 07 \text { : AP7 } \end{aligned}$	13.00 hrs , Volume=	9,156 cf
Secondary $=$ Routed to	$\begin{aligned} & 0.00 \mathrm{cfs} @ \\ & 07: \mathrm{AP7} \end{aligned}$	0.00 hrs , Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Peak Elev= 705.99' @ 13.00 hrs Surf.Area= 8,224 sf Storage= $12,701 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=119.4 \min$ (955.1-835.7)

Discarded OutFlow Max=0.46 cfs @ 13.00 hrs HW=705.99' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.46 cfs)
Primary OutFlow Max=1.24 cfs @ $13.00 \mathrm{hrs} \mathrm{HW}=705.99^{\prime}$ TW=0.00' (Dynamic Tailwater)
\& $3=$ Culvert (Passes 1.24 cfs of 6.89 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)
-5=Custom Weir/Orifice (Weir Controls 0.38 cfs @ 2.53 fps)
$\square_{6=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~}^{0.86}$ cfs @ 2.63 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=704.00' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG-16/20: Rain Garden Lots 17-20

Inflow Area =	24,281 sf,	65.00\% Impervious,	Inflow Dep	.95" for 2YearMass event
Inflow	1.32 cfs @	12.07 hrs , Volume=	3,943 cf	
Outflow	0.54 cfs @	12.29 hrs , Volume=	3,916 cf,	Atten $=59 \%$, Lag $=12.8 \mathrm{~min}$
Primary	0.54 cfs @	12.29 hrs , Volume=	3,916 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 725.98' @ 12.29 hrs Surf.Area= 960 sf Storage= 777 cf
Plug-Flow detention time $=18.8 \mathrm{~min}$ calculated for 3,916 cf (99% of inflow)
Center-of-Mass det. time $=14.6 \min (831.5-816.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1	724.25'	188 cf 12.0" Round Pipe Storage x 4 Inside \#2L= 60.0'	
\#2	$724.25{ }^{\prime}$	1,077 cf	$4.00^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 3.00$ 'H Soil Media and Gravelx 4
			2,880 cf Overall - 188 cf Embedded $=2,692 \mathrm{cf} \mathrm{x} \mathrm{40.0} \mathrm{\%} \mathrm{Voids}$
\#3	727.25'	120 cf	4.00 'W x 60.00'L x 0.25'H Mulch $\times 4$
			240 cf Overall $\times 50.0 \%$ Voids
\#4	727.50'	1,493 cf	4.00 'W x 60.00'L $\times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 4$
2,878 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	724.25' $\begin{array}{ll} & \text { 6.0" } \\ & \mathrm{L}=1 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert X 4.00
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 724.25 ' / 724.25' S=0.0000 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	728.00' 6.0	Horiz. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads
\#3	Device 1	724.25' 2.0	Vert. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	726.50' 4.0'	Vert. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads

Primary OutFlow Max=0.54 cfs @ 12.29 hrs HW=725.98' TW=705.30' (Dynamic Tailwater)
t-1=Culvert (Passes 0.54 cfs of 4.60 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.54 cfs @ 6.17 fps)
-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond RG-26/27: Rain Garden Lots 26-27

 Routed to Pond IB 7.1 : Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 746.60' @ 12.25 hrs Surf.Area= 480 sf Storage= 508 cf
Plug-Flow detention time $=18.0$ min calculated for 2,487 of (100% of inflow)
Center-of-Mass det. time= $15.4 \min (820.3-805.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	744.25'	94 cf 12.0" Round Pipe Storage $\times 2$ Inside \#2L= 60.0'	
\#2	$744.25{ }^{\prime}$	538 cf	4.00'W x 60.00'L x 3.00'H Soil Media and Gravelx 2
			1,440 cf Overall - 94 cf Embedded $=1,346$ cf $\times 40.0 \%$ Voids
\#3	747.25'	60 cf	4.00'W x 60.00'L x 0.25'H Mulch x 2 120 cf Overall $\times 50.0 \%$ Voids
\#4	747.50'	747 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
1,439 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	744.25' $\begin{array}{cl}\text { 6.0" } \\ & \mathrm{L}=1 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert X 2.00
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 744.25' / 744.15' S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$748.00{ }^{\text {' }}$ 6.0	Horiz. Orifice/Grate X 2.00 C=0.600
			ed to weir flow at low heads
\#3	Device 1	744.25' 2.0	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	746.50' 4.0'	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads

Primary OutFlow Max=0.36 cfs @ $12.25 \mathrm{hrs} \mathrm{HW}=746.60^{\prime}$ TW=705.19' (Dynamic Tailwater)
$亡_{1=C u l v e r t ~(P a s s e s ~}^{0.36}$ cfs of 2.74 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $3=$ Orifice/Grate (Orifice Controls 0.32 cfs @ 7.25 fps)

4=Orifice/Grate (Orifice Controls 0.05 cfs @ 1.07 fps)

Summary for Pond RG-28/29: Rain Garden Lots 28-29

Routed to Pond IB 7.1 : Infiltration Basin
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 742.37' @ 12.15 hrs Surf.Area= 480 sf Storage= 559 cf
Plug-Flow detention time $=16.8 \mathrm{~min}$ calculated for $3,129 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $14.4 \min (819.3-805.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	739.75'	94 of $\underset{\substack{\text { 12.0" Round Pipe Storage } \\ \mathrm{L}=60.0^{\prime}}}{ } 2$ Inside \#2	
\#2	739.75'	538 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 2 1,440 cf Overall - 94 cf Embedded $=1,346$ cf $\times 40.0 \%$ Voids
\#3	$742.75{ }^{\prime}$	60 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch $\times 2$ 120 cf Overall $\times 50.0 \%$ Voids
\#4	743.00'	747 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
$1,439 \mathrm{cf}$ Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	739.75' ${ }^{\prime} \begin{array}{ll}\text { 6.0" } \\ & \mathrm{L}=10 \\ & \text { Inlet } \\ & \mathrm{n}=0 .\end{array}$	Round Culvert X 2.00 .0' CPP, square edge headwall, $\mathrm{Ke}=0.500$ / Outlet Invert= 739.75' / 739.65' S=0.0100 '/l' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$743.50{ }^{\prime} \quad \begin{aligned} & \text { 6.0" } \\ & \text { Limit }\end{aligned}$	Horiz. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#3	Device 1	$739.75{ }^{\text {' }}$ 2.0" ${ }^{\text {Limit }}$	Vert. Orifice/Grate X $2.00 \mathrm{C}=0.600$ ed to weir flow at low heads
\#4	Device 1	$742.00{ }^{\text {' }}$ 4.0" ${ }^{\text {Limit }}$	Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$ ed to weir flow at low heads
$\begin{array}{r} \text { Primary } \\ +\begin{array}{r} 1=\mathrm{Cul} \\ -2= \\ -3= \\ -4= \end{array} \end{array}$	OutFlow Ma lvert (Passe Orifice/Grat Orifice/Grat Orifice/Grat	0.71 cfs @ 12.1 .71 cfs of 2.91 Controls 0.00 c Orifice Controls Orifice Controls	```5 hrs HW=742.37' TW=704.86' (Dynamic Tailwater) fs potential flow) s) 0.33 cfs @ 7.67 fps) 0.38 cfs @ 2.16 fps)```

Summary for Pond RG15H: Rain Garden 15H

Inflow Area =	10,500 sf,	65.00\% Impervious,	Inflow Depth > 2.20" for 2YearMass event
Inflow	0.64 cfs @	12.07 hrs , Volume=	1,928 cf
Outflow	0.47 cfs @	12.14 hrs, Volume=	1,807 cf, Atten= 26\%, Lag= 4.0 min
Discarded	0.04 cfs @	12.07 hrs , Volume=	778 cf
Primary	0.43 cfs @	12.14 hrs , Volume=	1,029 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 718.63' @ 12.14 hrs Surf.Area= 720 sf Storage= 378 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=45.1 \mathrm{~min}(850.1-805.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	715.25'	$\begin{array}{ll}47 \mathrm{cf} & \begin{array}{l}\text { 12.0" Round Pipe Storage Inside \#2 } \\ \mathrm{L}=60.0^{\prime}\end{array}\end{array}$	
\#2	715.25'	269 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 720 cf Overall -47 cf Embedded $=673 \mathrm{cf} \times 40.0 \%$ Voids
\#3	$718.25{ }^{\prime}$	30 cf	$4.00^{\prime} \mathrm{W}$ x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall x 50.0% Voids
\#4	718.50'	240 cf 4.00'W $\times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding	
586 cf Total Available Storage			
Device	Routing	Invert Outle	t Devices
\#1	Primary	717.25 $8.0 "$ $\mathrm{L=1}$ Inlet $\mathrm{n}=0$	Round Culvert 0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$ / Outlet Invert= 717.25' / 717.15' S=0.0100 '/l' Cc=0.900 013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
\#2	Device 1	$719.00{ }^{\text {' }}$ 8.0"	Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#3	Device 1	717.25 ' 3.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	718.00 ' 3.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	715.25' 2.41	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ $12.07 \mathrm{hrs} \mathrm{HW}=718.51$ ' (Free Discharge)
$L_{5=\text { Exfiltration (Exfiltration Controls } 0.04 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=0.43 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=718.63^{\prime}$ TW=704.82' (Dynamic Tailwater)
-1=Culvert (Passes 0.43 cfs of 1.72 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.26 cfs @ 5.40 fps)
—4=Orifice/Grate (Orifice Controls 0.17 cfs @ 3.42 fps)

Summary for Pond RG15L: Rain Garden 15L

Volume	Invert	Avail.Storage	Storage Description
\#1	706.75'	47 cf $\begin{aligned} & \text { 12.0" Round Pipe Storage Inside \#2 } \\ & \mathrm{L}=60.0^{\prime}\end{aligned}$	
\#2	706.75'	269 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00{ }^{\prime} \mathrm{H}$ Soil Media and Gravel
\#3	$709.75{ }^{\prime}$		720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
		30 cf	60 cf Overall $\times 50.0 \%$ Voids
\#4	710.00'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	708.75' 6.0'	Round Culvert
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 708.75' / 708.65' S=0.0100 '/' Cc= 0.900
		710.50 ' 6.	.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
	Device 1		ed to weir flow at low heads
\#3	Device 1	708.75' 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	709.25' 4.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	706.75' 2.41	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 12.08 hrs HW=709.76' (Free Discharge)
$L_{5=\text { Exfiltration (Exfiltration Controls } 0.03 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=0.38 cfs @ $12.13 \mathrm{hrs} \mathrm{HW}=709.84^{\prime}$ TW=704.77' (Dynamic Tailwater)
$\tau_{1=C u l v e r t ~(P a s s e s ~}^{0.38} \mathrm{cfs}$ of 0.87 cfs potential flow)

- $\mathbf{2 =}$ Orifice/Grate (Controls 0.00 cfs)
- $3=$ Orifice/Grate (Orifice Controls 0.11 cfs @ 4.84 fps)
—4=Orifice/Grate (Orifice Controls 0.27 cfs @ 3.14 fps)

Summary for Pond RG16: Rain Garden Lot 16

Volume	Invert	Avail.Storage	Storage Description
\#1	730.25'	47 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$730.25{ }^{\prime}$	269 cf	4.00^{\prime} W x 60.00 'L x 3.00'H Soil Media and Gravel
\#3	$733.25{ }^{\prime}$		720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
		30 cf	60 cf Overall $\times 50.0 \%$ Voids
\#4	733.50'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	732.25' $\begin{array}{ll}\text { 6.0" } \\ & \text { L=6. } \\ & \text { Inlet } \\ & \mathrm{n}=0 .\end{array}$	Round Culvert
			0^{\prime} CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 732.25' / 732.00' S=0.0417 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	734.00 ' 6.0	Horiz. Orifice/Grate C=0.600
			ed to weir flow at low heads
\#3	Device 1	$732.25{ }^{\prime \prime}{ }^{\text {2 }}$	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	732.75' 4.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	730.25' 2.41	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.01 cfs @ 10.84 hrs HW=730.29' (Free Discharge)
${ }^{-} 5=$ Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=0.29 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=733.13^{\prime} \mathrm{TW}=704.82^{\prime} \quad$ (Dynamic Tailwater)
-1=Culvert (Passes 0.29 cfs of 0.75 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.09 cfs @ 4.30 fps)
—4=Orifice/Grate (Orifice Controls 0.20 cfs @ 2.24 fps)

Summary for Pond RG21: CB-D1

[^7]
Summary for Pond RG22-25: Rain Gardens 22-25

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 726.42' @ 12.29 hrs Surf.Area= 960 sf Storage= 755 cf
Plug-Flow detention time $=6.5 \mathrm{~min}$ calculated for $11,169 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=4.2 \mathrm{~min}(854.3-850.1)$

Primary OutFlow Max=1.76 cfs @ 12.29 hrs HW=726.42' TW=705.29' (Dynamic Tailwater)
\&1=Culvert (Passes 1.76 cfs of 5.83 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-5=Orifice/Grate (Orifice Controls 1.76 cfs @ 5.99 fps)
$\square_{7=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond RG27: Rain Garden Lot 27

Primary OutFlow Max=0.19 cfs @ 12.38 hrs HW=757.11' TW=705.53' (Dynamic Tailwater)
\&1=Culvert (Passes 0.19 cfs of 1.33 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.16 cfs @ 7.26 fps)
—4=Orifice/Grate (Orifice Controls 0.03 cfs @ 1.12 fps)

Summary for Pond RG28: Rain Garden Lot 28

720 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	753.75'	8.0" Round Culvert
			$\mathrm{L}=30.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 753.75' / 753.50' S=0.0083 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.35 sf
\#2	Device 1	757.50'	6.0" Horiz. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	753.75'	3.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	756.25'	4.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=0.53 cfs @ 12.27 hrs HW=755.13' TW=705.24' (Dynamic Tailwater)
$廿_{1}=$ Culvert (Passes 0.53 cfs of 1.56 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.53 cfs @ 5.39 fps)
-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond RG30: Rain Garden Lot 30

Primary OutFlow Max=0.18 cfs @ 12.26 hrs HW=730.09' TW=705.21' (Dynamic Tailwater)
$\Psi_{1}=$ Culvert (Passes 0.18 cfs of 1.37 cfs potential flow)
2-2=Orifice/Grate (Controls 0.00 cfs)
$-3=$ Orifice/Grate (Orifice Controls 0.16 cfs @ 7.23 fps)
—4=Orifice/Grate (Orifice Controls 0.02 cfs @ 0.99 fps)

Summary for Link P7: AP7

Inflow Ar	400,631	pervious,	0.43"
Inflow	1.48 cfs @	12.72 hrs , Volume=	14,345 cf
Primary	1.48 cfs @	12.72 hrs , Volume=	$14,345 \mathrm{cf}, \mathrm{Atten}=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P7.1: AP7 - To Wetland E

Runoff $=\quad 2.13$ cfs @ 12.14 hrs, Volume=

8,761 cf, Depth> 1.06 "
Routed to Link P7 : AP7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P7.10: Lot 27

Runoff $=\quad 0.75$ cfs @ 12.14 hrs, Volume= $\quad 2,638 \mathrm{cf}$, Depth> 2.93"
Routed to Pond RG27 : Rain Garden Lot 27
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Description
$*$	3,845	90
Residential Lots, 65\% imp, HSG C		
2,045	70	Woods, Good, HSG C
940	89	Gravel roads, HSG C
3,970	74	$>75 \%$ Grass cover, Good, HSG C
10,800	80	Weighted Average
8,301		76.86% Pervious Area
2,499		23.14% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
9.7	50	0.0400	0.09	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.00 "$ 0.2	35
0.2000	3.13	Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps			
9.9	85	Total			

Summary for Subcatchment P7.11: Lot 28

Runoff $=\quad 1.53 \mathrm{cfs} @ 12.16$ hrs, Volume= $\quad 5,729 \mathrm{cf}$, Depth> 2.40"
Routed to Pond RG28 : Rain Garden Lot 28
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN D	Description			
*	4,250	90 R				
	18,600	70 W	Residential Lots, 65\% imp, HSG CWoods, Good, HSG C			
	960	89 G	Gravel roads, HSG C			
	4,855	$74>$	>75\% Grass cover, Good, HSG C			
	28,665	74	Weighted Average			
	25,903		90.36\% Pervious Area 9.64\% Impervious Area			
	2,763					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
9.7	50	0.0400	0.09		Sheet Flow,	
					Woods: Light underbrush n=0.400	$\mathrm{P} 2=3.00{ }^{\prime \prime}$
1.7	100	0.0400	- 1.00		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
0.2	230	0.2000	- 3.13		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps	
11.6	180	Total				

Summary for Subcatchment P7.12: Lot 28-29

Runoff $=1.80$ cfs @ 12.07 hrs, Volume= $5,590 \mathrm{cf}$, Depth> 3.92"
Routed to Pond RG-28/29 : Rain Garden Lots 28-29
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN	Description
*	17,105	90	Residential Lots, 65\% imp, HSG C
	$\begin{array}{r} 5,987 \\ 11,118 \end{array}$		35.00\% Pervious Area 65.00\% Impervious Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf) CN Description

	a (sf)	CN Description			
*	6,740	90 Residential Lots, 65\% imp, HSG C			
	2,359	35.00\% Pervious Area 65.00\% Impervious Area			
	4,381				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P7.14: Clubhouse Parking Lot

Runoff $=0.93$ cfs @ 12.07 hrs, Volume= $2,997 \mathrm{cf}$, Depth> 4.35"
Routed to Pond CB1 : CB1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN D	>75\% Grass cover, Good, HSG C		
	1,410	74 >			
	750	98 R	>75\% Grass cover, Good, HSG C Roofs, HSG C		
	6,100	98 P	Paved parking, HSG C		
	8,260	94 V	Weighted Average		
	1,410		17.07\% Pervious Area		
	6,850		82.93\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P7.2: Lots 14-15

Runoff $=0.86$ cfs @ 12.07 hrs, Volume= $\quad 2,676 \mathrm{cf}$, Depth> 3.92"
Routed to Pond RG15L : Rain Garden 15L
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Runoff $=\quad 0.43$ cfs @ 12.07 hrs, Volume= $\quad 1,455 \mathrm{cf}$, Depth> 4.81"
Routed to Pond RG21 : CB-D1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P7.4: Lots 21-25

Runoff $=\quad 6.03$ cfs @ 12.18 hrs, Volume= $23,356 \mathrm{cf}$, Depth> 2.84"
Routed to Pond RG22-25 : Rain Gardens 22-25
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10YearMass Rainfall=5.05"

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description	
9.7	50	0.0400	0.09	Sheet Flow, Woods: Light underbrush n= 0.8	50	0.0400

Summary for Subcatchment P7.5: Basin 1

Runoff $=3.47$ cfs @ 12.10 hrs, Volume= 11,141 cf, Depth> 2.07"
Routed to Pond IB 7.1 : Infiltration Basin
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P7.6: Lots 17-20

Runoff $=\quad 2.40$ cfs @ 12.07 hrs, Volume $=7,307$ cf, Depth> 3.61"
Routed to Pond RG-16/20 : Rain Garden Lots 17-20
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Description
11,200	90	1/8 acre lots, 65\% imp, HSG C
13,081	85	1/8 acre lots, 65\% imp, HSG B

Summary for Subcatchment P7.7: Lot 15

Runoff $=\quad 1.11 \mathrm{cfs} @ 12.07$ hrs, Volume= $\quad 3,431 \mathrm{cf}$, Depth> 3.92"
Routed to Pond RG15H : Rain Garden 15H
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf) CN Description

$*$	10,500	90
3,675	Residential Lots, 65% imp, HSG C	
6,825	35.00% Pervious Area	
	65.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P7.8: Lot 16

Runoff $=\quad 0.71$ cfs @ 12.07 hrs, Volume= 2,204 cf, Depth> 3.92"
Routed to Pond RG16 : Rain Garden Lot 16
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)		CN Description			
*	6,745	90	Residential Lots, 65\% imp, HSG C		
	2,361	35.00\% Pervious Area 65.00\% Impervious Area			
	4,384				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P7.9: Lots 26-27

Runoff $=\quad 1.44 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume=
Routed to Pond RG-26/27 : Rain Garden Lots 26-2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Inflow Area =	8,260 sf,	3\% Impervious,	Inflow Depth > 4.35" for 10YearMass event
Inflow =	0.93 cfs @ 12.	. $07 \mathrm{hrs}$, Volume=	2,997 cf
Outfow =	0.93 cfs @ 12.	. $07 \mathrm{hrs}$, , Volume=	2,997 cf, Atten= 0\%, Lag= 0.0 min
Primary =	0.93 cfs @ 12.	. $07 \mathrm{hrs}$, Volume=	2,997 cf
Routed to Pond	IB 7.1 : Infiltration	n Basin	
Routing by Dyn-S Peak Elev= 727.5 Flood Elev= 730.00	r-Ind method, @ 12.07 hrs	ime Span= 0.00-2	$.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Device Routing	Invert	Outlet Devices	
\#1 Primary	727.00'	12.0" Round Cu L=40.0' CPP, sq Inlet / Outlet Inver $\mathrm{n}=0.013$ Corruga	vert uare edge headwall, $\mathrm{Ke}=0.500$ = 727.00' $/ 726.60 ' S=0.0100$ '/l' Cc= 0.900 ted PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.93 cfs @ 12.07 hrs HW=727.52' TW=705.67' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 0.93 cfs @ 3.32 fps)

Summary for Pond IB 7.1: Infiltration Basin

Inflow Area =	301,876 sf,	40.36\% Impervious,	Inflow Depth > 2.63" for 10YearMass event
Inflow	15.78 cfs @	12.14 hrs , Volume=	66,106 cf
Outflow	4.69 cfs @	12.67 hrs , Volume=	59,182 cf, Atten= 70\%, Lag= 32.0 min
Discarded	0.57 cfs @	12.67 hrs , Volume=	22,737 cf
Primary = Routed to	$\begin{aligned} & 4.12 \text { cfs @ } \\ & \text { P7: AP7 } \end{aligned}$	12.67 hrs , Volume=	36,445 cf
Secondary $=$ Routed to	$\begin{gathered} 0.00 \mathrm{cfs} @ \\ \mathrm{P7}: \mathrm{AP7} \end{gathered}$	0.00 hrs , Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Peak Elev= 707.25' @ 12.67 hrs Surf.Area= 10,275 sf Storage= 24,249 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 70.2 min (888.9-818.7)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=704.00' TW=0.00' (Dynamic Tailwater)
-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG-16/20: Rain Garden Lots 17-20

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 727.09' @ 12.14 hrs Surf.Area= 960 sf Storage= 1,205 cf

Plug-Flow detention time $=16.7 \mathrm{~min}$ calculated for $7,274 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $13.8 \mathrm{~min}(813.2-799.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1	724.25'	188 cf	12.0" Round Pipe Storage x 4 Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$724.25{ }^{\prime}$	1,077 cf	4.00 'W x 60.00'L x 3.00'H Soil Media and Gravelx 4
			2,880 cf Overall - 188 cf Embedded $=2,692 \mathrm{cf} \mathrm{x} \mathrm{40.0} \mathrm{\%} \mathrm{Voids}$
\#3	727.25'	120 cf	4.00 'W x 60.00'L x 0.25'H Mulch x 4
			240 cf Overall x 50.0\% Voids
\#4	727.50'	1,493 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00$ 'H Ponding $\mathrm{Z}=2.0 \times 4$
2,878 cf Total Available Storage			
Device	Routing	Invert Out	t Devices
\#1	Primary	724.25' $\begin{array}{ll} & \mathbf{6 . 0} \\ & \mathrm{L}=1 \\ & \text { Inlet }\end{array}$	Round Culvert X 4.00
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 724.25' / 724.25' S=0.0000 '/l' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	728.00' 6	Horiz. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads
\#3	Device 1	724.25' 2.	Vert. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	726.50' 4.	Vert. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads

Primary OutFlow Max=1.80 cfs @ 12.14 hrs HW=727.09' TW=706.07' (Dynamic Tailwater)
$\Psi_{1=C u l v e r t ~(P a s s e s ~}^{1.80} \mathrm{cfs}$ of 6.09 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
$-3=$ Orifice/Grate (Orifice Controls 0.70 cfs @ 8.00 fps)
—4=Orifice/Grate (Orifice Controls 1.10 cfs @ 3.14 fps)

Summary for Pond RG-26/27: Rain Garden Lots 26-27

 Routed to Pond IB 7.1 : Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 747.42' @ 12.13 hrs Surf.Area= 960 sf Storage= 674 cf
Plug-Flow detention time $=15.2$ min calculated for 4,430 cf (100% of inflow)
Center-of-Mass det. time= $13.2 \mathrm{~min}(802.2-789.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	744.25'	94 cf 12.0" Round Pipe Storage $\times 2$ Inside \#2L= 60.0'	
\#2	$744.25{ }^{\prime}$	538 cf	4.00'W x 60.00'L x 3.00'H Soil Media and Gravelx 2
			1,440 cf Overall - 94 cf Embedded $=1,346$ cf $\times 40.0 \%$ Voids
\#3	747.25'	60 cf	4.00'W x 60.00'L x 0.25'H Mulch x 2 120 cf Overall $\times 50.0 \%$ Voids
\#4	747.50'	747 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
1,439 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	744.25' $\begin{array}{cl}\text { 6.0" } \\ & \mathrm{L}=1 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert X 2.00
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 744.25' / 744.15' S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$748.00{ }^{\text {' }}$ 6.0	Horiz. Orifice/Grate X 2.00 C=0.600
			ed to weir flow at low heads
\#3	Device 1	744.25' 2.0	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	746.50' 4.0'	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads

Primary OutFlow Max=1.10 cfs @ $12.13 \mathrm{hrs} \mathrm{HW}=747.42^{\prime}$ TW=706.04' (Dynamic Tailwater)
$\mathcal{L}_{1}=$ Culvert (Passes 1.10 cfs of 3.23 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $3=$ Orifice/Grate (Orifice Controls 0.37 cfs @ 8.46 fps)

4=Orifice/Grate (Orifice Controls 0.73 cfs @ 4.19 fps)

Summary for Pond RG-28/29: Rain Garden Lots 28-29

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 743.22' @ 12.15 hrs Surf.Area= 1,557 sf Storage= 813 cf
Plug-Flow detention time $=14.7$ min calculated for $5,574 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= 12.8 min (801.8-789.0)

Volume	Invert	Avail.Storage	Storage Description
\#1	739.75'	94 cf $\begin{aligned} & \text { 12.0" } \\ & L=60.0^{\prime}\end{aligned}$	
\#2	739.75'	538 cf	4.00'W x 60.00'L x 3.00'H Soil Media and Gravelx 2
			1,440 cf Overall - 94 cf Embedded $=1,346$ cf $\times 40.0 \%$ Voids
\#3	742.75'	60 cf	4.00'W x 60.00'L x 0.25'H Mulch x 2 120 cf Overall $\times 50.0 \%$ Voids
\#4	$743.00{ }^{\prime}$	747 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
1,439 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	739.75' $\begin{array}{cl} & 6.0 \\ & \mathrm{~L}=1 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert X 2.00
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 739.75' / 739.65' S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	743.50' 6.0	Horiz. Orifice/Grate X 2.00 C=0.600
			ed to weir flow at low heads
\#3	Device 1	739.75' 2.0	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	742.00' 4.0"	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads

Primary OutFlow Max=1.25 cfs @ 12.15 hrs HW=743.22' TW=706.12' (Dynamic Tailwater)
$\mathcal{L}_{1}=$ Culvert (Passes 1.25 cfs of 3.40 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.39 cfs @ 8.87 fps)
4=Orifice/Grate (Orifice Controls 0.86 cfs @ 4.95 fps)

Summary for Pond RG15H: Rain Garden 15H

 Routed to Pond IB 7.1 : Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 719.15' @ 12.11 hrs Surf.Area= 720 sf Storage= 503 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $19.2 \min (808.2-789.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	715.25'	$\begin{array}{ll}47 \mathrm{cf} & \begin{array}{l}\text { 12.0" Round Pipe Storage Inside \#2 } \\ \mathrm{L}=60.0^{\prime}\end{array}\end{array}$	
\#2	$715.25{ }^{\prime}$	269 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00{ }^{\prime} \mathrm{H}$ Soil Media and Gravel
\#3	718.25'		$720 \mathrm{cf} \mathrm{Overall} \mathrm{-} 47 \mathrm{cf} \mathrm{Embedded}=673 \mathrm{cf} \times 40.0 \%$ Voids
\#3	718.25	30 cf	60 cf Overall $\times 50.0 \%$ Voids
\#4	718.50'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary		Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 717.25' / 717.15' S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
\#2	Device 1	$719.00{ }^{\prime} 8.0$	Horiz. Orifice/Grate C= 0.600
			ed to weir flow at low heads
\#3	Device 1	717.25' 3.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4		$318.00^{\prime} \quad 3.0$	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	715.25' 2.410	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ $11.98 \mathrm{hrs} \mathrm{HW}=718.52$ ' (Free Discharge)
$L_{5=\text { Exfiltration (Exfiltration Controls } 0.04 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=0.96 cfs @ $12.11 \mathrm{hrs} \mathrm{HW}=719.15^{\prime} \mathrm{TW}=705.89^{\prime} \quad$ (Dynamic Tailwater)
L-1=Culvert (Passes 0.96 cfs of 2.10 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.40 cfs @ 1.27 fps)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.32 cfs @ 6.42 fps)
—4=Orifice/Grate (Orifice Controls 0.24 cfs @ 4.88 fps)

Summary for Pond RG15L: Rain Garden 15L

Volume	Invert	Avail.Storage	Storage Description
\#1	706.75'	47 cf 12.0" Round Pipe Storage Inside \#2$\mathrm{L}=60.0^{\prime}$	
\#2	706.75'	269 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00$ 'H Soil Media and Gravel 720 cf Overall -47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
\#3	709.75'	30 cf	$4.00^{\prime} \mathrm{W}$ x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	710.00'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	708.75' $\begin{array}{ll}\text { 6.0' } \\ & \mathrm{L}=10 \\ & \text { Inlet } \\ & \mathrm{n}=0 .\end{array}$	Round Culvert
			0.0' CPP, square edge headwall, $\mathrm{Ke=} 0.500$
			/ Outlet Invert= 708.75' / 708.65' S=0.0100 '/l' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	710.50' 6.0	Horiz. Orifice/Grate C= 0.600
			ed to weir flow at low heads
\#3	Device 1	708.75' 2.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	709.25' 4.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	706.75' 2.410	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ $12.03 \mathrm{hrs} \mathrm{HW}=710.02$ ' (Free Discharge)
$L_{5=\text { Exfiltration (Exfiltration Controls } 0.04 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=0.55 cfs @ $12.15 \mathrm{hrs} \mathrm{HW}=710.42^{\prime} \mathrm{TW}=706.13^{\prime} \quad$ (Dynamic Tailwater)
-1=Culvert (Passes 0.55 cfs of 1.13 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.13 cfs @ 6.06 fps)
—4=Orifice/Grate (Orifice Controls 0.42 cfs @ 4.82 fps)

Summary for Pond RG16: Rain Garden Lot 16

Volume	Invert	Avail.Storage	Storage Description
\#1	730.25'	$\begin{array}{ll}47 \mathrm{cf} & \begin{array}{l}\text { 12.0" Round Pipe Storage Inside \#2 } \\ \mathrm{L}=60.0^{\prime}\end{array}\end{array}$	
\#2	$730.25{ }^{\prime}$	269 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel
\#3	733.25'		720 cf Overall - $47 \mathrm{cf} \mathrm{Embedded}=673 \mathrm{cf} \times 40.0 \%$ Voids
\#3	733.25	30 cf	60 cf Overall $\times 50.0 \%$ Voids
\#4	733.50'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	$\begin{array}{ll}732.25 & 6.0 " \\ & \text { L=6. } \\ & \text { Inlet } \\ & \mathrm{n}=0.0\end{array}$	Round Culvert
			0^{\prime} CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 732.25' / 732.00' S=0.0417 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	734.00' 6	Horiz. Orifice/Grate C=0.600
			ed to weir flow at low heads
\#3	Device 1	$732.25{ }^{\prime}$ 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4		732.75' 4.0	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	730.25' 2.4	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 12.06 hrs HW=733.53' (Free Discharge)
$L_{5=\text { Exfiltration (Exfiltration Controls } 0.04 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=0.49 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=733.69^{\prime}$ TW=706.06' (Dynamic Tailwater)
-1=Culvert (Passes 0.49 cfs of 1.03 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.12 cfs @ 5.60 fps)
$\square_{4=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 0.37$ cfs @ 4.23 fps)

Summary for Pond RG21: CB-D1

Summary for Pond RG22-25: Rain Gardens 22-25

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 728.21' @ 12.26 hrs Surf.Area= 3,102 sf Storage= 1,614 cf
Plug-Flow detention time $=5.5 \mathrm{~min}$ calculated for $23,300 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=4.1 \mathrm{~min}(833.1-829.0)$

Primary OutFlow Max=3.89 cfs @ $12.26 \mathrm{hrs} \mathrm{HW}=728.21^{\prime}$ TW=706.67' (Dynamic Tailwater)
\&1=Culvert (Passes 3.89 cfs of 8.92 cfs potential flow)
-3=Orifice/Grate (Controls 0.00 cfs)
-5=Orifice/Grate (Orifice Controls 2.59 cfs @ 8.80 fps)
—7=Orifice/Grate (Orifice Controls 1.30 cfs @ 4.41 fps)
Secondary OutFlow Max=1.30 cfs @ 12.26 hrs HW=728.21' TW=0.00' (Dynamic Tailwater)
$\mathbf{2}=$ Culvert (Passes 1.30 cfs of 2.97 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)
6=Orifice/Grate (Orifice Controls 0.86 cfs @ 8.80 fps)
—8=Orifice/Grate (Orifice Controls 0.43 cfs @ 4.41 fps)

Summary for Pond RG27: Rain Garden Lot 27

Primary OutFlow Max=0.59 cfs @ 12.22 hrs HW=758.07' TW=706.52' (Dynamic Tailwater)
\&1=Culvert (Passes 0.59 cfs of 1.52 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.19 cfs @ 8.66 fps)
—4=Orifice/Grate (Orifice Controls 0.40 cfs @ 4.57 fps)

Summary for Pond RG28: Rain Garden Lot 28

720 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	753.75'	8.0" Round Culvert
			$\mathrm{L}=30.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 753.75' / 753.50' S=0.0083 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.35 sf
\#2	Device 1	757.50'	6.0" Horiz. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	753.75'	3.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	756.25'	4.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=1.45 cfs @ 12.20 hrs HW=756.96' TW=706.43' (Dynamic Tailwater)
$亡_{1}=$ Culvert (Passes 1.45 cfs of 2.65 cfs potential flow)
2-2=Orifice/Grate (Controls 0.00 cfs)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.83 cfs @ 8.46 fps)
—4=Orifice/Grate (Orifice Controls 0.62 cfs @ 3.56 fps)

Summary for Pond RG30: Rain Garden Lot 30

Primary OutFlow Max=0.55 cfs @ 12.13 hrs HW=730.91' TW=706.04' (Dynamic Tailwater)
$\Psi_{1}=$ Culvert (Passes 0.55 cfs of 1.61 cfs potential flow)
-2 $2=$ Orifice/Grate (Controls 0.00 cfs)
$-3=$ Orifice/Grate (Orifice Controls 0.18 cfs @ 8.44 fps)
—4=Orifice/Grate (Orifice Controls 0.36 cfs @ 4.14 fps)

Summary for Link P7: AP7

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P7.1: AP7 - To Wetland E

Runoff $=\quad 3.76$ cfs @ 12.13 hrs, Volume $=13,988 \mathrm{cf}$, Depth> 1.70"
Routed to Link P7 : AP7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment P7.10: Lot 27

Runoff $=\quad 1.00$ cfs @ 12.14 hrs, Volume= $\quad 3,543 \mathrm{cf}$, Depth> 3.94"
Routed to Pond RG27 : Rain Garden Lot 27
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)	CN	Description
3,845	90	Residential Lots, 65\% imp, HSG C
2,045	70	Woods, Good, HSG C
940	89	Gravel roads, HSG C
3,970	74	$>75 \%$ Grass cover, Good, HSG C
10,800	80	Weighted Average
8,301		76.86% Pervious Area
2,499		23.14% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
9.7	50	0.0400	0.09	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.00 "$ 0.2	35
0.2000	3.13	Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps			
9.9	85	Total			

Summary for Subcatchment P7.11: Lot 28

Runoff = 2.14 cfs @ 12.16 hrs, Volume= $7,952 \mathrm{cf}$, Depth> 3.33"
Routed to Pond RG28 : Rain Garden Lot 28
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)		CN D	Description				
$\begin{array}{r} 4,250 \\ 18,600 \end{array}$		90	Residential Lots, 65\% imp, HSG C				
		70	Gravel roads, HSG C				
960		89					
	4,855	$74>$	>75\% Grass cover, Good, HSG C				
28,665		74	Weighted Average 90.36\% Pervious Area 9.64\% Impervious Area				
$2,763$							
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity \qquad		Description	
9.7	50	0.0400	0.09			Sheet Flow,	
					Woods: Light underbrush n= 0.400	$\mathrm{P} 2=3.00{ }^{\prime \prime}$	
1.7	100	0.0400	1.00		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
0.2	30	0.2000	3.13		Shallow Concentrated Flow,		
11.6	180	Total			Short Grass Pasture Kv=7.0 fps		

Summary for Subcatchment P7.12: Lot 28-29

Runoff $=\quad 2.28$ cfs @ 12.07 hrs, Volume= $7,152 \mathrm{cf}$, Depth> 5.02"
Routed to Pond RG-28/29 : Rain Garden Lots 28-29
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN	Description
*	17,105	90	Residential Lots, 65\% imp, HSG C
	$\begin{array}{r} 5,987 \\ 11,118 \end{array}$		35.00\% Pervious Area 65.00\% Impervious Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf)		CN Description			
*	6,740	90 R	Residential Lots, $65 \% \mathrm{imp}$, HSG C		
	2,359		35.00\% Pe	vious Area	
	4,381		65.00\% Imp	ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P7.14: Clubhouse Parking Lot

Runoff $=1.16$ cfs @ 12.07 hrs, Volume $=3,766$ cf, Depth> 5.47"
Routed to Pond CB1 : CB1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YearMass Rainfall=6.18"

	Area (sf)	CN D	>75\% Grass cover, Good, HSG C		
	1,410				
	750		>75\% Grass cover, Good, HSG C Roofs, HSG C		
	6,100	98	Paved parking, HSG C		
	8,260	94	Weighted Average 17.07\% Pervious Area 82.93\% Impervious Area		
	1,410				
	6,850				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array} \\ \hline \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P7.2: Lots 14-15

Runoff $=\quad 1.09$ cfs @ 12.07 hrs, Volume= $\quad 3,425 \mathrm{cf}$, Depth> 5.02"
Routed to Pond RG15L : Rain Garden 15L
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Runoff $=\quad 0.52$ cfs @ 12.07 hrs, Volume= 1,796 cf, Depth> 5.94"
Routed to Pond RG21 : CB-D1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf) CN Description					
$\frac{3,630}{3,630}$		98	Paved roads w/curbs \& sewers, HSG C		
			00.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$	Description

Summary for Subcatchment P7.4: Lots 21-25

Runoff $=\quad 8.12$ cfs @ 12.18 hrs, Volume= $31,538 \mathrm{cf}$, Depth> 3.83"
Routed to Pond RG22-25 : Rain Gardens 22-25
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YearMass Rainfall $=6.18$ "

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description	
9.7	50	0.0400	0.09	Sheet Flow, Woods: Light underbrush n= 0.8	50	0.0400

Summary for Subcatchment P7.5: Basin 1

Runoff $=\quad 5.00$ cfs @ 12.10 hrs, Volume= 15,846 cf, Depth> 2.94"
Routed to Pond IB 7.1 : Infiltration Basin
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment P7.6: Lots 17-20

Runoff $=\quad 3.08$ cfs @ 12.07 hrs, Volume= $9,482 \mathrm{cf}$, Depth> 4.69"
Routed to Pond RG-16/20 : Rain Garden Lots 17-20
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

	Area (sf)	CN	Description		
	11,200	$90 \quad 1$	1/8 acre lots, $65 \% \mathrm{imp}$, HSG C		
	13,081	$85 \quad 1$	1/8 acre lots	, $65 \% \mathrm{imp}$	HSG B
	24,281	87	Weighted Average		
	8,498		35.00\% Pervious Area		
	15,783		65.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
5.0					Direct Entry

Summary for Subcatchment P7.7: Lot 15

Runoff $=\quad 1.40$ cfs @ 12.07 hrs, Volume= 4,390 cf, Depth> 5.02"
Routed to Pond RG15H : Rain Garden 15H
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Area (sf) CN Description

$*$	10,500	90
3,675	Residential Lots, 65% imp, HSG C	
6,825	35.00% Pervious Area	
	65.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P7.8: Lot 16

Runoff $=\quad 0.90$ cfs @ 12.07 hrs, Volume= $2,820 \mathrm{cf}$, Depth> 5.02"
Routed to Pond RG16 : Rain Garden Lot 16
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YearMass Rainfall $=6.18$ "

Area (sf)		CN Description			
*	6,745	90	esidential	Lots, 65\%	mp, HSG C
	$\begin{aligned} & \hline 2,361 \\ & 4,384 \end{aligned}$		$\begin{aligned} & 5.00 \% \text { Per } \\ & 5.00 \% \text { Imp } \end{aligned}$	vious Area ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Summary for Subcatchment P7.9: Lots 26-27

Runoff $=\quad 1.81$ cfs @ 12.07 hrs, Volume=
Routed to Pond RG-26/27 : Rain Garden Lots 26-27

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Inflow Area =	8,260 sf,	2.93\% Impervious,	Inflow Depth > 5.47" for 25YearMass event
Inflow	1.16 cfs @ 12	. $07 \mathrm{hrs}, \mathrm{Volume=}$	3,766 cf
Outflow =	1.16 cfs @ 12	. $07 \mathrm{hrs}$, Volume=	$3,766 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary =	1.16 cfs @ 12	. $07 \mathrm{hrs}$, Volume=	3,766 cf
Routed to Pond	IB 7.1 : Infiltratio	on Basin	
Routing by Dyn-S Peak Elev= 727.5 Flood Elev= 730.0	r-Ind method, @ 12.07 hrs	ime Span= 0.00-2	$.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Device Routing	Invert	Outlet Devices	
\#1 Primary	727.00'	12.0" Round Cu L=40.0' CPP, sq Inlet / Outlet Inve $\mathrm{n}=0.013$ Corruga	vert uare edge headwall, $\mathrm{Ke}=0.500$ $=727.00^{\prime} / 726.60^{\prime} \quad S=0.0100$ '// Cc= 0.900 ted PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.16 cfs @ 12.07 hrs HW=727.59' TW=706.33' (Dynamic Tailwater)
亡-1=Culvert (Barrel Controls 1.16 cfs @ 3.48 fps)

Summary for Pond IB 7.1: Infiltration Basin

Inflow Area =	301,876 sf,	40.36\% Impervious,	Inflow Depth > 3.53" for 25YearMass event
Inflow	20.44 cfs @	12.11 hrs , Volume=	88,832 cf
Outflow	7.22 cfs @	12.57 hrs , Volume=	80,863 cf, Atten= 65\%, Lag= 27.5 min
Discarded	0.65 cfs @	12.57 hrs , Volume=	24,626 cf
Primary = Routed to	$\begin{aligned} & 6.57 \mathrm{cfs} @ \\ & \text { P7: AP7 } \end{aligned}$	12.57 hrs , Volume=	56,237 cf
Secondary = Routed to	$\begin{aligned} & 0.00 \mathrm{cfs} @ \\ & \mathrm{P7}: \mathrm{AP7} \end{aligned}$	0.00 hrs , Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Peak Elev= 708.02' @ 12.57 hrs Surf.Area= 11,650 sf Storage= 32,734 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=62.6 \min (874.6-812.0)$

Discarded OutFlow Max=0.65 cfs @ 12.57 hrs HW=708.02' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.65 cfs)
Primary OutFlow Max=6.57 cfs @ $12.57 \mathrm{hrs} \mathrm{HW}=708.02^{\prime}$ TW=0.00' (Dynamic Tailwater)
—3=Culvert (Passes 6.57 cfs of 15.39 cfs potential flow)

- $4=$ Orifice/Grate (Controls 0.00 cfs)
-5=Custom Weir/Orifice (Weir Controls 4.03 cfs @ 4.72 fps)
- $\mathbf{6 = O r i f i c e / G r a t e ~ (O r i f i c e ~ C o n t r o l s ~} 2.54$ cfs @ 7.28 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=704.00' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG-16/20: Rain Garden Lots 17-20

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 727.53' @ 12.14 hrs Surf.Area= 2,912 sf Storage= 1,415 cf

Plug-Flow detention time $=15.5 \mathrm{~min}$ calculated for $9,445 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=13.0 \mathrm{~min}(805.2-792.2)$

Primary OutFlow Max=2.31 cfs @ 12.14 hrs HW=727.53' TW=706.77' (Dynamic Tailwater)
$亡_{1}=$ Culvert (Passes 2.31 cfs of 6.58 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.75 cfs @ 8.61 fps)
—4=Orifice/Grate (Orifice Controls 1.56 cfs @ 4.47 fps)

Summary for Pond RG-26/27: Rain Garden Lots 26-27

Inflow Area =	13,605 s	65.00\% Impervious,	,	5.02" for 25YearMass event
Inflow	1.81 cfs @	12.07 hrs, Volume=	5,689 cf	
Outflow	1.26 cfs @	12.15 hrs, Volume=	5,673 cf,	Atten $=31 \%, L a g=4.5 \mathrm{~min}$
Primary	1.26 cfs @	12.15 hrs, Volume=	5,673 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 747.73' @ 12.15 hrs Surf.Area= 1,561 sf Storage= 818 cf
Plug-Flow detention time $=14.6$ min calculated for 5,671 of (100% of inflow)
Center-of-Mass det. time= $12.8 \min (795.2-782.3)$

Volume	Invert	Avail.Storage	Storage Description
\#1	744.25'	94 cf 12.0" Round Pipe Storage $\times 2$ Inside \#2L= 60.0'	
\#2	$744.25{ }^{\prime}$	538 cf	4.00'W x 60.00'L x 3.00'H Soil Media and Gravelx 2
			1,440 cf Overall - 94 cf Embedded $=1,346$ cf $\times 40.0 \%$ Voids
\#3	747.25'	60 cf	4.00'W x 60.00'L x 0.25'H Mulch x 2 120 cf Overall $\times 50.0 \%$ Voids
\#4	747.50'	747 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
1,439 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	744.25' $\begin{array}{cl}\text { 6.0" } \\ & \mathrm{L}=1 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert X 2.00
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 744.25' / 744.15' S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$748.00{ }^{\text {' }}$ 6.0	Horiz. Orifice/Grate X 2.00 C=0.600
			ed to weir flow at low heads
\#3	Device 1	744.25' 2.0	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	746.50' 4.0'	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads

Primary OutFlow Max=1.25 cfs @ 12.15 hrs HW=747.73' TW=706.83' (Dynamic Tailwater)
$\mathcal{L}_{1}=$ Culvert (Passes 1.25 cfs of 3.40 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)

- $3=$ Orifice/Grate (Orifice Controls 0.39 cfs @ 8.88 fps)

4=Orifice/Grate (Orifice Controls 0.87 cfs @ 4.97 fps)

Summary for Pond RG-28/29: Rain Garden Lots 28-29

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 743.54' @ 12.16 hrs Surf.Area= 1,723 sf Storage= 1,024 cf
Plug-Flow detention time $=14.5$ min calculated for $7,134 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $12.9 \min (795.2-782.3)$

Volume	Invert	Avail.Storage	Storage Description
\#1	739.75'	94 of $\underset{\substack{\text { 12.0" Round Pipe Storage } \\ \mathrm{L}=60.0^{\prime}}}{ } 2$ Inside \#2	
\#2	739.75'	538 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravelx 2 1,440 cf Overall - 94 cf Embedded $=1,346$ cf $\times 40.0 \%$ Voids
\#3	742.75'	60 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch $\times 2$ 120 cf Overall $\times 50.0 \%$ Voids
\#4	$743.00{ }^{\prime}$	747 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00{ }^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
$1,439 \mathrm{cf}$ Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	739.75' $\begin{array}{ll} & 6.0 " \\ & \mathrm{~L}=10 \\ & \text { Inlet } \\ & \mathrm{n}=0 .\end{array}$	Round Culvert X 2.00 .0' CPP, square edge headwall, $\mathrm{Ke}=0.500$ / Outlet Invert= 739.75' / 739.65' S=0.0100 '/l' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$743.50{ }^{\prime} \quad \begin{aligned} & \text { 6.0" } \\ & \text { Limit }\end{aligned}$	Horiz. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#3	Device 1	739.75' ${ }^{\text {2.0" }}$	Vert. Orifice/Grate X $2.00 \mathrm{C}=0.600$ ed to weir flow at low heads
\#4	Device 1	742.00' $\begin{aligned} & \text { 4.0" } \\ & \\ & \text { Limit }\end{aligned}$	Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$ ed to weir flow at low heads
$\begin{array}{r} \text { Primary } \\ +\begin{array}{r} 1=\mathrm{Cul} \\ -2= \\ -3= \\ -4= \end{array} \end{array}$	OutFlow Ma lvert (Passe Orifice/Grate Orifice/Grate Orifice/Grate	1.45 cfs @ 12.1 .45 cfs of 3.55 Weir Controls 0. Orifice Controls Orifice Controls	```6 hrs HW=743.53' TW=706.90' (Dynamic Tailwater) fs potential flow) 07 cfs @ 0.61 fps) 0.40 cfs @ 9.26 fps\()\) 0.98 cfs @ 5.63 fps)```

Summary for Pond RG15H: Rain Garden 15H

 Routed to Pond IB 7.1 : Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 719.23' @ 12.09 hrs Surf.Area= 720 sf Storage= 521 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $15.9 \min (798.2-782.3)$

Volume	Invert	Avail.Storage	Storage Description
\#1	715.25'	47 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$715.25{ }^{\prime}$	269 cf	4.00^{\prime} W x 60.00 'L x 3.00'H Soil Media and Gravel
\#3	718.25'		720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
		30 cf	60 cf Overall $\times 50.0 \%$ Voids
\#4	718.50'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	717.25' 8.0'	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 717.25' / 717.15' S=0.0100 '/' Cc= 0.900
	Device 1	719.00' 8	013 Corrugated PE, smooth interior, Flow Area= 0.35 sf Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			ed to weir flow at low heads
\#3	Device 1	$717.25{ }^{\prime} 3.0 "$	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	718.00 '3.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	715.25' 2.410	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 11.90 hrs HW=718.51' (Free Discharge)
$L_{5=\text { Exfiltration (Exfiltration Controls } 0.04 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=1.32 cfs @ $12.09 \mathrm{hrs} \mathrm{HW}=719.23^{\prime}$ TW=706.45' (Dynamic Tailwater)
$\mathcal{L}_{1}=$ Culvert (Passes 1.32 cfs of 2.16 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.75 cfs @ 1.57 fps)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.32 cfs @ 6.56 fps)
—4=Orifice/Grate (Orifice Controls 0.25 cfs @ 5.06 fps)

Summary for Pond RG15L: Rain Garden 15L

Volume	Invert	Avail.Storage	Storage Description
\#1	706.75'	47 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	706.75'	269 cf	4.00^{\prime} W x 60.00 'L x 3.00'H Soil Media and Gravel
\#3	709.75^{\prime}		720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
		30 cf	60 cf Overall $\times 50.0 \%$ Voids
\#4	710.00'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	708.75' $\begin{array}{ll}\text { 6.0" } \\ & \text { L= } \\ & \text { Inlet } \\ & \mathrm{n}=0 .\end{array}$	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 708.75' / 708.65' S=0.0100 '/' Cc= 0.900
\#2	Device 1	710.50' 6	013 Corrugated PE, smooth interior, Flow Area= 0.20 sf Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			ed to weir flow at low heads
\#3	Device 1	708.75' 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	709.25' 4.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	706.75' 2.410	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 11.99 hrs HW=710.00' (Free Discharge)
$L_{5=\text { Exfiltration (Exfiltration Controls } 0.04 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=0.88 cfs @ $12.12 \mathrm{hrs} \mathrm{HW}=710.64^{\prime}$ TW=706.67' (Dynamic Tailwater)
$\mathcal{L}_{1}=$ Culvert (Passes 0.88 cfs of 1.21 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.27 cfs @ 1.23 fps)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.14 cfs @ 6.47 fps)
-4=Orifice/Grate (Orifice Controls 0.46 cfs @ 5.33 fps)

Summary for Pond RG16: Rain Garden Lot 16

Volume	Invert	Avail.Storage	Storage Description
\#1	730.25'	$\begin{array}{ll}47 \mathrm{cf} & \begin{array}{l}\text { 12.0" Round Pipe Storage Inside \#2 } \\ \mathrm{L}=60.0^{\prime}\end{array}\end{array}$	
\#2	$730.25{ }^{\prime}$	269 cf	4.00^{\prime} W x $60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel
\#3	$733.25{ }^{\prime}$	30 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall x 50.0% Voids
\#4	733.50'	240 cf 4.00'W $\times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding	
586 cf Total Available Storage			
Device	Routing	Invert Outle	t Devices
\#1	Primary	$\begin{array}{ll}732.25 & \text { 6.0" } \\ & \mathrm{L}=6 \\ & \text { Inlet } \\ & \mathrm{n}=0 .\end{array}$	Round Culvert 0^{\prime} CPP, square edge headwall, $\mathrm{Ke}=0.500$ / Outlet Invert= 732.25' / 732.00' S=0.0417 '/' Cc= 0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$734.00{ }^{\prime} \begin{aligned} & \text { 6.0" } \\ & \text { Limit }\end{aligned}$	Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ ed to weir flow at low heads
\#3	Device 1	732.25' 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	732.75' 4.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	730.25' 2.410	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 12.02 hrs HW=733.50' (Free Discharge)
$L_{5=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.04} \mathrm{cfs}$)
Primary OutFlow Max=0.57 cfs @ $12.15 \mathrm{hrs} \mathrm{HW}=733.98^{\prime}$ TW=706.85' (Dynamic Tailwater)
L-1=Culvert (Passes 0.57 cfs of 1.15 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.13 cfs @ 6.17 fps)
$\square_{4=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~}^{0.43}$ cfs @ 4.96 fps)

Summary for Pond RG21: CB-D1

Summary for Pond RG22-25: Rain Gardens 22-25

Inflow Area =	98,780 sf, 32.21\% Impervious	Inflow Depth > 3.83" for 25YearMass event
Inflow	8.12 cfs @ 12.18 hrs , Volume=	$31,538 \mathrm{cf}$
Outflow	7.62 cfs @ 12.23 hrs , Volume=	$31,476 \mathrm{cf}$, Atten $=6 \%, \mathrm{Lag}=2.9 \mathrm{~min}$
Primary =	5.71 cfs @ 12.23 hrs, Volume=	$23,607 \mathrm{cf}$
Routed to	IB 7.1 : Infiltration Basin	
Secondary =	$1.90 \mathrm{cfs} @ 12.23 \mathrm{hrs}$, Volume=	7,869 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 728.63' @ 12.23 hrs Surf.Area= 3,546 sf Storage= 2,192 cf
Plug-Flow detention time $=5.3 \mathrm{~min}$ calculated for $31,463 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=4.1 \mathrm{~min}$ (824.6-820.5)

Primary OutFlow Max=5.71 cfs @ 12.23 hrs HW=728.63' TW=707.27' (Dynamic Tailwater)
\&1=Culvert (Passes 5.71 cfs of 9.49 cfs potential flow)

- 3=Orifice/Grate (Weir Controls 1.38 cfs @ 1.16 fps)
-5=Orifice/Grate (Orifice Controls 2.75 cfs @ 9.33 fps)
—7=Orifice/Grate (Orifice Controls 1.59 cfs @ 5.39 fps)
Secondary OutFlow Max=1.90 cfs @ 12.23 hrs HW=728.63' TW=0.00' (Dynamic Tailwater)
$\mathbf{2}=$ Culvert (Passes 1.90 cfs of 3.16 cfs potential flow)
-4=Orifice/Grate (Weir Controls 0.46 cfs @ 1.16 fps)
- $\mathbf{6 = O r i f i c e} /$ Grate (Orifice Controls 0.92 cfs @ 9.33 fps)
—8=Orifice/Grate (Orifice Controls 0.53 cfs @ 5.39 fps)

Summary for Pond RG27: Rain Garden Lot 27

Primary OutFlow Max=0.68 cfs @ 12.26 hrs HW=758.48' TW=707.41' (Dynamic Tailwater)
\&1=Culvert (Passes 0.68 cfs of 1.60 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.20 cfs @ 9.20 fps)
—4=Orifice/Grate (Orifice Controls 0.48 cfs @ 5.53 fps)

Summary for Pond RG28: Rain Garden Lot 28

Inflow Area =	28,665 sf,	erviou	Inflow Depth > 3.33" for 25YearMass event
Inflow	2.14 cfs @	12.16 hrs , Volume=	7,952 cf
Outflow	1.85 cfs @	12.23 hrs , Volume=	7,941 cf, Atten= 14\%, Lag= 4.4 min
Primary	1.85 cfs @	12.23 hrs , Volume=	7,941 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 757.53' @ 12.23 hrs Surf.Area= 861 sf Storage= 511 cf
Plug-Flow detention time $=4.3 \mathrm{~min}$ calculated for $7,941 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=3.5 \mathrm{~min}(834.7-831.2$)

Primary OutFlow Max=1.85 cfs @ 12.23 hrs HW=757.53' TW=707.30' (Dynamic Tailwater)
$\AA_{1}=$ Culvert (Passes 1.85 cfs of 2.91 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.06 cfs @ 0.58 fps)

- 3=Orifice/Grate (Orifice Controls 0.90 cfs @ 9.21 fps)
—4=Orifice/Grate (Orifice Controls 0.89 cfs @ 5.08 fps)

Summary for Pond RG30: Rain Garden Lot 30

Inflow Area =		6,740 sf, 65.0	Impervious, Inflow Depth > 5.02" for 25YearMass event
Inflow =		0.90 cfs @ 12.07 h	rs, Volume $=\quad 2,818 \mathrm{cf}$
Outflow =		0.62 cfs @ 12.15	rs, Volume $=\quad 2,810 \mathrm{cf}$, Atten= $=30 \%$, Lag= 4.5 min
Primary =		0.62 cfs @ 12.15	rs, Volume $=\quad 2,810 \mathrm{cf}$
Routed to	Pond IB	IB 7.1 : Infiltration B	
Routing by Dy	Dyn-Stor	r-Ind method, Time	Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 7	731.22'	@ 12.15 hrs Surf.	Area= 777 sf Storage $=406 \mathrm{cf}$
Plug-Flow de	etention	time $=14.6 \mathrm{~min}$ cal	ulated for 2,809 cf (100\% of inflow)
Center-of-Ma	ass det.	time $=12.8 \mathrm{~min}(79$	5.2-782.3)
Volume	Invert	t Avail.Storage	Storage Description
\#1	727.75'	' 47 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$727.75{ }^{\prime}$	' 269 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
\#3	$730.75{ }^{\prime}$	' 30 cf	$4.00^{\prime} \mathrm{W}$ x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	731.00^{\prime}	' 373 cf	$4.00{ }^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0$
		720 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Primary	727.75'	6.0" Round Culvert
			$\mathrm{L}=10.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 727.75' / 727.65' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	731.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	727.75'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	730.00'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=0.62 cfs @ 12.15 hrs HW=731.22' TW=706.83' (Dynamic Tailwater)
\& $1=$ Culvert (Passes 0.62 cfs of 1.70 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.19 cfs @ 8.86 fps)
4=Orifice/Grate (Orifice Controls 0.43 cfs @ 4.94 fps)

Summary for Link P7: AP7

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment P7.1: AP7 - To Wetland E

Runoff $=\quad 6.65$ cfs @ 12.13 hrs, Volume $=23,356$ cf, Depth> 2.84"

Routed to Link P7 : AP7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P7.10: Lot 27

Runoff $=\quad 1.40$ cfs @ 12.13 hrs, Volume= $4,995 \mathrm{cf}$, Depth> 5.55"
Routed to Pond RG27 : Rain Garden Lot 27
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description
*	3,845	90	Residential Lots, 65\% imp, HSG C
	2,045	70	Woods, Good, HSG C
	940	89	Gravel roads, HSG C
	3,970	74	>75\% Grass cover, Good, HSG C
	10,800	80	Weighted Average
	8,301		76.86\% Pervious Area
	2,499		23.14\% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
9.7	50	0.0400	0.09	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.00 "$ 0.2	35
0.2000	3.13	Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps			
9.9	85	Total			

Summary for Subcatchment P7.11: Lot 28

Runoff $=\quad 3.12$ cfs @ 12.16 hrs, Volume= $11,591 \mathrm{cf}$, Depth> 4.85"

Routed to Pond RG28: Rain Garden Lot 28
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P7.12: Lot 28-29

Runoff $=\quad 3.01$ cfs @ 12.07 hrs, Volume= $9,596 \mathrm{cf}$, Depth> 6.73"
Routed to Pond RG-28/29 : Rain Garden Lots 28-29
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description
*	17,105	90	Residential Lots, 65\% imp, HSG C
	$\begin{array}{r} 5,987 \\ 11,118 \end{array}$		35.00\% Pervious Area 65.00\% Impervious Area

Summary for Subcatchment P7.14: Clubhouse Parking Lot

Runoff $=\quad 1.50$ cfs @ 12.07 hrs, Volume= $4,961 \mathrm{cf}$, Depth> 7.21"
Routed to Pond CB1 : CB1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	>75\% Grass cover, Good, HSG C		
	1,410	$\begin{aligned} & 74 \\ & 98 \end{aligned}$			
	750		>75\% Grass cover, Good, HSG C Roofs, HSG C		
	6,100	98	Paved parking, HSG C		
	8,260	94	Weighted Average 17.07\% Pervious Area 82.93\% Impervious Area		
	1,410				
	6,850				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{array}{rr} \text { e } & \text { Velocity } \\ \text { t) } & (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P7.2: Lots 14-15

Runoff = 1.44 cfs @ 12.07 hrs, Volume= 4,594 cf, Depth> 6.73"
Routed to Pond RG15L : Rain Garden 15L
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Runoff $=\quad 0.67$ cfs @ 12.07 hrs, Volume= $2,325 \mathrm{cf}$, Depth> 7.69"

Routed to Pond RG21 : CB-D1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf) CN Description					
$\frac{3,630}{3,630}$		98	Paved roads w/curbs \& sewers, HSG C		
			00.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$	Description

Summary for Subcatchment P7.4: Lots 21-25

Runoff $=\quad 11.42$ cfs @ 12.18 hrs, Volume= $44,700 \mathrm{cf}$, Depth> 5.43"
Routed to Pond RG22-25 : Rain Gardens 22-25
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description
38,735	90	$1 / 8$ acre lots, 65\% imp, HSG C	
10,220	85	$1 / 8$ acre lots, 65\% imp, HSG B	
$*$	49,505	70	Woods, Good, HSG C
320	74	Grass Paver, Good, HSG C	
98,780	79	Weighted Average	
66,959		67.79\% Pervious Area	
31,821		32.21% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
9.7	50	0.0400	0.09	Sheet Flow, Woods: Light underbrush n= 0.8	50
0.0400	1.00	Shallow Concentrated Flow,			
2.6	230	0.0900	1.50	Woodland Kv=5.0 fps Shallow Concentrated Flow, Woodland Kv=5.0 fps	

Summary for Subcatchment P7.5: Basin 1

Runoff $=\quad 7.50$ cfs @ 12.10 hrs, Volume= $23,670 \mathrm{cf}$, Depth> 4.40"
Routed to Pond IB 7.1 : Infiltration Basin
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P7.6: Lots 17-20

Runoff = 4.12 cfs @ 12.07 hrs, Volume= 12,903 cf, Depth> 6.38"
Routed to Pond RG-16/20 : Rain Garden Lots 17-20
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	Area (sf)	CN	Description		
	11,200	$90 \quad 1$	1/8 acre lots, $65 \% \mathrm{imp}$, HSG C		
	13,081	$85 \quad 1$	1/8 acre lots	, $65 \% \mathrm{imp}$	HSG B
	24,281	87	Weighted Average		
	8,498		35.00\% Pervious Area		
	15,783		65.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
5.0					Direct Entry

Summary for Subcatchment P7.7: Lot 15

Runoff $=1.85$ cfs @ 12.07 hrs, Volume= 5,890 cf, Depth> 6.73"
Routed to Pond RG15H : Rain Garden 15H
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf) CN Description

$*$	10,500	90
3,675	Residential Lots, 65% imp, HSG C	
6,825	35.00% Pervious Area	
	65.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment P7.8: Lot 16

Runoff $=1.19$ cfs @ 12.07 hrs, Volume= 3,784 cf, Depth> 6.73"
Routed to Pond RG16 : Rain Garden Lot 16
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)		CN	Description		
*	6,745	90	esidential	Lots, 65\%	mp, HSG C
	$\begin{aligned} & \hline 2,361 \\ & 4,384 \end{aligned}$		$\begin{aligned} & 5.00 \% \mathrm{Pe} \\ & 5.00 \% \mathrm{Im} \end{aligned}$	vious Area ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description

Summary for Subcatchment P7.9: Lots 26-27

Runoff $=\quad 2.39$ cfs @ 12.07 hrs, Volume $=$
Routed to Pond RG-26/27 : Rain Garden Lots 26-27

7,632 cf, Depth> 6.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Primary OutFlow Max=1.50 cfs @ 12.07 hrs HW=727.69' TW=707.20' (Dynamic Tailwater)
亡-1=Culvert (Barrel Controls 1.50 cfs @ 3.68 fps)

Summary for Pond IB 7.1: Infiltration Basin

Inflow Area =	301,876 sf	40.36\% Impervious,	Inflow Depth > 4.99	99" for 100YearMass event
Inflow =	30.22 cfs @	12.13 hrs , Volume=	125,463 cf	
Outflow =	11.90 cfs @	12.53 hrs , Volume=	116,685 cf, Att	Atten= 61\%, Lag= 24.0 min
Discarded =	0.73 cfs @	12.53 hrs , Volume=	27,162 cf	
Primary = Routed to	$\begin{aligned} & 11.17 \mathrm{cfs} @ \\ & \text { P7 : AP7 } \end{aligned}$	12.53 hrs , Volume=	89,523 cf	
Secondary = Routed to	$\begin{gathered} 0.00 \mathrm{cfs} @ \\ \text { P7 : AP7 } \end{gathered}$	0.00 hrs , Volume=	0 cf	

Peak Elev= 708.97' @ 12.53 hrs Surf.Area= 13,105 sf Storage= 44,466 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=58.1 \mathrm{~min}$ (862.3-804.1)

Discarded OutFlow Max=0.73 cfs @ 12.53 hrs HW=708.97' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.73 cfs)
Primary OutFlow Max=11.17 cfs @ 12.53 hrs HW=708.97' TW=0.00' (Dynamic Tailwater)

-4=Orifice/Grate (Controls 0.00 cfs)

- $5=$ Custom Weir/Orifice (Weir Controls 8.14 cfs @ 5.21 fps)
$\square_{6=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 3.02$ cfs @ 8.66 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=704.00' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond RG-16/20: Rain Garden Lots 17-20

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 727.90' @ 12.16 hrs Surf.Area= 3,301 sf Storage= 1,854 cf

Plug-Flow detention time $=14.8 \mathrm{~min}$ calculated for $12,862 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=12.8 \mathrm{~min}(796.6-783.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1	724.25'	188 cf $\begin{aligned} & \text { 12.0" } \\ & \text { L= } 60.0^{\prime}\end{aligned}$	
\#2	$724.25{ }^{\prime}$	1,077 cf	4.00'W x $60.00{ }^{\prime} \mathrm{L} \times 3.00$ 'H Soil Media and Gravelx 4
			2,880 cf Overall - 188 cf Embedded $=2,692$ cf $\times 40.0 \%$ Voids
\#3	727.25'	120 cf	$4.00^{\prime} \mathrm{W} \times 60.00 ' \mathrm{~L} \mathrm{x} \mathrm{0.25'H} \mathrm{Mulch} \times 4$
			240 cf Overall $\times 50.0 \%$ Voids
\#4	727.50'	1,493 cf	$4.00^{\prime} \mathrm{W} \times 60.00{ }^{\prime} \mathrm{L} \times 1.00$ 'H Ponding $\mathrm{Z}=2.0 \times 4$
2,878 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	724.25' $\begin{array}{ll}\text { 6.0" } \\ & \mathrm{L}=1 \\ & \text { Inlet } \\ \\ \mathrm{n}=0\end{array}$	Round Culvert X 4.00
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 724.25' / 724.25' S=0.0000 '/' Cc= 0.900
			.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$728.00{ }^{\prime}$ 6.0	Horiz. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads
\#3	Device 1	$724.25{ }^{2.0}$	Vert. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	$726.50{ }^{\text {L }}$ Lim	Vert. Orifice/Grate X 4.00 C= 0.600
			ed to weir flow at low heads

Primary OutFlow Max=2.66 cfs @ 12.16 hrs HW=727.90' TW=707.85' (Dynamic Tailwater)
亡-1=Culvert (Passes 2.66 cfs of 6.97 cfs potential flow)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Orifice Controls 0.79 cfs @ 9.09 fps)
—4=Orifice/Grate (Orifice Controls 1.87 cfs @ 5.35 fps)

Summary for Pond RG-26/27: Rain Garden Lots 26-27

Inflow Area =	13,605	65.00\% Impervious,	pth >	6.73" for 100YearMass event
Inflow	2.39 cfs @	12.07 hrs, Volume=	7,632 cf	
Outflow	1.63 cfs @	12.15 hrs, Volume=	7,614 cf,	Atten $=32 \%, L a g=4.6 \mathrm{~min}$
Primary	1.63 cfs @	12.15 hrs, Volume=	7,614 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 748.08' @ 12.15 hrs Surf.Area= 1,747 sf Storage= 1,059 cf

Plug-Flow detention time $=14.4$ min calculated for $7,611 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= 12.9 min (787.6-774.8)

Volume	Invert	Avail.Storage	Storage Description
\#1	744.25'	94 cf 12.0" Round Pipe Storage $\times 2$ Inside \#2$\mathrm{L}=60.0^{\prime}$	
\#2	744.25'	538 cf	4.00 'W x 60.00'L x 3.00 'H Soil Media and Gravelx 2
\#3	747.25'	60 cf	1,440 cf Overall - 94 cf Embedded $=1,346$ cf $\times 40.0 \%$ Voids $4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch $\times 2$ 120 cf Overall $\times 50.0 \%$ Voids
\#4	747.50'	747 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding $\mathrm{Z}=2.0 \times 2$
$1,439 \mathrm{cf}$ Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	744.25' $\begin{array}{ll}\text { 6.0" } \\ & \mathrm{L}=1 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert X 2.00
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 744.25' / 744.15' S=0.0100 '/' Cc= 0.900
			.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	$748.00{ }^{6.0}$	Horiz. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#3	Device 1	744.25' 2.0	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#4	Device 1	746.50' 4.0"	Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads

Primary OutFlow Max=1.63 cfs @ $12.15 \mathrm{hrs} \mathrm{HW}=748.08^{\prime}$ TW=707.79' (Dynamic Tailwater)
\&1=Culvert (Passes 1.63 cfs of 3.58 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.23 cfs @ 0.92 fps)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.41 cfs @ 9.32 fps)

4=Orifice/Grate (Orifice Controls 1.00 cfs @ 5.72 fps)

Summary for Pond RG-28/29: Rain Garden Lots 28-29

 Routed to Pond IB 7.1 : Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 743.73' @ 12.13 hrs Surf.Area= 1,833 sf Storage= 1,187 cf
Plug-Flow detention time $=14.2$ min calculated for $9,575 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=12.8 \min (787.5-774.8)$

Summary for Pond RG15H: Rain Garden 15H

 Routed to Pond IB 7.1 : Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 719.41' @ 12.10 hrs Surf.Area= 720 sf Storage= 565 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $14.4 \min (789.2-774.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1	715.25'	47 cf 12.0" Round Pipe Storage Inside \#2$\mathrm{L}=60.0^{\prime}$	
\#2	715.25'	269 cf	4.00 'W x 60.00'L x 3.00'H Soil Media and Gravel
			720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
\#3	718.25'	30 cf	$4.00^{\prime} \mathrm{W}$ x $\mathbf{6 0 . 0 0}^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall $\times 50.0 \%$ Voids
\#4	718.50'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	717.25' $\begin{array}{ll}\text { 8.0" } \\ & \text { L= } \\ & \text { Inlet } \\ \\ \mathrm{n}=0\end{array}$	Round Culvert
			0.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 717.25' / 717.15' S=0.0100 '/' Cc= 0.900
			.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
\#2	Device 1	$719.00{ }^{\text {' }}$ 8.0"	Horiz. Orifice/Grate $\mathrm{C}=0.600$
			ed to weir flow at low heads
\#3	Device 1	717.25 ' 3.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	718.00 ' 3.0"	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	715.25' 2.41	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 11.80 hrs HW=718.51' (Free Discharge)
${ }^{L} 5=$ Exfiltration (Exfiltration Controls 0.04 cfs)
Primary OutFlow Max=1.68 cfs @ $12.10 \mathrm{hrs} \mathrm{HW}=719.41^{\prime} \mathrm{TW}=707.42^{\prime} \quad$ (Dynamic Tailwater)
$\Psi_{1}=$ Culvert (Passes 1.68 cfs of 2.27 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 1.08 cfs @ 3.09 fps)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.34 cfs @ 6.87 fps)
—4=Orifice/Grate (Orifice Controls 0.27 cfs @ 5.46 fps)

Summary for Pond RG15L: Rain Garden 15L

Volume	Invert	Avail.Storage	Storage Description
\#1	706.75'	47 cf 12.0" Round Pipe Storage Inside \#2$\mathrm{L}=60.0^{\prime}$	
\#2	706.75'	269 cf	4.00^{\prime} W x $60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 720 cf Overall - 47 cf Embedded $=673$ cf $\times 40.0 \%$ Voids
\#3	709.75'	30 cf	$4.00^{\prime} \mathrm{W}$ x $60.00^{\prime} \mathrm{L} \times 0.25^{\prime} \mathrm{H}$ Mulch 60 cf Overall x 50.0% Voids
\#4	710.00'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	708.75' $\begin{array}{ll} & 6.0 \\ & \mathrm{~L}=1 \\ & \text { Inlet } \\ & \mathrm{n}=0\end{array}$	Round Culvert
			.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 708.75' / 708.65' S=0.0100 '/' Cc= 0.900
			013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	710.50' ${ }^{6.0}$	Horiz. Orifice/Grate C= 0.600
			ed to weir flow at low heads
\#3	Device 1	708.75 ' 2.0"	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	$709.25{ }^{\prime} 4.0$	4.0" Vert. Orifice/Grate C= 0.600 Li2.410 in/hr Exfiltration over Surface
\#5	Discarded	706.75' 2.4	

Discarded OutFlow Max=0.04 cfs @ 11.91 hrs HW=710.01' (Free Discharge)
$L_{5=\text { Exfiltration (Exfiltration Controls } 0.04 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=1.22 cfs @ 12.11 hrs HW=710.86' TW=707.51' (Dynamic Tailwater)
L-1=Culvert (Passes 1.22 cfs of 1.29 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.56 cfs @ 2.87 fps)

- 3=Orifice/Grate (Orifice Controls 0.15 cfs @ 6.85 fps)
-4=Orifice/Grate (Orifice Controls 0.50 cfs @ 5.78 fps)

Summary for Pond RG16: Rain Garden Lot 16

Volume	Invert	Avail.Storage	Storage Description
\#1	730.25'	47 cf	12.0" Round Pipe Storage Inside \#2 $\mathrm{L}=60.0^{\prime}$
\#2	$730.25{ }^{\prime}$	269 cf	4.00^{\prime} W x $60.00^{\prime} \mathrm{L} \times 3.00^{\prime} \mathrm{H}$ Soil Media and Gravel 720 cf Overall -47 cf Embedded $=673 \mathrm{cf} \times 40.0 \%$ Voids
\#3	$733.25{ }^{\prime}$	30 cf	$4.00^{\prime} \mathrm{W}$ x $\mathbf{6 0 . 0 0}$ 'L x 0.25^{\prime} H Mulch 60 cf Overall x 50.0% Voids
\#4	733.50'	240 cf	$4.00^{\prime} \mathrm{W} \times 60.00^{\prime} \mathrm{L} \times 1.00^{\prime} \mathrm{H}$ Ponding
586 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Primary	732.25' $\begin{array}{ll} & \mathbf{6 . 0} \\ & \mathrm{L}=6 \\ & \text { Inlet }\end{array}$	Round Culvert
			0^{\prime} CPP, square edge headwall, $\mathrm{Ke}=0.500$
			/ Outlet Invert= 732.25' / 732.00' S=0.0417 '/l' Cc=0.900 013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	734.00' 6.	Horiz. Orifice/Grate $\mathrm{C}=0.600$
			ed to weir flow at low heads
\#3	Device 1	$732.25{ }^{\prime}$ 2.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	$732.75{ }^{\prime} 4.0$	Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#5	Discarded	730.25' 2.4	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 11.97 hrs HW=733.50' (Free Discharge)
$L_{5=\text { Exfiltration (Exfiltration Controls } 0.04 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=1.02 cfs @ $12.11 \mathrm{hrs} \mathrm{HW}=734.18^{\prime}$ TW=707.49' (Dynamic Tailwater)
$亡_{1}=$ Culvert (Passes 1.02 cfs of 1.23 cfs potential flow)
-2=Orifice/Grate (Weir Controls 0.40 cfs @ 1.40 fps)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.14 cfs @ 6.55 fps)
$\left\llcorner_{4}=\right.$ Orifice/Grate (Orifice Controls 0.47 cfs @ 5.42 fps)

Summary for Pond RG21: CB-D1

Primary OutFlow Max=0.67 cfs @ 12.07 hrs HW=725.94' TW=707.20' (Dynamic Tailwater)
\&-1=Culvert (Barrel Controls 0.67 cfs @ 3.01 fps)

Summary for Pond RG22-25: Rain Gardens 22-25

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 728.87' @ 12.22 hrs Surf.Area= 3,822 sf Storage= 2,626 cf
Plug-Flow detention time $=4.9 \mathrm{~min}$ calculated for $44,628 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=3.9 \mathrm{~min}(814.5-810.7)$

Primary OutFlow Max=8.03 cfs @ 12.22 hrs HW=728.87' TW=708.28' (Dynamic Tailwater)
\&1=Culvert (Passes 8.03 cfs of 9.81 cfs potential flow)

- 3=Orifice/Grate (Orifice Controls 3.46 cfs @ 2.93 fps)
- $\mathbf{5}=$ Orifice/Grate (Orifice Controls 2.83 cfs @ 9.63 fps)
$\square_{7=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 1.73$ cfs @ 5.89 fps)
Secondary OutFlow Max=2.68 cfs @ 12.22 hrs HW=728.87' TW=0.00' (Dynamic Tailwater)
4-2=Culvert (Passes 2.68 cfs of 3.27 cfs potential flow)
-4=Orifice/Grate (Orifice Controls 1.15 cfs @ 2.93 fps)
- $\mathbf{6 = O r i f i c e} /$ Grate (Orifice Controls 0.94 cfs @ 9.63 fps)
—8=Orifice/Grate (Orifice Controls 0.58 cfs @ 5.89 fps)

Summary for Pond RG27: Rain Garden Lot 27

Device	Routing	Invert	Outlet Devices
\#1	Primary	754.75'	6.0" Round Culvert
			$\mathrm{L}=36.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 754.75' / 753.50' S=0.0347 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	758.50'	6.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	$754.75{ }^{\prime}$	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 1	757.00'	4.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=1.19 cfs @ $12.20 \mathrm{hrs} \mathrm{HW}=758.73^{\prime}$ TW=708.15' (Dynamic Tailwater)
L- $_{1=\text { Culvert (Passes } 1.19 \mathrm{cfs} \text { of } 1.64 \text { cfs potential flow) }}$
-2=Orifice/Grate (Orifice Controls 0.45 cfs @ 2.31 fps)
-3=Orifice/Grate (Orifice Controls 0.21 cfs @ 9.51 fps)
—4=Orifice/Grate (Orifice Controls 0.53 cfs @ 6.02 fps)

Summary for Pond RG28: Rain Garden Lot 28

Device	Routing	Invert	Outlet Devices
\#1	Primary	753.75'	8.0" Round Culvert
			$\mathrm{L}=30.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 753.75' / 753.50' S=0.0083 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.35 sf
\#2	Device 1	757.50'	6.0" Horiz. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	753.75'	3.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	756.25'	4.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=2.95 cfs @ 12.20 hrs HW=757.80' TW=708.13' (Dynamic Tailwater)
$亡_{1}=$ Culvert (Passes 2.95 cfs of 3.02 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 1.03 cfs @ 2.62 fps)

- 3=Orifice/Grate (Orifice Controls 0.94 cfs @ 9.54 fps)
—4=Orifice/Grate (Orifice Controls 0.99 cfs @ 5.66 fps)

Summary for Pond RG30: Rain Garden Lot 30

Primary OutFlow Max=0.80 cfs @ 12.15 hrs HW=731.57' TW=707.80' (Dynamic Tailwater)
亡1=Culvert (Passes 0.80 cfs of 1.79 cfs potential flow)
——2=Orifice/Grate (Weir Controls 0.10 cfs @ 0.88 fps)
$-3=$ Orifice/Grate (Orifice Controls 0.20 cfs @ 9.31 fps)
—4=Orifice/Grate (Orifice Controls 0.50 cfs @ 5.71 fps)

Summary for Link P7: AP7

low Area	400,631 sf, 30.80\% Impervious,	Inflow Depth > 3.72" for
Inflow	15.69 cfs @ 12.32 hrs, Volume=	124,036 cf
Primary	15.69 cfs @ 12.32 hrs , Volume=	$124,036 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Down Gradient of Access Road

AP8 - To Southbridge Parcel 032-092
Idlewood Street

Reach

Summary for Subcatchment P8.1: Upgradient of Access Road

Runoff $=\quad 0.24$ cfs @ 12.16 hrs, Volume $=958 \mathrm{cf}$, Depth> 0.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

Summary for Subcatchment P8.2: Access Road

Runoff $=\quad 0.13 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= 395 cf , Depth> 1.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2YearMass Rainfall=3.24"

	Area (sf)	CN	Description		
	4,460	74	>75\% Grass cover, Good, HSG C		
	4,460		100.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment P8.3: Down Gradient of Access Road

Runoff $=\quad 0.08$ cfs @ 12.15 hrs, Volume= 310 cf , Depth> 0.85"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2YearMass Rainfall=3.24"

Area (sf)	CN	Description
4,095	70	Woods, Good, HSG C
290	74	$>75 \%$ Grass cover, Good, HSG C
4,385	70	Weighted Average
4,385		100.00% Pervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.8	50	0.0500	0.09	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00 "$
0.7	50	0.0500	1.12	Shallow Concentrated Flow, Woodland Kv=5.0 fps	
9.5	100	Total			

Summary for Pond GP1: Grass Pave

Inflow Area =	17,235 sf,	0.00\% Impervious,	Inflow Depth > 0.94" for 2YearMass event
Inflow	0.34 cfs @	12.13 hrs , Volume=	1,353 cf
Outflow	0.10 cfs @	12.02 hrs , Volume=	$1,353 \mathrm{cf}$, Atten= 70%, Lag $=0.0 \mathrm{~min}$
Discarded	0.10 cfs @	12.02 hrs , Volume=	1,353 cf
Primary	0.00 cfs @	0.00 hrs , Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 764.37' @ 12.59 hrs Surf.Area= 1,800 sf Storage= 267 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $14.5 \min (884.1-869.6)$

Discarded OutFlow Max=0.10 cfs @ 12.02 hrs HW=764.01' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.10 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=764.00' TW=0.00' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Link AP8: AP8 - To Southbridge Parcel 032-092 Idlewood Street

Inflow Area $=$	$21,620 \mathrm{sf}$,	0.00% Impervious,	Inflow Depth $>0.17 "$	for 2 YearMass event
Inflow	$=$	$0.08 \mathrm{cfs} @$	12.15 hrs, Volume=	310 cf
Primary	$=$	$0.08 \mathrm{cfs} @$	12.15 hrs , Volume=	310 cf , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Subcatchment P8.1: Upgradient of Access Road

Runoff $=\quad 0.63$ cfs @ 12.15 hrs, Volume $=\quad 2,288 \mathrm{cf}$, Depth> 2.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Summary for Subcatchment P8.2: Access Road

Runoff $=\quad 0.30$ cfs @ 12.08 hrs, Volume= 893 cf , Depth> 2.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

	Area (sf)	CN Description			
	4,460	$74>$	>75\% Gras	cover, Go	od, HSG C
4,460		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Summary for Subcatchment P8.3: Down Gradient of Access Road

Runoff $=\quad 0.21$ cfs @ 12.14 hrs, Volume= 756 cf , Depth> 2.07"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10YearMass Rainfall=5.05"

Area (sf)	CN	Description
4,095	70	Woods, Good, HSG C
290	74	$>75 \%$ Grass cover, Good, HSG C
4,385	70	Weighted Average
4,385		100.00% Pervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
8.8	50	0.0500	0.09	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00 "$	
0.7	50	0.0500	1.12	Shallow Concentrated Flow, Woodland Kv=5.0 fps		
9.5	100	Total				

Summary for Pond GP1: Grass Pave

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 764.76' @ 12.18 hrs Surf.Area= 1,800 sf Storage= 549 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=34.9 \min (878.8-843.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	764.00^{\prime}	958 cf	$8.00 ' W \times 225.00 ' L \times 1.33 ' H ~ P r i s m a t o i d ~$
		$2,394 \mathrm{cf}$ Overall $\times 40.0 \%$ Voids	

Device	Routing	Invert	Outlet Devices
\#1	Discarded	$764.00{ }^{\prime}$	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	764.75'	225.0' long x 5.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .003 .504 .004 .505 .005 .50
			Coef. (English) 2.342 .502 .702 .682 .682 .662 .6512 .652 .65
			$\begin{array}{lllllllllllll}2.65 & 2.67 & 2.66 & 2.68 & 2.70 & 2.74 & 2.79 & 2.88\end{array}$

Discarded OutFlow Max=0.10 cfs @ 11.77 hrs HW=764.01' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.10 cfs)
Primary OutFlow Max=0.73 cfs @ 12.18 hrs HW=764.76' TW=0.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls $0.73 \mathrm{cfs} @ 0.26 \mathrm{fps})$

Summary for Link AP8: AP8 - To Southbridge Parcel 032-092 Idlewood Street

Inflow Area =	21,620 sf,	,	Depth > 0.76" for
Inflow	1.04 cfs @	12.18 hrs , Volume=	1,377 cf
Primary	1.04 cfs @	12.18 hrs , Volume=	1,377 cf, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Subcatchment P8.1: Upgradient of Access Road

Runoff $=\quad 0.90$ cfs @ 12.15 hrs, Volume $=\quad 3,234$ cf, Depth> 3.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

Summary for Subcatchment P8.2: Access Road

Runoff $=\quad 0.42$ cfs @ 12.08 hrs, Volume $=1,239 \mathrm{cf}$, Depth> 3.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25YearMass Rainfall=6.18"

	rea (sf)	CN Description			
	4,460	74	75\% Gras	cover, Go	od, HSG C
4,460		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
5.0					Direct Entry

Summary for Subcatchment P8.3: Down Gradient of Access Road

Runoff $=\quad 0.31$ cfs @ 12.14 hrs, Volume= $\quad 1,075 \mathrm{cf}$, Depth> 2.94"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25 YearMass Rainfall $=6.18$ "

Area (sf)	CN	Description
4,095	70	Woods, Good, HSG C
290	74	$>75 \%$ Grass cover, Good, HSG C
4,385	70	Weighted Average
4,385		100.00\% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
8.8	50	0.0500	0.09	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$ Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0$ fps	
0.7	50	0.0500	1.12		
9.5	100	Total			

Summary for Pond GP1: Grass Pave

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 764.77' @ 12.10 hrs Surf.Area= 1,800 sf Storage= 552 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $32.1 \mathrm{~min}(866.2-834.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	764.00^{\prime}	958 cf	$8.00 ' W \times 225.00 ' L \times 1.33 ' H ~ P r i s m a t o i d ~$
		$2,394 \mathrm{cf}$ Overall $\times 40.0 \%$ Voids	

Device	Routing	Invert	Outlet Devices
\#1	Discarded	764.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	764.75'	225.0' long x 5.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .003 .504 .004 .505 .005 .50
			Coef. (English) 2.342 .502 .702 .682 .682 .662 .6512 .652 .65

Discarded OutFlow Max=0.10 cfs @ 11.67 hrs HW=764.01' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.10 cfs)
Primary OutFlow Max=1.17 cfs @ 12.10 hrs HW=764.77' TW=0.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls 1.17 cfs @ 0.31 fps)

Summary for Link AP8: AP8 - To Southbridge Parcel 032-092 Idlewood Street

Inflow Area =	21,620 sf,	0.00\% Impervious,	" for 25YearMass event
Inflow	1.46 cfs @	12.10 hrs , Volume=	2,456 cf
Primary	1.46 cfs @	12.10 hrs , Volume=	$2,456 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Subcatchment P8.1: Upgradient of Access Road

Runoff $=\quad 1.34$ cfs @ 12.14 hrs, Volume $=\quad 4,800 \mathrm{cf}$, Depth> 4.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Summary for Subcatchment P8.2: Access Road

Runoff $=0.60$ cfs @ 12.07 hrs, Volume $=1,806$ cf, Depth> 4.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

	rea (sf)	CN Description			
	4,460	74	75\% Gras	cover, Go	od, HSG C
4,460		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
5.0					Direct Entry

Summary for Subcatchment P8.3: Down Gradient of Access Road

Runoff $=\quad 0.46$ cfs @ 12.13 hrs, Volume $=1,606 \mathrm{cf}$, Depth> 4.40"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100YearMass Rainfall=7.93"

Area (sf)	CN	Description
4,095	70	Woods, Good, HSG C
290	74	$>75 \%$ Grass cover, Good, HSG C
4,385	70	Weighted Average
4,385		100.00\% Pervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
8.8	50	0.0500	0.09	Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00 "$
0.7	50	0.0500	1.12	Shallow Concentrated Flow, Woodland Kv=5.0 fps	
9.5	100	Total			

Summary for Pond GP1: Grass Pave

Inflow Area =	17,235 sf,	0.00\% Impervious,	Inflow Depth > 4.60" for 100YearMass event
Inflow	1.82 cfs @	12.12 hrs , Volume=	6,606 cf
Outflow	1.82 cfs @	12.12 hrs , Volume=	6,606 cf, Atten= 0\%, Lag= 0.1 min
Discarded =	0.10 cfs @	11.35 hrs, Volume=	3,805 cf
Primary	1.72 cfs @	12.12 hrs, Volume=	2,801 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 764.77' @ 12.12 hrs Surf.Area= 1,800 sf Storage= 556 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=28.1$ min (851.0-823.0)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	764.00	958 cf	$\mathbf{8 . 0 0 ' W \times 2 2 5 . 0 0} \mathbf{L} \times \mathbf{1 . 3 3}$ 'H Prismatoid
		$2,394 \mathrm{cf}$ Overall $\times 40.0 \%$ Voids	

Device	Routing	Invert	Outlet Devices
\#1	Discarded	764.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	764.75'	225.0' long x 5.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .003 .504 .004 .505 .005 .50
			Coef. (English) 2.342 .502 .702 .682 .682 .662 .6512 .652 .65

Discarded OutFlow Max=0.10 cfs @ 11.35 hrs HW=764.01' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.10 cfs)
Primary OutFlow Max=1.72 cfs @ 12.12 hrs HW=764.77' TW=0.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls 1.72 cfs @ 0.35 fps)

Summary for Link AP8: AP8 - To Southbridge Parcel 032-092 Idlewood Street

In	21,620	0.00\% Impervious,	2.45 " for
Inflow	2.18 cfs @	12.12 hrs , Volume=	4,408 cf
Primary	2.18 cfs @	12.12 hrs , Volume=	4,408 cf, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

APPENDIX F ADDITIONAL DRAINAGE CALCULATION WORKSHEETS

[^8]

[^9]

[^10]

[^11]

[^12]Water Resources Research, 3, pp. 227-234.

[^13]| | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.14 | 0.18 | 0.22 | 0.26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.02 | 0.0041 | 0.0073 | 0.0101 | 0.0125 | 0.0146 | 0.0184 | 0.0216 | 0.0243 | 0.0267 |
| 0.04 | 0.0073 | 0.0135 | 0.0188 | 0.0236 | 0.0278 | 0.0353 | 0.0416 | 0.0470 | 0.0518 |
| 0.06 | 0.0101 | 0.0188 | 0.0266 | 0.0335 | 0.0398 | 0.0509 | 0.0602 | 0.0684 | 0.0754 |
| 0.08 | 0.0125 | 0.0236 | 0.0335 | 0.0425 | 0.0508 | 0.0652 | 0.0776 | 0.0884 | 0.0978 |
| 0.10 | 0.0146 | 0.0278 | 0.0398 | 0.0508 | 0.0608 | 0.0786 | 0.0939 | 0.1072 | 0.1188 |
| 0.14 | 0.0184 | 0.0353 | 0.0509 | 0.0652 | 0.0786 | 0.1025 | 0.1232 | 0.1414 | 0.1573 |
| 0.18 | 0.0216 | 0.0416 | 0.0602 | 0.0776 | 0.0939 | 0.1232 | 0.1490 | 0.1716 | 0.1916 |
| 0.22 | 0.0243 | 0.0470 | 0.0684 | 0.0884 | 0.1072 | 0.1414 | 0.1716 | 0.1984 | 0.2222 |
| 0.26 | 0.0267 | 0.0518 | 0.0754 | 0.0978 | 0.1188 | 0.1573 | 0.1916 | 0.2222 | 0.2494 |
| 0.30 | 0.0288 | 0.0559 | 0.0817 | 0.1060 | 0.1290 | 0.1714 | 0.2094 | 0.2433 | 0.2737 |
| 0.34 | 0.0306 | 0.0596 | 0.0871 | 0.1133 | 0.1381 | 0.1839 | 0.2251 | 0.2621 | 0.2954 |
| 0.38 | 0.0322 | 0.0628 | 0.0920 | 0.1197 | 0.1461 | 0.1949 | 0.2391 | 0.2789 | 0.3147 |
| 0.42 | 0.0337 | 0.0657 | 0.0963 | 0.1254 | 0.1532 | 0.2048 | 0.2515 | 0.2938 | 0.3320 |
| 0.46 | 0.0349 | 0.0683 | 0.1001 | 0.1305 | 0.1595 | 0.2135 | 0.2626 | 0.3071 | 0.3474 |
| 0.50 | 0.0361 | 0.0705 | 0.1035 | 0.1350 | 0.1650 | 0.2212 | 0.2724 | 0.3189 | 0.3612 |
| 0.54 | 0.0371 | 0.0725 | 0.1065 | 0.1389 | 0.1700 | 0.2281 | 0.2812 | 0.3295 | 0.3735 |
| 0.58 | 0.0380 | 0.0743 | 0.1091 | 0.1425 | 0.1744 | 0.2343 | 0.2890 | 0.3389 | 0.3844 |
| 0.62 | 0.0387 | 0.0759 | 0.1115 | 0.1456 | 0.1783 | 0.2397 | 0.2959 | 0.3472 | 0.3941 |
| 0.66 | 0.0394 | 0.0773 | 0.1136 | 0.1484 | 0.1818 | 0.2445 | 0.3020 | 0.3547 | 0.4027 |
| 0.70 | 0.0401 | 0.0785 | 0.1154 | 0.1509 | 0.1849 | 0.2488 | 0.3075 | 0.3612 | 0.4104 |
| 0.74 | 0.0406 | 0.0796 | 0.1171 | 0.1531 | 0.1876 | 0.2526 | 0.3123 | 0.3671 | 0.4172 |
| 0.78 | 0.0411 | 0.0806 | 0.1185 | 0.1550 | 0.1900 | 0.2559 | 0.3166 | 0.3722 | 0.4232 |
| 0.82 | 0.0415 | 0.0814 | 0.1198 | 0.1567 | 0.1921 | 0.2589 | 0.3203 | 0.3768 | 0.4286 |
| 0.86 | 0.0419 | 0.0822 | 0.1209 | 0.1582 | 0.1940 | 0.2615 | 0.3237 | 0.3808 | 0.4333 |
| 0.90 | 0.0422 | 0.0828 | 0.1219 | 0.1595 | 0.1957 | 0.2638 | 0.3266 | 0.3844 | 0.4374 |
| 0.94 | 0.0425 | 0.0834 | 0.1228 | 0.1607 | 0.1971 | 0.2658 | 0.3292 | 0.3875 | 0.4411 |
| 0.98 | 0.0428 | 0.0839 | 0.1236 | 0.1617 | 0.1984 | 0.2676 | 0.3314 | 0.3902 | 0.4442 |
| 1.00 | 0.0429 | 0.0842 | 0.1239 | 0.1622 | 0.1990 | 0.2684 | 0.3324 | 0.3914 | 0.4457 |
| 1.20 | 0.0437 | 0.0858 | 0.1263 | 0.1654 | 0.2030 | 0.2740 | 0.3396 | 0.4001 | 0.4558 |
| 1.40 | 0.0441 | 0.0866 | 0.1275 | 0.1669 | 0.2049 | 0.2767 | 0.3431 | 0.4043 | 0.4608 |
| 1.80 | 0.0444 | 0.0871 | 0.1283 | 0.1680 | 0.2062 | 0.2785 | 0.3454 | 0.4071 | 0.4641 |
| 2.00 | 0.0444 | 0.0871 | 0.1284 | 0.1681 | 0.2064 | 0.2787 | 0.3457 | 0.4075 | 0.4645 |
| 2.20 | 0.0444 | 0.0872 | 0.1284 | 0.1682 | 0.2065 | 0.2788 | 0.3458 | 0.4076 | 0.4646 |
| 2.50 | 0.0444 | 0.0872 | 0.1284 | 0.1682 | 0.2065 | 0.2788 | 0.3458 | 0.4077 | 0.4647 |
| 3.00 | 0.0444 | 0.0872 | 0.1284 | 0.1682 | 0.2065 | 0.2789 | 0.3458 | 0.4077 | 0.4647 |

0.30	0.34	0.38	0.42	0.46	0.50	0.54	0.58	0.62	0.66
0.0288	0.0306	0.0322	0.0337	0.0349	0.0361	0.0371	0.0380	0.0387	0.0394
0.0559	0.0596	0.0628	0.0657	0.0683	0.0705	0.0725	0.0743	0.0759	0.0773
0.0817	0.0871	0.0920	0.0963	0.1001	0.1035	0.1065	0.1091	0.1115	0.1136
0.1060	0.1133	0.1197	0.1254	0.1305	0.1350	0.1389	0.1425	0.1456	0.1484
0.1290	0.1381	0.1461	0.1532	0.1595	0.1650	0.1700	0.1744	0.1783	0.1818
0.1714	0.1839	0.1949	0.2048	0.2135	0.2212	0.2281	0.2343	0.2397	0.2445
0.2094	0.2251	0.2391	0.2515	0.2626	0.2724	0.2812	0.2890	0.2959	0.3020
0.2433	0.2621	0.2789	0.2938	0.3071	0.3189	0.3295	0.3389	0.3472	0.3547
0.2737	0.2954	0.3147	0.3320	0.3474	0.3612	0.3735	0.3844	0.3941	0.4027
0.3009	0.3252	0.3470	0.3665	0.3839	0.3995	0.4134	0.4257	0.4368	0.4466
0.3252	0.3520	0.3761	0.3976	0.4169	0.4341	0.4495	0.4633	0.4756	0.4865
0.3470	0.3761	0.4022	0.4256	0.4466	0.4654	0.4823	0.4973	0.5108	0.5227
0.3665	0.3976	0.4256	0.4508	0.4734	0.4937	0.5119	0.5281	0.5427	0.5556
0.3839	0.4169	0.4466	0.4734	0.4975	0.5191	0.5385	0.5559	0.5715	0.5854
0.3995	0.4341	0.4654	0.4937	0.5191	0.5420	0.5626	0.5810	0.5975	0.6122
0.4134	0.4495	0.4823	0.5119	0.5385	0.5626	0.5842	0.6036	0.6209	0.6364
0.4257	0.4633	0.4973	0.5281	0.5559	0.5810	0.6036	0.6238	0.6420	0.6582
0.4368	0.4756	0.5108	0.5427	0.5715	0.5975	0.6209	0.6420	0.6609	0.6778
0.4466	0.4865	0.5227	0.5556	0.5854	0.6122	0.6364	0.6582	0.6778	0.6953
0.4553	0.4962	0.5334	0.5672	0.5977	0.6254	0.6503	0.6728	0.6929	0.7110
0.4630	0.5048	0.5429	0.5774	0.6087	0.6371	0.6627	0.6857	0.7064	0.7250
0.4699	0.5125	0.5513	0.5865	0.6185	0.6475	0.6736	0.6972	0.7184	0.7375
0.4760	0.5192	0.5587	0.5946	0.6272	0.6567	0.6834	0.7074	0.7291	0.7486
0.4813	0.5252	0.5653	0.6017	0.6348	0.6648	0.6920	0.7165	0.7386	0.7584
0.4860	0.5305	0.5711	0.6080	0.6416	0.6721	0.6996	0.7245	0.7469	0.7671
0.4902	0.5351	0.5762	0.6136	0.6476	0.6784	0.7063	0.7316	0.7543	0.7748
0.4938	0.5392	0.5807	0.6184	0.6528	0.6840	0.7123	0.7378	0.7608	0.7816
0.4955	0.5410	0.5827	0.6206	0.6552	0.6865	0.7150	0.7406	0.7638	0.7846
0.5070	0.5540	0.5969	0.6362	0.6719	0.7044	0.7339	0.7605	0.7846	0.8064
0.5127	0.5603	0.6039	0.6438	0.6801	0.7132	0.7432	0.7704	0.7949	0.8171
0.5165	0.5645	0.6086	0.6489	0.6856	0.7190	0.7494	0.7769	0.8018	0.8243
0.5169	0.5651	0.6092	0.6495	0.6863	0.7198	0.7502	0.7778	0.8027	0.8252
0.5171	0.5653	0.6094	0.6497	0.6865	0.7200	0.7505	0.7781	0.8030	0.8255
0.5172	0.5653	0.6095	0.6498	0.6867	0.7202	0.7506	0.7782	0.8032	0.8257
0.5172	0.5654	0.6095	0.6499	0.6867	0.7202	0.7506	0.7782	0.8032	0.8257

0.70	0.74	0.78	0.82	0.86	0.90	0.94	0.98	1.00	1.20
0.0401	0.0406	0.0411	0.0415	0.0419	0.0422	0.0425	0.0428	0.0429	0.0437
0.0785	0.0796	0.0806	0.0814	0.0822	0.0828	0.0834	0.0839	0.0842	0.0858
0.1154	0.1171	0.1185	0.1198	0.1209	0.1219	0.1228	0.1236	0.1239	0.1263
0.1509	0.1531	0.1550	0.1567	0.1582	0.1595	0.1607	0.1617	0.1622	0.1654
0.1849	0.1876	0.1900	0.1921	0.1940	0.1957	0.1971	0.1984	0.1990	0.2030
0.2488	0.2526	0.2559	0.2589	0.2615	0.2638	0.2658	0.2676	0.2684	0.2740
0.3075	0.3123	0.3166	0.3203	0.3237	0.3266	0.3292	0.3314	0.3324	0.3396
0.3612	0.3671	0.3722	0.3768	0.3808	0.3844	0.3875	0.3902	0.3914	0.4001
0.4104	0.4172	0.4232	0.4286	0.4333	0.4374	0.4411	0.4442	0.4457	0.4558
0.4553	0.4630	0.4699	0.4760	0.4813	0.4860	0.4902	0.4938	0.4955	0.5070
0.4962	0.5048	0.5125	0.5192	0.5252	0.5305	0.5351	0.5392	0.5410	0.5540
0.5334	0.5429	0.5513	0.5587	0.5653	0.5711	0.5762	0.5807	0.5827	0.5969
0.5672	0.5774	0.5865	0.5946	0.6017	0.6080	0.6136	0.6184	0.6206	0.6362
0.5977	0.6087	0.6185	0.6272	0.6348	0.6416	0.6476	0.6528	0.6552	0.6719
0.6254	0.6371	0.6475	0.6567	0.6648	0.6721	0.6784	0.6840	0.6865	0.7044
0.6503	0.6627	0.6736	0.6834	0.6920	0.6996	0.7063	0.7123	0.7150	0.7339
0.6728	0.6857	0.6972	0.7074	0.7165	0.7245	0.7316	0.7378	0.7406	0.7605
0.6929	0.7064	0.7184	0.7291	0.7386	0.7469	0.7543	0.7608	0.7638	0.7846
0.7110	0.7250	0.7375	0.7486	0.7584	0.7671	0.7748	0.7816	0.7846	0.8064
0.7272	0.7417	0.7546	0.7660	0.7762	0.7852	0.7932	0.8002	0.8034	0.8259
0.7417	0.7566	0.7698	0.7816	0.7921	0.8014	0.8096	0.8168	0.8201	0.8434
0.7546	0.7698	0.7834	0.7956	0.8063	0.8159	0.8243	0.8317	0.8351	0.8591
0.7660	0.7816	0.7956	0.8080	0.8190	0.8288	0.8374	0.8450	0.8485	0.8731
0.7762	0.7921	0.8063	0.8190	6.8302	0.8402	0.8491	0.8569	0.8604	0.8855
0.7852	0.8014	0.8159	0.8288	0.8402	0.8504	0.8594	0.8674	0.8710	0.8966
0.7932	0.8096	0.8243	0.8374	0.8491	0.8594	0.8686	0.8767	0.8803	0.9064
0.8002	0.8168	0.8317	0.8450	0.8569	0.8674	0.8767	0.8849	0.8886	0.9151
0.8034	0.8201	0.8351	0.8485	0.8604	0.8710	0.8803	0.8886	0.8924	0.9191
0.8259	0.8434	0.8591	0.8731	0.8855	0.8966	0.9064	0.9151	0.9191	0.9472
0.9370	0.8549	0.8710	0.8853	0.8980	0.9094	0.9195	0.9284	0.9324	0.9614
0.8445	0.8627	0.8789	0.8935	0.9065	0.9180	0.9282	0.9373	0.9414	0.9709
0.8454	0.8636	0.8799	0.8945	0.9075	0.9191	0.9294	0.9384	0.9426	0.9722
0.8458	0.8640	0.8803	0.8949	0.9079	0.9195	0.9298	0.9389	0.9430	0.9726
0.8460	0.8642	0.8805	0.8951	0.9081	0.9197	0.9300	0.9391	0.9432	0.9728
0.8460	0.8642	0.8805	0.8951	0.9081	0.9197	0.9300	0.9391	0.9433	0.9729

1.40	1.80	2.00	2.20	2.50	3.00
0.0441	0.0444	0.0444	0.0444	0.0444	0.0444
0.0866	0.0871	0.0871	0.0872	0.0872	0.0872
0.1275	0.1283	0.1284	0.1284	0.1284	0.1284
0.1669	0.1680	0.1681	0.1682	0.1682	0.1682
0.2049	0.2062	0.2064	0.2065	0.2065	0.2065
0.2767	0.2785	0.2787	0.2788	0.2788	0.2789
0.3431	0.3454	0.3457	0.3458	0.3458	0.3458
0.4043	0.4071	0.4075	0.4076	0.4077	0.4077
0.4608	0.4641	0.4645	0.4646	0.4647	0.4647
0.5127	0.5165	0.5169	0.5171	0.5172	0.5172
0.5603	0.5645	0.5651	0.5653	0.5653	0.5654
0.6039	0.6086	0.6092	0.6094	0.6095	0.6095
0.6438	0.6489	0.6495	0.6497	0.6498	0.6499
0.6801	0.6856	0.6863	0.6865	0.6867	0.6867
0.7132	0.7190	0.7198	0.7200	0.7202	0.7202
0.7432	0.7494	0.7502	0.7505	0.7506	0.7506
0.7704	0.7769	0.7778	0.7781	0.7782	0.7782
0.7949	0.8018	0.8027	0.8030	0.8032	0.8032
0.8171	0.8243	0.8252	0.8255	0.8257	0.8257
0.8370	0.8445	0.8454	0.8458	0.8460	0.8460
0.8549	0.8627	0.8636	0.8640	0.8642	0.8642
0.8710	0.8789	0.8799	0.8803	0.8805	0.8805
0.8853	0.8935	0.8945	0.8949	0.8951	0.8951
0.8980	0.9065	0.9015	0.9079	0.9081	0.9081
0.9094	0.9180	0.9191	0.9195	0.9197	0.9197
0.9195	0.9282	0.9294	0.9298	0.9300	0.9300
0.9284	0.9373	0.9384	0.9389	0.9391	0.9391
0.9324	0.9414	0.9426	0.9430	0.9432	0.9433
0.9614	0.9709	0.9722	0.9726	0.9728	0.9729
0.9759	0.9858	0.9871	0.9875	0.9878	0.9878
0.9858	0.9959	0.9972	0.9977	0.9979	0.9980
0.9871	0.9972	0.9985	0.9990	0.9992	0.9993
0.9875	0.9977	0.9990	0.9995	0.9997	0.9998
0.9878	0.9979	0.9992	0.9997	1.0000	1.0000
0.9878	0.9980	0.9993	0.9998	1.0000	1.0000

Field measurements of hydraulic conductivity should be used for all but pr

What follows are four sets of qualitative conductivity estimates. An est on the most similar soil type from as many sour

Reference \#1		
Material	Intrinsic Permeability (darcys)	Hydraulic Conductivity (cm/s)
Clay	$10^{-6}-10^{-3}$	$10^{-9}-10^{-6}$
Silt, sandy silts, clayey sands, till	$10^{-3}-10^{-1}$	$10^{-6}-10^{-4}$
Silty sands, fine sands	$10^{-2}-10^{-1}$	$10^{-5}-10^{-3}$
Well-sorted sands, glacial outwash	$1.0-10^{2}$	$10^{-3-10^{-1}}$
Well-sorted gravel	$10.0-10^{3}$	$10^{-2}-1.0$
Applied Hydrology 4th Edition, C.W. Fetter		

Sediment or rock type	$\begin{array}{\|c\|} \text { Hydraulic } \\ \text { conductivity, } \mathrm{m} / \text { day } \end{array}$	Rock Type
Clays	$10^{-7}-10^{-3}$	
Silts	$10^{-4}-10^{-0}$	Cenozoic floo
Fine to coarse sands	$10^{-2}-10^{+3}$	Dense, unfractured
Gravels	$10^{+2}-10^{+5}$	Vesicular
Glacial till	See Table 1	Interbeds
Shales (matrix)	$10^{-8}-10^{-4}$	
Shales (fractured and weathered)	$10^{-4}-10^{0}$	Vesicular
Sandstones (wellcemented)	$10^{-5}-10^{-2}$	Tuffs
Sandstones (friable)	$10^{-3}-10^{0}$	Densely welded (matrix)
Carbonates	See Table 3	Densely welded (fractured)
Salt	$10^{-10}-10^{-8}$	Nonwelded
Anhydrite	$10^{-7}-10^{-6}$	
Unfractured igneous and metamorphic rocks	$10^{-9}-10^{-5}$	
Fractured igneous and	$10-510-1$	

Referenc

FIGURE 5.3.2 Hydraulic conductivity sorted by soil texture. (Reproduced from Ref. 83 with permission.)

-eliminary evaluation of mounding

:imated conductivity should be selected based
 res as are applicable.

Reference \#2	
Geologic Material	Hydraulic Conductivity, m / s
Coarse gravels	$10^{-1}-10^{-2}$
Sands and gravels	$10^{-2-10^{-5}}$
Fine sands, silts, loess	$10^{-5}-10^{-9}$
Clay, shale, glacial till	$10^{-5}-10^{-13}$
Dolomitic limestones	$10^{-3}-10^{-5}$
Weathered chalk	$10^{-3}-10^{-5}$
Unweathered chalk	$10^{-6-10^{-9}}$
Limestone	$10^{-3}-10^{-9}$
Sandstone	$10^{-4}-10^{-10}$
Unweathered granite, gneiss, compact basalt	$10^{-7}-10^{-13}$
Practical Handbook of Ground-Water	
Monitoring 1991, David M. Nielsen	

Reference \#3					
1	Table 2				Tab
Hydraulic Conductivity, m/day	Hydraulic Conductivity, m/day				Lithology
	Glacial Deposits	Unweathered	Weathered	Fractured	
d basalts	Basal till	$10^{-6}-10^{-2}$	$10^{-4}-10^{-1}$	$10^{-4}-10^{0}$	Carbonate mud
$10^{-6}-10^{-3}$	Supraglacial till	$10^{-4}-10^{0}$	$10^{-4}-10^{0}$	$10^{-4}-10^{0}$	Dolomite
$10^{-4}-10^{-3}$	Glaciolacustrine	$10^{-8}-10^{-4}$		$10^{-6}-10^{-3}$	Tertiary limestone
$10^{-3}-10^{+3}$	Loess	$10^{-6}-10^{0}$	$10^{-5}-10^{-2}$		Paleozoic limestone
	Glaciofluvial	$10^{-6}-10^{+2}$			Oolitic limestone
basalts	Handbook of Hydrology, David R. Maidment				Holocene coral limestone
$10^{+1}-10^{+3}$					
					Karstified limestone
					Chalk
<10-6					
$10^{-6}-10^{+1}$					
$10^{-3}-10^{-2}$					

e \#4

FIGURE 5.3.3 Saturated hydraulic conductivity for USDA soil texture triangle. (Reproduced from Ref. 80 by permission of ASCE.)

[^14]| le 3 |
| :---: |
| Hydraulic
 Conductivity, m/day |
| $10^{-3}-10^{-1}$ |
| $10^{-4}-10^{0}$ |
| $10^{-4}-10^{0}$ |
| $10^{-4}-10^{0}$ |
| $10^{-2}-10^{-1}$ |
| $10^{2}-10^{4}$ |
| $10^{-1}-10^{7}$ |
| $10^{-3}-10^{0}$ |
| |

What follows are two sets of specific yield estimates. An estimated specific yield should be selected based on the most similar soil type from as many sources as are applicable.

Reference \#1			
Material	Specific Yield		
	Maximum	Minimum	Average
Clay	0.05	0	0.02
Sandy clay	0.12	0.03	0.07
Silt	0.19	0.03	0.07
Fine Sand	0.28	0.1	0.21
Medium Sand	0.32	0.15	0.26
Coarse Sand	0.35	0.2	0.27
Gravelly Sand	0.35	0.2	0.25
Fine gravel	0.35	0.21	0.25
Medium gravel	0.26	0.13	0.23
Coarse gravel	0.26	0.12	0.22
Applied Hydrology 4th Edition, C.W. Fetter			

Reference \#2	
Rocks	Specific Yield
Clay	$0.01-0.10$
Sand	$0.10-0.30$
Gravel	$0.15-0.30$
Sand and gravel	$0.15-0.25$
Sandstone	$0.05-0.15$
Shale	$0.005-0.05$
Limestone	$0.005-0.05$
Pra	

Practical Handbook of Groundwater Monitoring 1991, David M.

Nielsen

[^15]

[^16]

[^17]

[^18]
Groundwater Mounding Analysis - Hantush Method

[^19]

[^20]

[^21]

[^22]

[^23]

[^24]

[^25]

[^26]Water Resources Research, 3, pp. 227-234.

[^27]| | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.14 | 0.18 | 0.22 | 0.26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.02 | 0.0041 | 0.0073 | 0.0101 | 0.0125 | 0.0146 | 0.0184 | 0.0216 | 0.0243 | 0.0267 |
| 0.04 | 0.0073 | 0.0135 | 0.0188 | 0.0236 | 0.0278 | 0.0353 | 0.0416 | 0.0470 | 0.0518 |
| 0.06 | 0.0101 | 0.0188 | 0.0266 | 0.0335 | 0.0398 | 0.0509 | 0.0602 | 0.0684 | 0.0754 |
| 0.08 | 0.0125 | 0.0236 | 0.0335 | 0.0425 | 0.0508 | 0.0652 | 0.0776 | 0.0884 | 0.0978 |
| 0.10 | 0.0146 | 0.0278 | 0.0398 | 0.0508 | 0.0608 | 0.0786 | 0.0939 | 0.1072 | 0.1188 |
| 0.14 | 0.0184 | 0.0353 | 0.0509 | 0.0652 | 0.0786 | 0.1025 | 0.1232 | 0.1414 | 0.1573 |
| 0.18 | 0.0216 | 0.0416 | 0.0602 | 0.0776 | 0.0939 | 0.1232 | 0.1490 | 0.1716 | 0.1916 |
| 0.22 | 0.0243 | 0.0470 | 0.0684 | 0.0884 | 0.1072 | 0.1414 | 0.1716 | 0.1984 | 0.2222 |
| 0.26 | 0.0267 | 0.0518 | 0.0754 | 0.0978 | 0.1188 | 0.1573 | 0.1916 | 0.2222 | 0.2494 |
| 0.30 | 0.0288 | 0.0559 | 0.0817 | 0.1060 | 0.1290 | 0.1714 | 0.2094 | 0.2433 | 0.2737 |
| 0.34 | 0.0306 | 0.0596 | 0.0871 | 0.1133 | 0.1381 | 0.1839 | 0.2251 | 0.2621 | 0.2954 |
| 0.38 | 0.0322 | 0.0628 | 0.0920 | 0.1197 | 0.1461 | 0.1949 | 0.2391 | 0.2789 | 0.3147 |
| 0.42 | 0.0337 | 0.0657 | 0.0963 | 0.1254 | 0.1532 | 0.2048 | 0.2515 | 0.2938 | 0.3320 |
| 0.46 | 0.0349 | 0.0683 | 0.1001 | 0.1305 | 0.1595 | 0.2135 | 0.2626 | 0.3071 | 0.3474 |
| 0.50 | 0.0361 | 0.0705 | 0.1035 | 0.1350 | 0.1650 | 0.2212 | 0.2724 | 0.3189 | 0.3612 |
| 0.54 | 0.0371 | 0.0725 | 0.1065 | 0.1389 | 0.1700 | 0.2281 | 0.2812 | 0.3295 | 0.3735 |
| 0.58 | 0.0380 | 0.0743 | 0.1091 | 0.1425 | 0.1744 | 0.2343 | 0.2890 | 0.3389 | 0.3844 |
| 0.62 | 0.0387 | 0.0759 | 0.1115 | 0.1456 | 0.1783 | 0.2397 | 0.2959 | 0.3472 | 0.3941 |
| 0.66 | 0.0394 | 0.0773 | 0.1136 | 0.1484 | 0.1818 | 0.2445 | 0.3020 | 0.3547 | 0.4027 |
| 0.70 | 0.0401 | 0.0785 | 0.1154 | 0.1509 | 0.1849 | 0.2488 | 0.3075 | 0.3612 | 0.4104 |
| 0.74 | 0.0406 | 0.0796 | 0.1171 | 0.1531 | 0.1876 | 0.2526 | 0.3123 | 0.3671 | 0.4172 |
| 0.78 | 0.0411 | 0.0806 | 0.1185 | 0.1550 | 0.1900 | 0.2559 | 0.3166 | 0.3722 | 0.4232 |
| 0.82 | 0.0415 | 0.0814 | 0.1198 | 0.1567 | 0.1921 | 0.2589 | 0.3203 | 0.3768 | 0.4286 |
| 0.86 | 0.0419 | 0.0822 | 0.1209 | 0.1582 | 0.1940 | 0.2615 | 0.3237 | 0.3808 | 0.4333 |
| 0.90 | 0.0422 | 0.0828 | 0.1219 | 0.1595 | 0.1957 | 0.2638 | 0.3266 | 0.3844 | 0.4374 |
| 0.94 | 0.0425 | 0.0834 | 0.1228 | 0.1607 | 0.1971 | 0.2658 | 0.3292 | 0.3875 | 0.4411 |
| 0.98 | 0.0428 | 0.0839 | 0.1236 | 0.1617 | 0.1984 | 0.2676 | 0.3314 | 0.3902 | 0.4442 |
| 1.00 | 0.0429 | 0.0842 | 0.1239 | 0.1622 | 0.1990 | 0.2684 | 0.3324 | 0.3914 | 0.4457 |
| 1.20 | 0.0437 | 0.0858 | 0.1263 | 0.1654 | 0.2030 | 0.2740 | 0.3396 | 0.4001 | 0.4558 |
| 1.40 | 0.0441 | 0.0866 | 0.1275 | 0.1669 | 0.2049 | 0.2767 | 0.3431 | 0.4043 | 0.4608 |
| 1.80 | 0.0444 | 0.0871 | 0.1283 | 0.1680 | 0.2062 | 0.2785 | 0.3454 | 0.4071 | 0.4641 |
| 2.00 | 0.0444 | 0.0871 | 0.1284 | 0.1681 | 0.2064 | 0.2787 | 0.3457 | 0.4075 | 0.4645 |
| 2.20 | 0.0444 | 0.0872 | 0.1284 | 0.1682 | 0.2065 | 0.2788 | 0.3458 | 0.4076 | 0.4646 |
| 2.50 | 0.0444 | 0.0872 | 0.1284 | 0.1682 | 0.2065 | 0.2788 | 0.3458 | 0.4077 | 0.4647 |
| 3.00 | 0.0444 | 0.0872 | 0.1284 | 0.1682 | 0.2065 | 0.2789 | 0.3458 | 0.4077 | 0.4647 |

0.30	0.34	0.38	0.42	0.46	0.50	0.54	0.58	0.62	0.66
0.0288	0.0306	0.0322	0.0337	0.0349	0.0361	0.0371	0.0380	0.0387	0.0394
0.0559	0.0596	0.0628	0.0657	0.0683	0.0705	0.0725	0.0743	0.0759	0.0773
0.0817	0.0871	0.0920	0.0963	0.1001	0.1035	0.1065	0.1091	0.1115	0.1136
0.1060	0.1133	0.1197	0.1254	0.1305	0.1350	0.1389	0.1425	0.1456	0.1484
0.1290	0.1381	0.1461	0.1532	0.1595	0.1650	0.1700	0.1744	0.1783	0.1818
0.1714	0.1839	0.1949	0.2048	0.2135	0.2212	0.2281	0.2343	0.2397	0.2445
0.2094	0.2251	0.2391	0.2515	0.2626	0.2724	0.2812	0.2890	0.2959	0.3020
0.2433	0.2621	0.2789	0.2938	0.3071	0.3189	0.3295	0.3389	0.3472	0.3547
0.2737	0.2954	0.3147	0.3320	0.3474	0.3612	0.3735	0.3844	0.3941	0.4027
0.3009	0.3252	0.3470	0.3665	0.3839	0.3995	0.4134	0.4257	0.4368	0.4466
0.3252	0.3520	0.3761	0.3976	0.4169	0.4341	0.4495	0.4633	0.4756	0.4865
0.3470	0.3761	0.4022	0.4256	0.4466	0.4654	0.4823	0.4973	0.5108	0.5227
0.3665	0.3976	0.4256	0.4508	0.4734	0.4937	0.5119	0.5281	0.5427	0.5556
0.3839	0.4169	0.4466	0.4734	0.4975	0.5191	0.5385	0.5559	0.5715	0.5854
0.3995	0.4341	0.4654	0.4937	0.5191	0.5420	0.5626	0.5810	0.5975	0.6122
0.4134	0.4495	0.4823	0.5119	0.5385	0.5626	0.5842	0.6036	0.6209	0.6364
0.4257	0.4633	0.4973	0.5281	0.5559	0.5810	0.6036	0.6238	0.6420	0.6582
0.4368	0.4756	0.5108	0.5427	0.5715	0.5975	0.6209	0.6420	0.6609	0.6778
0.4466	0.4865	0.5227	0.5556	0.5854	0.6122	0.6364	0.6582	0.6778	0.6953
0.4553	0.4962	0.5334	0.5672	0.5977	0.6254	0.6503	0.6728	0.6929	0.7110
0.4630	0.5048	0.5429	0.5774	0.6087	0.6371	0.6627	0.6857	0.7064	0.7250
0.4699	0.5125	0.5513	0.5865	0.6185	0.6475	0.6736	0.6972	0.7184	0.7375
0.4760	0.5192	0.5587	0.5946	0.6272	0.6567	0.6834	0.7074	0.7291	0.7486
0.4813	0.5252	0.5653	0.6017	0.6348	0.6648	0.6920	0.7165	0.7386	0.7584
0.4860	0.5305	0.5711	0.6080	0.6416	0.6721	0.6996	0.7245	0.7469	0.7671
0.4902	0.5351	0.5762	0.6136	0.6476	0.6784	0.7063	0.7316	0.7543	0.7748
0.4938	0.5392	0.5807	0.6184	0.6528	0.6840	0.7123	0.7378	0.7608	0.7816
0.4955	0.5410	0.5827	0.6206	0.6552	0.6865	0.7150	0.7406	0.7638	0.7846
0.5070	0.5540	0.5969	0.6362	0.6719	0.7044	0.7339	0.7605	0.7846	0.8064
0.5127	0.5603	0.6039	0.6438	0.6801	0.7132	0.7432	0.7704	0.7949	0.8171
0.5165	0.5645	0.6086	0.6489	0.6856	0.7190	0.7494	0.7769	0.8018	0.8243
0.5169	0.5651	0.6092	0.6495	0.6863	0.7198	0.7502	0.7778	0.8027	0.8252
0.5171	0.5653	0.6094	0.6497	0.6865	0.7200	0.7505	0.7781	0.8030	0.8255
0.5172	0.5653	0.6095	0.6498	0.6867	0.7202	0.7506	0.7782	0.8032	0.8257
0.5172	0.5654	0.6095	0.6499	0.6867	0.7202	0.7506	0.7782	0.8032	0.8257

0.70	0.74	0.78	0.82	0.86	0.90	0.94	0.98	1.00	1.20
0.0401	0.0406	0.0411	0.0415	0.0419	0.0422	0.0425	0.0428	0.0429	0.0437
0.0785	0.0796	0.0806	0.0814	0.0822	0.0828	0.0834	0.0839	0.0842	0.0858
0.1154	0.1171	0.1185	0.1198	0.1209	0.1219	0.1228	0.1236	0.1239	0.1263
0.1509	0.1531	0.1550	0.1567	0.1582	0.1595	0.1607	0.1617	0.1622	0.1654
0.1849	0.1876	0.1900	0.1921	0.1940	0.1957	0.1971	0.1984	0.1990	0.2030
0.2488	0.2526	0.2559	0.2589	0.2615	0.2638	0.2658	0.2676	0.2684	0.2740
0.3075	0.3123	0.3166	0.3203	0.3237	0.3266	0.3292	0.3314	0.3324	0.3396
0.3612	0.3671	0.3722	0.3768	0.3808	0.3844	0.3875	0.3902	0.3914	0.4001
0.4104	0.4172	0.4232	0.4286	0.4333	0.4374	0.4411	0.4442	0.4457	0.4558
0.4553	0.4630	0.4699	0.4760	0.4813	0.4860	0.4902	0.4938	0.4955	0.5070
0.4962	0.5048	0.5125	0.5192	0.5252	0.5305	0.5351	0.5392	0.5410	0.5540
0.5334	0.5429	0.5513	0.5587	0.5653	0.5711	0.5762	0.5807	0.5827	0.5969
0.5672	0.5774	0.5865	0.5946	0.6017	0.6080	0.6136	0.6184	0.6206	0.6362
0.5977	0.6087	0.6185	0.6272	0.6348	0.6416	0.6476	0.6528	0.6552	0.6719
0.6254	0.6371	0.6475	0.6567	0.6648	0.6721	0.6784	0.6840	0.6865	0.7044
0.6503	0.6627	0.6736	0.6834	0.6920	0.6996	0.7063	0.7123	0.7150	0.7339
0.6728	0.6857	0.6972	0.7074	0.7165	0.7245	0.7316	0.7378	0.7406	0.7605
0.6929	0.7064	0.7184	0.7291	0.7386	0.7469	0.7543	0.7608	0.7638	0.7846
0.7110	0.7250	0.7375	0.7486	0.7584	0.7671	0.7748	0.7816	0.7846	0.8064
0.7272	0.7417	0.7546	0.7660	0.7762	0.7852	0.7932	0.8002	0.8034	0.8259
0.7417	0.7566	0.7698	0.7816	0.7921	0.8014	0.8096	0.8168	0.8201	0.8434
0.7546	0.7698	0.7834	0.7956	0.8063	0.8159	0.8243	0.8317	0.8351	0.8591
0.7660	0.7816	0.7956	0.8080	0.8190	0.8288	0.8374	0.8450	0.8485	0.8731
0.7762	0.7921	0.8063	0.8190	6.8302	0.8402	0.8491	0.8569	0.8604	0.8855
0.7852	0.8014	0.8159	0.8288	0.8402	0.8504	0.8594	0.8674	0.8710	0.8966
0.7932	0.8096	0.8243	0.8374	0.8491	0.8594	0.8686	0.8767	0.8803	0.9064
0.8002	0.8168	0.8317	0.8450	0.8569	0.8674	0.8767	0.8849	0.8886	0.9151
0.8034	0.8201	0.8351	0.8485	0.8604	0.8710	0.8803	0.8886	0.8924	0.9191
0.8259	0.8434	0.8591	0.8731	0.8855	0.8966	0.9064	0.9151	0.9191	0.9472
0.9370	0.8549	0.8710	0.8853	0.8980	0.9094	0.9195	0.9284	0.9324	0.9614
0.8445	0.8627	0.8789	0.8935	0.9065	0.9180	0.9282	0.9373	0.9414	0.9709
0.8454	0.8636	0.8799	0.8945	0.9075	0.9191	0.9294	0.9384	0.9426	0.9722
0.8458	0.8640	0.8803	0.8949	0.9079	0.9195	0.9298	0.9389	0.9430	0.9726
0.8460	0.8642	0.8805	0.8951	0.9081	0.9197	0.9300	0.9391	0.9432	0.9728
0.8460	0.8642	0.8805	0.8951	0.9081	0.9197	0.9300	0.9391	0.9433	0.9729

1.40	1.80	2.00	2.20	2.50	3.00
0.0441	0.0444	0.0444	0.0444	0.0444	0.0444
0.0866	0.0871	0.0871	0.0872	0.0872	0.0872
0.1275	0.1283	0.1284	0.1284	0.1284	0.1284
0.1669	0.1680	0.1681	0.1682	0.1682	0.1682
0.2049	0.2062	0.2064	0.2065	0.2065	0.2065
0.2767	0.2785	0.2787	0.2788	0.2788	0.2789
0.3431	0.3454	0.3457	0.3458	0.3458	0.3458
0.4043	0.4071	0.4075	0.4076	0.4077	0.4077
0.4608	0.4641	0.4645	0.4646	0.4647	0.4647
0.5127	0.5165	0.5169	0.5171	0.5172	0.5172
0.5603	0.5645	0.5651	0.5653	0.5653	0.5654
0.6039	0.6086	0.6092	0.6094	0.6095	0.6095
0.6438	0.6489	0.6495	0.6497	0.6498	0.6499
0.6801	0.6856	0.6863	0.6865	0.6867	0.6867
0.7132	0.7190	0.7198	0.7200	0.7202	0.7202
0.7432	0.7494	0.7502	0.7505	0.7506	0.7506
0.7704	0.7769	0.7778	0.7781	0.7782	0.7782
0.7949	0.8018	0.8027	0.8030	0.8032	0.8032
0.8171	0.8243	0.8252	0.8255	0.8257	0.8257
0.8370	0.8445	0.8454	0.8458	0.8460	0.8460
0.8549	0.8627	0.8636	0.8640	0.8642	0.8642
0.8710	0.8789	0.8799	0.8803	0.8805	0.8805
0.8853	0.8935	0.8945	0.8949	0.8951	0.8951
0.8980	0.9065	0.9015	0.9079	0.9081	0.9081
0.9094	0.9180	0.9191	0.9195	0.9197	0.9197
0.9195	0.9282	0.9294	0.9298	0.9300	0.9300
0.9284	0.9373	0.9384	0.9389	0.9391	0.9391
0.9324	0.9414	0.9426	0.9430	0.9432	0.9433
0.9614	0.9709	0.9722	0.9726	0.9728	0.9729
0.9759	0.9858	0.9871	0.9875	0.9878	0.9878
0.9858	0.9959	0.9972	0.9977	0.9979	0.9980
0.9871	0.9972	0.9985	0.9990	0.9992	0.9993
0.9875	0.9977	0.9990	0.9995	0.9997	0.9998
0.9878	0.9979	0.9992	0.9997	1.0000	1.0000
0.9878	0.9980	0.9993	0.9998	1.0000	1.0000

Field measurements of hydraulic conductivity should be used for all but pr

What follows are four sets of qualitative conductivity estimates. An est on the most similar soil type from as many sour

Reference \#1		
Material	Intrinsic Permeability (darcys)	Hydraulic Conductivity (cm/s)
Clay	$10^{-6}-10^{-3}$	$10^{-9}-10^{-6}$
Silt, sandy silts, clayey sands, till	$10^{-3}-10^{-1}$	$10^{-6}-10^{-4}$
Silty sands, fine sands	$10^{-2}-10^{-1}$	$10^{-5}-10^{-3}$
Well-sorted sands, glacial outwash	$1.0-10^{2}$	$10^{-3-10^{-1}}$
Well-sorted gravel	$10.0-10^{3}$	$10^{-2}-1.0$
Applied Hydrology 4th Edition, C.W. Fetter		

Sediment or rock type	$\begin{array}{\|c\|} \text { Hydraulic } \\ \text { conductivity, } \mathrm{m} / \text { day } \end{array}$	Rock Type
Clays	$10^{-7}-10^{-3}$	
Silts	$10^{-4}-10^{-0}$	Cenozoic floo
Fine to coarse sands	$10^{-2}-10^{+3}$	Dense, unfractured
Gravels	$10^{+2}-10^{+5}$	Vesicular
Glacial till	See Table 1	Interbeds
Shales (matrix)	$10^{-8}-10^{-4}$	
Shales (fractured and weathered)	$10^{-4}-10^{0}$	Vesicular
Sandstones (wellcemented)	$10^{-5}-10^{-2}$	Tuffs
Sandstones (friable)	$10^{-3}-10^{0}$	Densely welded (matrix)
Carbonates	See Table 3	Densely welded (fractured)
Salt	$10^{-10}-10^{-8}$	Nonwelded
Anhydrite	$10^{-7}-10^{-6}$	
Unfractured igneous and metamorphic rocks	$10^{-9}-10^{-5}$	
Fractured igneous and	$10-510-1$	

Referenc

FIGURE 5.3.2 Hydraulic conductivity sorted by soil texture. (Reproduced from Ref. 83 with permission.)

-eliminary evaluation of mounding

:imated conductivity should be selected based
 res as are applicable.

Reference \#2	
Geologic Material	Hydraulic Conductivity, m / s
Coarse gravels	$10^{-1}-10^{-2}$
Sands and gravels	$10^{-2-10^{-5}}$
Fine sands, silts, loess	$10^{-5}-10^{-9}$
Clay, shale, glacial till	$10^{-5}-10^{-13}$
Dolomitic limestones	$10^{-3}-10^{-5}$
Weathered chalk	$10^{-3}-10^{-5}$
Unweathered chalk	$10^{-6-10^{-9}}$
Limestone	$10^{-3}-10^{-9}$
Sandstone	$10^{-4}-10^{-10}$
Unweathered granite, gneiss, compact basalt	$10^{-7}-10^{-13}$
Practical Handbook of Ground-Water	
Monitoring 1991, David M. Nielsen	

Reference \#3					
1	Table 2				Tab
Hydraulic Conductivity, m/day	Hydraulic Conductivity, m/day				Lithology
	Glacial Deposits	Unweathered	Weathered	Fractured	
d basalts	Basal till	$10^{-6}-10^{-2}$	$10^{-4}-10^{-1}$	$10^{-4}-10^{0}$	Carbonate mud
$10^{-6}-10^{-3}$	Supraglacial till	$10^{-4}-10^{0}$	$10^{-4}-10^{0}$	$10^{-4}-10^{0}$	Dolomite
$10^{-4}-10^{-3}$	Glaciolacustrine	$10^{-8}-10^{-4}$		$10^{-6}-10^{-3}$	Tertiary limestone
$10^{-3}-10^{+3}$	Loess	$10^{-6}-10^{0}$	$10^{-5}-10^{-2}$		Paleozoic limestone
	Glaciofluvial	$10^{-6}-10^{+2}$			Oolitic limestone
basalts	Handbook of Hydrology, David R. Maidment				Holocene coral limestone
$10^{+1}-10^{+3}$					
					Karstified limestone
					Chalk
<10-6					
$10^{-6}-10^{+1}$					
$10^{-3}-10^{-2}$					

e \#4

FIGURE 5.3.3 Saturated hydraulic conductivity for USDA soil texture triangle. (Reproduced from Ref. 80 by permission of ASCE.)

[^28]| le 3 |
| :---: |
| Hydraulic
 Conductivity, m/day |
| $10^{-3}-10^{-1}$ |
| $10^{-4}-10^{0}$ |
| $10^{-4}-10^{0}$ |
| $10^{-4}-10^{0}$ |
| $10^{-2}-10^{-1}$ |
| $10^{2}-10^{4}$ |
| $10^{-1}-10^{7}$ |
| $10^{-3}-10^{0}$ |
| |

What follows are two sets of specific yield estimates. An estimated specific yield should be selected based on the most similar soil type from as many sources as are applicable.

Reference \#1			
Material	Specific Yield		
	Maximum	Minimum	Average
Clay	0.05	0	0.02
Sandy clay	0.12	0.03	0.07
Silt	0.19	0.03	0.07
Fine Sand	0.28	0.1	0.21
Medium Sand	0.32	0.15	0.26
Coarse Sand	0.35	0.2	0.27
Gravelly Sand	0.35	0.2	0.25
Fine gravel	0.35	0.21	0.25
Medium gravel	0.26	0.13	0.23
Coarse gravel	0.26	0.12	0.22
Applied Hydrology 4th Edition, C.W. Fetter			

Reference \#2	
Rocks	Specific Yield
Clay	$0.01-0.10$
Sand	$0.10-0.30$
Gravel	$0.15-0.30$
Sand and gravel	$0.15-0.25$
Sandstone	$0.05-0.15$
Shale	$0.005-0.05$
Limestone	$0.005-0.05$
Pra	

Practical Handbook of Groundwater Monitoring 1991, David M.

Nielsen

[^29]

[^30]

[^31]

[^32]
Groundwater Mounding Analysis - Hantush Method

[^33]

[^34]

[^35]1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
2. Select BMP from Drop Down Menu
3. After BMP is selected, TSS Removal and other Columns are automatically completed.
Location: Treatment A, B, G

Non-automated TSS Calculation Sheet
must be used if Proprietary BMP Proposed

1. From MassDEP Stormwater Handbook Vol. 1
2. In BMP Column, click on Blue Cell to Activate Drop Down Menu
3. Select BMP from Drop Down Menu
4. After BMP is selected, TSS Removal and other Columns are automatically completed.

Non-automated TSS Calculation Sheet
must be used if Proprietary BMP Proposed

1. From MassDEP Stormwater Handbook Vol. 1
2. In BMP Column, click on Blue Cell to Activate Drop Down Menu
3. Select BMP from Drop Down Menu
4. After BMP is selected, TSS Removal and other Columns are automatically completed.
Location: Treatment D, E, F

Non-automated TSS Calculation Sheet
must be used if Proprietary BMP Proposed

1. From MassDEP Stormwater Handbook Vol. 1
2. In BMP Column, click on Blue Cell to Activate Drop Down Menu
3. Select BMP from Drop Down Menu
4. After BMP is selected, TSS Removal and other Columns are automatically completed.

Non-automated TSS Calculation Sheet
must be used if Proprietary BMP Proposed

1. From MassDEP Stormwater Handbook Vol. 1
2. In BMP Column, click on Blue Cell to Activate Drop Down Menu
3. Select BMP from Drop Down Menu
4. After BMP is selected, TSS Removal and other Columns are automatically completed.

Non-automated TSS Calculation Sheet
must be used if Proprietary BMP Proposed

1. From MassDEP Stormwater Handbook Vol. 1

APPENDIX G

CONSTRUCTION PERIOD STORMWATER POLLUTION PREVENTION PLAN AND DRAFT WEEKLY CONSTRUCTION PERIOD INSPECTION REPORT

Weekly Stormwater Construction Site Inspection Report
 Lot 3 Berry Farms Road, Sturbridge, MA 01566

CERTIFICATION STATEMENT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Print name and title: \qquad

Signature: \qquad Date: \qquad

Overall Site Issues

Below are some general site issues that should be assessed during inspections. Customize this list as needed for conditions at your site.

	BMP/activity	Implemented?	Maintenance Required?	Corrective Action Needed and Notes
1	Slopes and disturbed areas not actively being worked properly stabilized?	-Yes DNo	DYes DNo	
2	Natural Resource areas (e.g., streams, wetlands, mature trees, etc.) protected with barriers or similar BMPs?	-Yes DNo	DYes ${ }^{\text {ano }}$	
3	Perimeter Controls and sediment barriers adequately installed (keyed into substrate) and maintained?	-Yes DNo	-Yes DNo	
4	Discharge Points and receiving waters free of any sediment deposits?	-Yes QNo	QYes ${ }^{\text {aNo }}$	
5	Storm Drain Inlets properly protected?	-Yes DNo	-Yes DNo	
6	Construction exit preventing sediment from being tracked into the street?	-Yes ${ }^{\text {aNo }}$	-Yes DNo	
7	Trash / Litter from work areas collected and placed in covered dumpsters?	-Yes -No	-Yes ${ }^{\text {ano }}$	
8	Washout Facilities (e.g., paint, stucco, concrete) available, clearly marked, and maintained?	-Yes ${ }^{\text {ano }}$	-Yes ${ }^{\text {aNo }}$	
9	Vehicle and Equipment Fueling, cleaning, and maintenance areas free of spills, leaks, or any other deleterious material?	-Yes DNo	-Yes DNo	
10	Materials that are potential stormwater contaminants stored inside or under cover?	-Yes DNo	QYes QNo	
11	Non-stormwater discharges (wash water, dewatering) properly controlled?	-Yes QNo	-Yes DNo	

APPENDIX H

STORMWATER MANAGEMENT SYSTEM LONG-TERM OPERATION \& MAINTENANCE (O \& M) PLAN

STORMWATER MANAGEMENT SYSTEM

Long Term Operations and Maintenance Plan

"Blueberry Hill Estates"
Lot 3 Berry Farms Road
Sturbridge, MA 01566

Prepared For:
Justin Stelmok
557 Southwest Cutoff
Worcester, MA 01607

March 31, 2022
Rev. November 10, 2022

McCLURE

 ENGINEERING,INC119 Worcester Road - Charlton, Massachusetts 01507 - T: 508.248.2005

TABLE OF CONTENTS

Responsible Party. 1
Site Description. 2
Structural Storm Water BMP Maintenance 4
Infiltration Basin
Deep Sump Hooded Catch Basin
Sediment Forebay
Rain Garden
Rain Guardian
Pipe Outfall/Rip Rap Apron/Level Spreader Interceptor Trench Trench Drain
Non-Structural Storm Water Controls. 6
Invasive SpeciesHay Bales
Silt Fence
Mulching
Temporary \& Permanent SeedingLandscape \& Parking MaintenanceFertilizer, Herbicide, and Pesticide StorageWaste Storage \& Trash RemovalHazardous Waste or Oil Spill Reporting Procedure
Snow Management Plan. 8
Inspections / Recordkeeping / Training 9
Public Safety Features 9
Operation \& Maintenance Budget Estimate 9
TABLES
Table 1 Inspection \& Maintenance Schedule. 3

ATTACHMENTS

Attachment \#1 Illicit Discharger Compliance Statement Attachment \#2 Inspection Log \& Maintenance Plan

Long-Term Operation \& Maintenance Plan Site Stormwater Management System Lot 3 Berry Farms Road, Sturbridge, MA

Property Owner/Responsible Party: Justin Stelmok
557 Southwest Cutoff
Worcester, MA 01607
Phone: (508) 832-5324 Office
Phone: (508) 868-3996 Cell
\section*{Storm Water Management System Owner: (same as above)}
Site subject to Wetlands Protection Act: Yes

The Responsible Party Shall:

- Prepare an "Operation and Maintenance (\mathbf{O} \& M) Compliance Statement" (Attachment \#1)
- Implement the routine and non-routine operation, maintenance, and inspection tasks in accordance with the procedures specified in this document to ensure that all storm water management systems function as designed.
- Maintain a \log of all operation and maintenance $(\mathrm{O} \& \mathrm{M})$ activities. Keep records for the last three (3) years, including inspections, repairs, replacement and disposal (for disposal, the log shall indicate the type of material and disposal location).
- Make this log available to Town of Sturbridge official representatives upon request;
- Allow Town of Sturbridge official representatives to inspect each storm water system "best management practice" (BMP) to determine whether the responsible party is implementing the operation and maintenance plan;
- Agree to notify in writing all future property owners of the presence of the storm water management system and the requirement for proper operation and maintenance.

Responsible Party shall maintain a contract with the following companies:
Landscaping and Pavement Maintenance: \qquad
Snow Removal and Plowing:
Storm Water System Maintenance:

Long-Term Operation \& Maintenance Plan Blueberry Hill Estates
 Lot 3 Berry Farms Road, Sturbridge, MA

Site Description:

The Subject Site consists of approximately 41.5 acres. The property lies on the northern side of Main Street and along the Southbridge Town Line. The property is shown as Lot 3 of the Berry Farms Road Definitive Subdivision. The site is located within the Town of Sturbridge Rural Residential zoning district. The existing site consists of mostly wooded area, as well as wetlands. The site has previously been logged and some existing logging trails still exist throughout the property. The site topography slopes generally in a westerly direction towards a valley containing wetlands. The site is surrounded by wetlands on the western boundary, as well as (3) vernal pools as determined by LEC Environmental.

The site is located within an area of minimal flood hazard (Zone X) per Flood Insurance Rate Map (FIRM) Worcester County Massachusetts (All Jurisdictions), Map Number 25027C0933E, effective on 07/04/2011 (see Appendix C).

The proposed site layout is for the construction of a 55+ Manufactured Housing Community. The community is proposed with (4) 20' wide private roads, (3) cul-de-sacs, (1) emergency access drive through the Town of Southbridge, a common clubhouse and active open space area, and (71) total units. The community will be serviced by municipal water and sewer through Berry Farms Road. The stormwater management system for the site consists of country style drainage, including swales and rain gardens with minimal structures for conveyance. Rain gardens will be placed between all units, and will act as a stormwater structure, but also on-site landscaping and yard separation/ privacy barrier. Other than a single deep sump and hooded catch basin in the parking lot for the club house, all stormwater will be conveyed on the surface to rain gardens. These rain gardens will provide for peak flow attenuation, water quality treatment, and groundwater recharge. A total of (77) rain gardens are proposed, with the majority being smaller rain gardens positioned between units which will detain and treat runoff from the units, roads, and driveway. A few larger secondary rain gardens are also proposed. A single large infiltration basin is proposed within an existing natural depression. Interception trenches are proposed behind the units on Roads A and D to convey clean runoff from the undeveloped portions of the property towards the existing discharge points of the property.

The "Special Permit and Site Plan, Blueberry Hill Estates, 55+ Manufactured Housing Community, Lot 3 Berry Farms Road, Sturbridge, MA" Plan Set prepared by McClure Engineering, Inc., dated 4/1/22, revised $11 / 10 / 22$ provides details of the complete stormwater management system design.

Operation and Maintenance (O\&M) Plan

The purpose of this Storm Water Management System Operation and Maintenance Plan is to prevent erosion, sedimentation, pollution or other deterioration of the storm water management system and resource areas located on and adjacent to the property located at Lot 3 Berry Farms Road, Sturbridge, MA. The storm water management system shall be maintained properly to assure its continued performance. Inspection and maintenance for the system should be in compliance with Table 1.

TABLE 1

STORMWATER SYSTEM INSPECTION AND MAINTENANCE SCHEDULE		
"Blueberry Hill Estates" Lot 3 Berry Farms Road, Sturbridge, MA		
Best Management Practice (BMP)	Inspection Frequency	Maintenance Frequency
STRUCTURAL BMPs		
Infiltration Basin	After every major storm during first 3 months of operation and twice a year thereafter and when there are discharges through the high outlet orifice.	Bi-Annual Min (Early Spring \& Late Fall) and/or As Needed
Deep Sump Hooded Catch Basin	Quarterly	Quarterly and/or whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the basin to the lowest pipe invert in the basin.
Sediment Forebay	Monthly	Quarterly and/or As Needed
Interceptor Trench	Quarterly	As Needed
Rain Garden	Monthly	As Needed
Rain Guardian	Quarterly	As Needed
Pipe Outfall/ Rip Rap Apron/ Level Spreader	After heavy rains and Bi-Annually Min (Early Spring \& Late Fall)	Bi-Annual Min (Early Spring \& Late Fall) and/or As Needed
Trench Drain	After heavy rains and Bi-Annually Min (Early Spring \& Late Fall)	Bi-Annual Min (Early Spring \& Late Fall) and/or As Needed

NON-STRUCTURAL STORMWATER CONTROLS

Invasive Species	Quarterly	As Needed
Retaining Walls	Quarterly	As Needed
Wildlife Crossing Structure	Quarterly	As Needed
Landscaping	Bi-Annual	Seasonally
As Needed		
Parking Area Sweeping	(Early Spring \& Late Fall)	Bi-Annual
(Early Spring \& Late Fall)	Bi-Annual (2-Times / Year) (Apr/May and Oct/Nov.)	
Snow Removal	Seasonally As Needed	In Accordance with M.G.L. Title XIV. Public Ways and Works; Chapter 85
Site Inspections	Bi-Annual	Keep Records on File at Site for Three (3)

Responsible Party shall be responsible for the system and all Operation and Maintenance procedures, including those outlined in the following sections.

STRUCTURAL STORM WATER BMP MAINTENANCE:

Infiltration Basin:

Infiltration basins are prone to clogging and failure so it is imperative to develop and implement aggressive maintenance plans and schedules. Installing the required pretreatment BMPs will significantly reduce maintenance requirements for the basin. Perform inspections and preventive maintenance at least twice a year, and after every time drainage discharges through the high outlet orifice. Inspect the pretreatment BMPs in accordance with the minimal requirements specified for those practices and after every major storm event. A major storm event is defined as a storm that is equal to or greater than the 2-year, 24-hour storm (generally 2.9 to 3.6 inches in a 24 -hour period, depending in geographic location in Massachusetts). Once the basin is in use, inspect it after every major storm for the first few months to ensure it is stabilized and functioning properly and if necessary take corrective action. Note how long water remains standing in the basin after a storm; standing water within the basin 48 to 72 hours after a storm indicates that the infiltration capacity may have been overestimated. If the ponding is due to clogging, immediately address the reasons for the clogging (such as upland sediment erosion, excessive compaction of soils, or low spots). Thereafter, inspect the infiltration basin at least twice per year. Important items to check during the inspection include: signs of differential settlement, cracking, erosion, leakage in the embankments, tree growth on the embankments, condition of riprap, sediment accumulation, and the health of the turf. At least twice a year, mow the buffer area, side slopes, and basin bottom. Remove grass clippings and accumulated organic matter to prevent an impervious organic mat from forming. Remove trash and debris at the same time. Use deep tilling to break up clogged surfaces, and revegetate immediately. Remove sediment from the basin as necessary, but wait until the floor of the basin is thoroughly dry. Use light equipment to remove the top layer so as to not compact the underlying soil. Deeply till the remaining soil, and revegetate as soon as possible. Inspect and clean pretreatment devices associated with basins at least twice a year, and ideally every other month.

Deep Sump Hooded Catch Basin:

Regular maintenance is essential. Deep sump catch basins remain effective at removing pollutants only if they are cleaned out frequently. Inspect or clean deep sump basins at least four times per year and at the end of the foliage and snow removal seasons. Sediments must also be removed four times per year or whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the basin. Clamshell buckets are typically used to remove sediment in Massachusetts. However, vacuum trucks are preferable, because they remove more trapped sediment and supernatant than clamshells. Vacuuming is also a speedier process and is less likely to snap the cast iron hood within the deep sump catch basin. Although catch basin debris often contains concentrations of oil and hazardous materials such as petroleum hydrocarbons and metals, MassDEP classifies them as solid waste. Unless there is evidence that they have been contaminated by a spill or other means, MassDEP does not routinely require catch basin cleanings to be tested before disposal. Contaminated catch basin cleanings must be evaluated in accordance with the Hazardous Waste Regulations, 310 CMR 30.000 , and handled as hazardous waste. In the absence of evidence of contamination, catch basin cleanings may be taken to a landfill or other facility permitted by MassDEP to accept solid waste, without any prior approval by MassDEP. However, some landfills require catch basin cleanings to be tested before they are accepted.

Sediment Forebay:

Sediment forebays should be readily accessible for maintenance and sediment removal. Inspect sediment forebays after each significant rainfall. Remove and properly dispose of sediment at least 2 times per year or when sediment deposits total approximately 12 ". The effectiveness of a sediment forebay is based less on its size than on regular sediment removal. Place waste material in designated disposal areas. Smooth site to blend with surrounding area and stabilize. Clean or replace gravel when sediment pool does not drain properly. Stabilize the floor and sidewalls of the sediment forebay before making it operational, otherwise the practice will discharge excess amounts of suspended sediments. After removing the sediment, replace any vegetation damaged during the clean-out by reseeding. When reseeding, incorporate practices such as hydroseeding with a tackifier, blanket, or similar practice to ensure that no scour occurs in the forebay, while the seeds germinate and develop roots. Check embankment, emergency spillway, and outlet for erosion damage. Check embankment for: settlement, seepage, or slumping along the toe or around pipe. Look for signs of seepage or erosion. Repair immediately. Remove trash and other debris from principal spillway, emergency spillway, and pool area.

Rain Garden/ Bioretention:

Bioretention areas require careful attention while plants are being established and seasonal landscaping maintenance thereafter. Inspect pretreatment devices and bioretention cells regularly for sediment build-up, structural damage, and standing water. Inspect soil and repair eroded areas monthly. Re-mulch void areas as needed. Remove litter and debris monthly. Treat diseased vegetation as needed. Remove and replace dead vegetation twice per year (spring and fall). Proper selection of plant species and support during establishment of vegetation should minimize-if not eliminate-the need for fertilizers and pesticides. Remove invasive species as needed to prevent these species from spreading into the bioretention area. Replace mulch every two years, in the early spring. Upon failure, excavate bioretention area, scarify bottom and sides, replace filter fabric and soil, replant, and mulch. Because the soil medium filters contaminants from runoff, the cation exchange capacity of the soil media will eventually be exhausted. When
the cation exchange capacity of the soil media decreases, change the soil media to prevent contaminants from migrating to the groundwater, or from being discharged via an underdrain outlet. Using small shrubs and plants instead of larger trees will make it easier to replace the media with clean material when needed. Plant maintenance is critical. Concentrated salts in roadway runoff may kill plants, necessitating removal of dead vegetation each spring and replanting. Never store snow in bioretention areas.

Pipe Outfall/Rip Rap Apron/Level Spreader:

Inspect riprap outlet structures after heavy rains for erosion at sides and ends of apron and for stone displacement. Rock may need to be added if sediment builds up in the pore spaces of the outlet pad. Make repairs immediately using appropriate stone sizes. Do not place stones above finished grade. If erosion is occurring down gradient of the outfall, the down gradient vegetation is not stable and the area should be stabilized, the rip rap apron is not long or wide enough and needs to be increased, or the riprap stones are too small or not graded well. If movement of stone is occurring: riprap stones may be too small or not graded well, or the appropriate filter fabric may not be installed under riprap. If erosion occurs around apron and scour holes appear at outlet, foundation may not be excavated wide or deep enough. If erosion of the foundation is occurring, the appropriate filter fabric may not be installed under riprap.

Level spreaders should be inspected periodically and after every major storm. Any detrimental sediment accumulation should be removed. If rilling has taken place on the lip, the damage should be repaired and re-vegetated. Vegetation should be mowed occasionally to control weeds and encroachment of woody vegetation. Clippings should be removed and disposed of outside the spreader and away from the outlet area. Fertilization should be done as necessary to keep the vegetation healthy and dense. The spreader should be inspected after every runoff event to ensure that it is functioning correctly.

Interceptor Trench

Interceptor trenches are prone to failure due to clogging, it is imperative that they be aggressively maintained on a regular schedule. Using pretreatment BMPs will significantly reduce the maintenance requirements for the trench itself. Removing accumulated sediment from a deep sump catch basin or a vegetated filter strip is considerably less difficult and less costly than rehabilitating a trench. Perform preventive maintenance at least twice a year. Inspect and clean pretreatment BMPs every six months and after every major storm event (2 year return frequency). Check inlet and outlet pipes to determine if they are clogged. Remove accumulated sediment, trash, debris, leaves and grass clippings from mowing. Remove tree seedlings, before they become firmly established. Inspect the trench after the first several rainfall events, after all major storms, and on regularly scheduled dates every six months. If the top of the trench is grassed, it must be mowed on a seasonal basis. Grass height must be maintained to be no more than four inches. Routinely remove grass clippings leaves and accumulated sediment from the surface of the trench. Inspect the trench 24 hours or several days after a rain event, to look for ponded water. If there is ponded water at the surface of the trench, it is likely that the trench surface is clogged. To address surface clogging, remove and replace the topsoil or first layer of stone aggregate and the filter fabric. If water is ponded inside the trench, it may indicate that the bottom of the trench has failed. To rehabilitate a failed trench, all accumulated sediment must be stripped from the bottom, the bottom of the trench must be scarified and tilled to induce
infiltration, and all of the stone aggregate and filter fabric or media must be removed and replaced.

Rain Guardian

Rain Guardian pretreatment chambers simplify bioretention maintenance by collecting sand, leaves, grass clippings, and other debris in an easy to clean, confined location. Regularly maintaining the Rain Guardian sustains its functionality by maximizing storage and filtration capacities. Maintenance frequency is variable and depends on many factors such as rainfall frequency, drainage area size and land use type, and season of the year. Following rain events, inspect the pretreatment chamber for debris on the top grate, within the chamber, and on the vertical, drop-in filter wall. The maintenance steps described below should be completed if areas of the top grate are clogged, the chamber is $>75 \%$ full, or the vertical filter wall is clogged. Maintenance should be completed when stormwater has completely drained from the bioretention practice. The filter wall allows the chamber to dry between rain events, which further simplifies maintenance by ensuring removed debris is largely dry. Ensure all debris collected during cleaning of the chamber is completely removed from the site and properly disposed of according to local environmental rules. Once cleaning is complete, reinstall the filter wall with filter fabric facing the inside of the chamber and replace the top grate.

Trench Drain

Maintenance frequency is variable and depends on many factors such as rainfall frequency, drainage area size and land use type, and season of the year. Perform preventive maintenance at least twice a year, inspect and clean the trench every six months. Following rain events, inspect the trench for debris on the top grate, within the chamber, and at the outlet. Check inlet and outlet pipes to determine if they are clogged. Remove accumulated sediment, trash, debris, leaves, grass clippings, etc. by hand, or with a pressure washer. Ensure all debris collected during cleaning of the chamber is completely removed from the site and properly disposed of according to local environmental rules. Once cleaning is complete, replace the top grate.

NON - STRUCTURAL STORM WATER MANAGEMENT CONTROLS / GOOD HOUSEKEEPING PRACTICES:

Invasive Species:

Basins, rain gardens, landscape areas, and common areas will be monitored for the presence of invasive species throughout the year. These areas will be kept free of invasive species utilizing best management practices for removal and disposal.

Retaining Walls:

Inspect retaining walls for leaning, undermining, and failure. Remove vegetation from retaining walls as necessary.

Wildife Crossing Structure:

Inspect wildlife crossing structure opening and ensure they are not blocked or clogged with debris. Inspect natural light providing grates to ensure they are not clogged with debris. Clean the structure openings and grates as necessary. Ensure the natural substrate on the bottom of the
structure is maintained and is not eroding or rutting. If erosion is observed, a paver style system may be necessary to lock natural soils within structure and stabilize surface.

Hay bales:

Inspect straw/hay bales before a forecasted storm event, immediately after each runoff producing rainfall and at least daily during prolonged rainfall. Ensure there are not gaps between bales or evidence of undermining. Close attention should be paid to the repair of damaged bales, undercutting beneath bales, and flow around the ends of the bales. Necessary repairs to barriers or replacement of bales should be accomplished promptly. Replace rotted or sediment covered bales as necessary. Sediment deposits should be checked after each runoff-producing rainfall. They must be removed when the level of deposition reaches approximately one-half the height of the barrier. Any sediment deposits remaining in place after the straw bale barrier is no longer required should be dressed to conform to the existing grade, prepared and seeded.

Silt Fence:

A sediment fence requires a great deal of maintenance. Silt fences should be inspected immediately after each rainfall and at least daily during prolonged rainfall. Remove accumulated sediment when it reaches one half the height of the sediment fence. Remove sediment deposits promptly to provide adequate storage volume for the next rain and to reduce pressure on fence. Take care to avoid undermining fence during cleanout. Sagging, frayed, torn, or otherwise damaged fabric should be repaired or replaced. Repair end runs and undercutting. Inspect reinforcement and staking materials for structural integrity, and replace when necessary. Sediment deposits remaining after the fabric has been removed should be graded to conform to the existing topography and vegetated.

Mulching:

Mulching shall be used in areas which cannot be seeded because of the season, or are otherwise unfavorable for plant growth (traffic and parking areas). When properly applied, mulch offers a fast, effective means of controlling erosion and dust. Soil surfaces should be roughened prior to mulching. Run track-mounted machinery up and down the slope in order to leave horizontal depressions in the soil running parallel to the slope. Roughened soil surfaces should be mulched and/or seeded as soon as possible. Ensure there is a continuous, uniform, even coverage. Ensure mulch layer is not so thick that it suppresses desired seed germination and plant growth. Ensure rilling or gullying does not occur beneath "binded" mulch. Replace or repair mulch if washed or blown away. On steep slopes and critical areas such as waterways, use netting or anchoring with mulch to hold it in place. Inspect after rainstorms to check for movement of mulch or erosion. If washout, breakage, or erosion occurs, repair surface, reseed, remulch, and install new netting. Straw or grass mulches that blow or wash away should be repaired promptly. Blanket mulch that is displaced by flowing water should be repaired as soon as possible. Continue inspections until vegetation is well established.

Temporary \& Permanent Seeding

Well-established vegetation is widely considered the most effective form of erosion control. The presence of temporary or permanent cover will provide stabilization and erosion protection to disturbed areas. Temporary seed mixes contain annual vegetation that grows quickly and helps stabilize an area until permanent vegetation can be established. Proper soil bed preparation, seeding method and soil moisture are critical for successful seed application. Before planting,
scarify/roughen the soil surface and install appropriate surface drainage measures to prevent erosion and scouring. Seed with an approved conservation cover mix during the specified growing season, using native plant species. Seeding operations should be performed within one of the following periods: April 1 - May 31, August 1 - September 10, November 1 - December 15 as a dormant seeding (seeding rates shall be increased by 50% for dormant seeding). As needed, provide water, fertilizer, lime, and mulch to the seedbed. If it is unlikely that growth will occur due to cold weather, apply mulch for temporary stabilization. Inspect within 6 weeks of planting to see if stands are adequate. Check for damage after heavy rains. Stands should be uniform and dense. Fertilize, reseed, and mulch damaged and sparse areas immediately. Tack or tie down mulch as necessary. Seeds should be supplied with adequate moisture. Furnish water as needed, especially in abnormally hot or dry weather or on adverse sites. Water application rates should be controlled to prevent runoff. Inspect seeded areas for failure and make appropriate repairs and re-seed and re-plant as necessary. Inspect for bare spots, rilling, or gullying and correct as necessary. If stand has less than 40% cover, re-evaluate selection of seeding materials and quantities of fertilizer. Re-establish the stand following seedbed preparation and seeding recommendations. If the season prevents resowing, mulch or jute netting is an effective temporary cover. Lack of water may also be an issue. Conduct a follow up survey after one year and re-seed failed areas. Temporarily stabilized areas will require permanent stabilization when the area has been completed as designed or when the growing season begins.

Landscape \& Parking Area Maintenance

Landscape areas shall be maintained in a neat and orderly fashion. Landscape maintenance debris shall not be deposited on adjacent properties and properly disposed of off-site as necessary to maintain a clean and orderly appearance. Parking Areas shall be inspected often and after significant rainfall events. Inspect for signs of erosion, rilling, gullying. Regrade and repair parking areas as necessary. If areas are needing constant maintenance apply mulch/wood chips to help prevent further erosion. Areas not used for parking or traffic should be seeded for stabilization. All parking areas should be stabilized prior to off season shutdown, preferably with a mulch application.

Fertilizer, Herbicide, and Pesticide Storage

Storage of all fertilizers, herbicides, and pesticides will be indoors. Use of all fertilizers, herbicides, and pesticides shall be in a manner consistent with the products intended use.

Waste Storage \& Trash Removal

All waste products are to be stored indoors, under cover, or within a covered dumpster. Inspect on-site area for litter and trash on a weekly basis. Any accumulated trash, litter, and discarded materials in this area will be removed and will be disposed of at a suitable location on a weekly basis. The loading and dumpster areas throughout the site will be inspected on a daily basis for cardboard and/or paper products and will be inspected on a weekly basis for any accumulated trash, litter, and discarded material. Dumpster to be kept closed when not in use. Gates to the dumpster enclosure areas are proposed to be locked when not in use.

Hazardous Waste or Oil Spill Response Procedure

Initial Notification: In the event of a spill of hazardous waste or oil the facility manager or supervisor will be notified immediately by telephone.

Assessment - Initial Containment: The supervisor or manager will assess the incident and initiate control measures. The supervisor will first contact the Town of Sturbridge Fire Department and then notify the Town of Sturbridge. The Fire Department is ultimately responsible for matters of public health and safety and should be notified immediately.

```
Fire Department Telephone: }911\mathrm{ (Emergency)
    508-347-2525 (Non-Emergency/Dispatch)
Police Department Telephone: }911\mathrm{ (Emergency)
508-347-2525 (Non-Emergency/Dispatch)
```

Further Notification: Based on the assessment by the Fire Chief, additional notification to a clean up contractor may be made. The Massachusetts Department of Environmental Protection and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of clean up and notification required.

SNOW MANAGEMENT PLAN:

Snow plowing, blowing, and shoveling will be done to allow safe passage of interior roadways, emergency access roadway, as well as access to home sites and the common areas. No salt shall be used to treat unpaved areas during snow and ice conditions. Snow from lighter storms will be plowed to the perimeter of the roadways, sidewalks, driveways, and parking lots and allowed to melt to on-site ran gardens or infiltrations basins. Snow will be temporarily stock piled behind the clubhouse in the event that snow storage along roadways and driveways becomes an issue. If site snow storage interferes with site operations (i.e. blocking of travel aisles, sight distance, or parking) the snow pile will be either removed or reduced legally in a legal manner by the snow plow vendor within 24 hours. Snow shall not be stored directed in or on rain gardens.

Winter Road Salt \& Sand Use Restrictions

Salt and sand for winter de-icing will only be stored indoors or under cover. Use of road salt and sand will only be used on a limited basis during the winter months to insure safe passage of roadways, driveways, pedestrian walkways, and parking areas. A reduced salt area shall be enforced along the roadways in close vicinity to vernal pools.

INSPECTIONS / RECORDKEEPING / TRAINING:

Routine Inspections

Routine inspections and maintenance to be conducted with the frequency described in this Operation and Maintenance Plan. An example inspection form is provided in Attachment \#2.

Recordkeeping

Records of all drainage system inspections and maintenance shall be kept on file for a period of at least three (3) years and provided to the Town of Sturbridge upon request.

PUBLIC SAFETY FEATURES:

All cast iron storm water structure grates and covers shall be kept in good condition and kept closed at all times. Any damaged or broken structures will be replaced immediately upon discovery;

OPERATION AND MAINTENANCE BUDGET ESTIMATE:

The responsible party agrees to maintain an adequate annual budget to provide for the routine maintenance activities detailed in this document including but not limited to:

- Infiltration Basin Maintenance
- Rain Garden Maintenance
- Interceptor Trench Maintenance
- Rain Guardian Maintenance
- Deep Sump Hooded Catch Basin Maintenance
- Sediment Forebay Maintenance
- Pipe Outfall/ Rip Rap Apron/ Level Spreader Maintenance
- Landscape Maintenance
- Trash Removal
- Snow Plowing \& Removal

Attachment \#1

Operation \& Maintenance (O \& M)
 Compliance Statement

Illicit Discharge Compliance Statement
 Site Storm water Management System Blueberry Hill Estates
 Lot 3 Berry Farms Road, Sturbridge, MA

Property Owner/Responsible Party: Justin Stelmok
557 Southwest Cutoff
Worcester, MA 01607
Phone: (508) 832-5324 Office
Phone: (508) 868-3996 Cell

Storm water Management System Owner: (same as above)

Site subject to Wetlands Protection Act: Yes
The above listed Responsible Party is responsible for implementation of this "Long-Term Operation and Maintenance Plan" and certifies that:

- The site has been inspected for erosion and appropriate steps have been taken to permanently stabilize any eroded areas.
- All aspects of storm water BMPs have been inspected for damage, wear and malfunction, and appropriate steps have been taken to repair or replace the system or portions of the system so that the storm water at the site may be managed in accordance with the Stormwater Management Standards, revise date January 2, 2008.
- There is no record or knowledge of existing illicit discharges to the on-site stormwater management system.
- All "future property owners" must be notified of their continuing legal responsibility to operate and maintain the existing stormwater management system structures.
- The "Long-Term Operation and Maintenance Plan" for the storm water BMPs is being implemented.

Signature of Responsible Party:

Attachment \#2

Inspection \& Maintenance Reports

Long-Term Operation and Maintenance Plan Storm Water Management System

Lot 3 Berry Farms Road, Sturbridge, MA

INSPECTION AND MAINTENANCE REPORT FORM
Note: \quad This Log should be copied prior to use. Note Additional Comments on back of Form.
Inspector's Name: \qquad Date: \qquad Time: \qquad am/pm Inspector's Qualifications: \qquad Amount of Last Rainfall: \qquad inches

Item/Condition to be Checked	Maintenance Required		Corrective Action \& Date
	No	Yes	
Infiltration Basin			
Deep Sump Hooded Catch Basin			
Sediment Forebay			
Rain Guardian			
Rain Garden			
Interceptor Trench			
Pipe Outfall/ Rip Rap Apron/ Level Spreader			
Trench Drain			
Landscaping / Trash Removal			
Invasive Species			
Snow Removal (seasonal)			
Retaining Walls			
Wildlife Crossing Structure			

[^0]: "55+ Manufactured Housing Community", Lot 3 Berry Farms Road, Sturbridge, MA - Stormwater Management Report

[^1]: "55+ Manufactured Housing Community", Lot 3 Berry Farms Road, Sturbridge, MA - Stormwater Management Report

[^2]: "55+ Manufactured Housing Community", Lot 3 Berry Farms Road, Sturbridge, MA - Stormwater Management Report

[^3]: "55+ Manufactured Housing Community", Lot 3 Berry Farms Road, Sturbridge, MA - Stormwater Management Report

[^4]: ${ }^{1}$ The Stormwater Report may also include the llicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.
 ${ }^{2}$ For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

[^5]: ${ }^{1} 80 \%$ TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

[^6]: 10.9210 Total

[^7]: Primary OutFlow Max=0.27 cfs @ 12.07 hrs HW=725.77' TW=704.58' (Dynamic Tailwater)
 L- $_{1=\text { Culvert }}$ (Barrel Controls 0.27 cfs @ 2.37 fps)

[^8]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_Infiltration Basin Mounding Analysis.xls
 Printed: 3/21/2023, 3:38 PM

[^9]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG Type C Mounding Analysis.xls

[^10]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev2_PE\Appendices\APP_F_RG Type D Mounding Analysis.xls
 Printed: 5/1/2023, 2:31 PM

[^11]: T:_2019 DOCUMENTS KI287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG2.1 Mounding Analysis.xls

[^12]: Reference: Hantush, M.S. 1967. "Growth and Decay of Groundwater Mounds in Response to Uniform Percolation."

[^13]: file:///C:/Users/Peter/Desktop/4.25.23/Rev2/Appendices/APP_F_RG3.1 Mounding Analysis.xls
 Printed: 04/28/2023, 15:19:16

[^14]: 13, David R. Maidment

[^15]: T:__2019 DOCUMENTS KI287-2118-K_JW Management_Fiske Hill East_Site Plan\StormwaterlRev2_PE\Appendices\APP_F_RG4.1 Mounding Analysis.xls
 Printed: 5/1/2023, 2:35 PM

[^16]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\StormwaterlRev2_PE\Appendices\APP_F_RG4.2 Mounding Analysis.xls
 Printed: 5/1/2023, 2:35 PM

[^17]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\StormwaterlRev2_PE\Appendices\APP_F_RG5.1 Mounding Analysis.xls
 Printed: 5/1/2023, 2:30 PM

[^18]: T:__2019 DOCUMENTS KI287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG15H Mounding Analysis.xls
 Printed: 3/21/2023, 3:37 PM

[^19]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG42 Mounding Analysis.xls

[^20]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG69 Mounding Analysis.xls
 Printed: 3/21/2023, 3:38 PM

[^21]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG70 Mounding Analysis.xls
 Printed: 3/21/2023, 3:38 PM

[^22]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_Infiltration Basin Mounding Analysis.xls
 Printed: 3/21/2023, 3:38 PM

[^23]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG Type C Mounding Analysis.xls

[^24]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev2_PE\Appendices\APP_F_RG Type D Mounding Analysis.xls
 Printed: 5/1/2023, 2:31 PM

[^25]: T:_2019 DOCUMENTS KI287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG2.1 Mounding Analysis.xls

[^26]: Reference: Hantush, M.S. 1967. "Growth and Decay of Groundwater Mounds in Response to Uniform Percolation."

[^27]: file:///C:/Users/Peter/Desktop/4.25.23/Rev2/Appendices/APP_F_RG3.1 Mounding Analysis.xls
 Printed: 04/28/2023, 15:19:16

[^28]: 13, David R. Maidment

[^29]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\StormwaterlRev3_PE\Appendices\APP_F_RG4.1 Mounding Analysis.xls
 Printed: 6/28/2023, 2:28 PM

[^30]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\StormwaterlRev2_PE\Appendices\APP_F_RG4.2 Mounding Analysis.xls
 Printed: 5/1/2023, 2:35 PM

[^31]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\StormwaterlRev2_PE\Appendices\APP_F_RG5.1 Mounding Analysis.xls
 Printed: 5/1/2023, 2:30 PM

[^32]: T:__2019 DOCUMENTS KI287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG15H Mounding Analysis.xls
 Printed: 3/21/2023, 3:37 PM

[^33]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG42 Mounding Analysis.xls

[^34]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG69 Mounding Analysis.xls
 Printed: 3/21/2023, 3:38 PM

[^35]: T:__2019 DOCUMENTS K\287-2118-K_JW Management_Fiske Hill East_Site Plan\Stormwater\Rev1\Appendices\APP_F_RG70 Mounding Analysis.xls
 Printed: 3/21/2023, 3:38 PM

