Summit Engineering & Survey, Inc.

HYDRAULIC / HYDROLOGIC CALCULATIONS

SITE PLAN 6 PICKER ROAD STURBRIDGE, MASSACHUSETTS

Prepared For:

NEW ENGLAND COLD STORAGE, LLC

Prepared By:

SUMMIT ENGINEERING & SURVEY, INC. 710 MAIN STREET OXFORD, MASSACHUSETTS

MAY 11, 2020

710 Main Street North Oxford MA 01537 (P) 508-987-8713 (F) 508-987-8714

TABLE OF CONTENTS

Cover Page

Table of Contents

Drainage Summary

Stormwater Management Checklist

Stormwater Management Calculations Standard #2 Peak Discharge Rates Standard #3 Loss of Annual Recharge Standard #4 80% TSS Removal Standard #9 Operation & Maintenance Plan

Appendices

Pre-Development Diagram Post- Development Diagram Pre-Development Watershed Subcatchments Post-Development Watershed Subcatchments Soil Maps Flood Map

DRAINAGE SUMMARY

Summit Engineering & Survey, Inc. is pleased to provide the following Hydraulic / Hydrologic analysis for the proposed site plan for New England Cold, LLC. The proposed development is located at 6 Picker Road, Sturbridge, Massachusetts. The existing site consists of predominantly un-developed land, much of it wooded with mature woodland. The hydrologic conditions were analyzed using TR-55 and HydroCAD® for the 2, 10, 25 and 100 year storm events utilizing Technical Paper 40, 24 hour Rainfall events.

The proposed site consists of the construction of a new 82,000 square foot freezer warehouse building, truck dock and supporting infrastructure. The site is the last remaining commercial lot on Picker Road to be developed. The project as designed conforms to the Massachusetts DEP Stormwater Management Policy.

EXISTING CONDITIONS:

The site is abutted by Picker Road on the west, Route 49 (Podunk Pike) to the east, the Mass Pike to the north and commercial lots on Technology Drive to the south east. The site is predominately wooded with a bordering vegetated wetland system on the westerly portion of the site. The wetland system conveys water from the south to the north toward the state highway.

The topography of the site is sloped. A majority of the site is graded toward the northwest. There is a high point parallel to Podunk Pike that is graded toward a wetland system on the easterly portion of the property.

There are four commercial properties located up stream of the site with varying types of drainage systems that flow onto the site. The storage facility conveys sheet flow onto the property. Sail Energy and WHM III, LLC are operational sites that conveys treated water onto the site , which flows into the wetland system. The 51 Technology, LLC property site is currently under construction. The approved design also discharges to the aforementioned northerly flowing wetland system.

The runoff from the site to the north is directed either to the existing 36" culvert in the driveway for 8 Picker road or the wetland system to the north of 8 Picker Road.

For the purpose of the analysis of the effect on site development, the site was analyzed as three independent watersheds. In the Pre-Development Condition, Subcatchment 1 represents the tributary area of the property that flows to the 36 inch culvert at 8 Picker Road. Subcatchment 2 represents the tributary portion of the site that flows to the northerly wetland on 8 Picker Road. Subcatchment 3 represents the tributary area that flows to the east toward the intersection of Technology Park and Podunk Pike.

According to the online USGS soil survey, the analyzed area consists of soils with "C" hydrologic ratings. On site soil testing confirms the condition along with varying depths to bedrock. The cover consists of predominantly woodland. A portion of the abutting storage tactility has a gravel parking lot that was constructed over the property line. The delineated wetlands on the property were considered "D" type soils for this analysis.

PROPOSED CONDITIONS:

The proposed condition of the site includes the construction of a main access road, a perimeter access road, a truck loading dock/terminal, employee parking lot and the 82,000 square foot warehouse/office space. The site is serviced by municipal water and sewer systems.

The site will be re-graded to support the project and control stormwater in accordance with the Massachusetts Stormwater Management Policy. The development includes the construction of two drainage basins, two roof drain recharge basins, catch basins and proprietary devices to provide stormwater treatment and attenuation to reduce the impact of surface alterations.

In order to analyze the surface water flows, the site was divided into multiple Subcatchents, Ponds and a Reach. The series (100, 200, 300) are then compared to the Pre-Development Conditions.

In summary, the peak rates of runoff were compared under pre-development and postdevelopment conditions for analysis of the 2 year, 10 year, 25 year and 100 year storm events. The following is a **Peak Discharge Summary Table**:

		Design Event				
Watershed		2 Year	10 Year	25 Year	100 Year	
ment	1	4.3	10.3	14.0	19.8	
evelop	2	2.4	6.3	8.7	12.5	
Pre-D	3	1.7	4.4	6.1	8.7	
				Γ		
oment	100 Series	2.9	8.1	10.5	16.6	
Jevelop	200 Series	1.2	3.4	5.2	7.6	
Post C	300 Series	1.6	4.1	5.7	8.2	

Design Point Analysis:

DEP Stormwater Management Standards:

Standard #1: The proposed changes will not cause erosion in adjacent water of the Commonwealth, as BMP measures are proposed in accordance with the design requirements of the Stormwater Management handbook. The Erosion & Sedimentation Control Plan provides for the installation of siltation barriers, temporary basins, temporary construction entrances and outlines intermediary measures to control runoff during construction and after construction.

Standard #2: The proposed development peak discharge rates for the total off-site flow are less than or equal to pre-development discharge rates for the 2 year, 10 year, and 100 year storm events for the design points analyzed. Attached calculations show how the site mitigates the increased flow rates due to surface changes from the site development.

Standard #3: The roof drain runoff is directed to two direct infilfration basins that meets the recharge requirement for Class C Soils. Basins A and B are also designed to infiltrate runoff from the driveway and parking areas after pre-treatment. Infiltration depths are designed to drain in under 72 hours as required by the Policy.

Standard #4: Over 80% TSS shall occur based on the BMP measurements provided. The treatment train varies for each section. TSS worksheets are provided in the report for each treatment train in the site. The water quality volume was determined using 1.0" of runoff over the proposed impervious area.

Standard #5: The proposed development will not generate higher potential pollutant loads and therefore will not require additional BMP practices.

Standard #6: The proposed project is not near a critical area.

Standard #7: The proposed project is not a redevelopment project.

Standard #8: Erosion and sediment control measures are proposed as part of the proposed project.

Standard #9: An Operation & Maintenance plan is provided within this document

Standard #10: This project does not propose any illicit discharges.

STORMWATER MANAGEMENT CHECKLIST

<u>Summit Engineering & Survey, Inc.</u> 710 Main Street North Oxford MA 01537 (P) 508-987-8713 (F) 508-987-8714

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

5/11/20

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

No disturbance to any Wetland Resource Areas
Site Design Practices (e.g. clustered development, reduced frontage setbacks)
Reduced Impervious Area (Redevelopment Only)
Minimizing disturbance to existing trees and shrubs
LID Site Design Credit Requested:
Credit 1
Credit 2
Credit 3
Use of "country drainage" versus curb and gutter conveyance and pipe
Bioretention Cells (includes Rain Gardens)
Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
Treebox Filter
Water Quality Swale
Grass Channel
Green Roof
Other (describe):

Standard 1: No New Untreated Discharges

 \boxtimes No new untreated discharges

- \boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

\boxtimes S	Soil Ana	alysis	provided.
---------------	----------	--------	-----------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static] Simple Dyna	mic
--------	---------------	-----

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Proje	ct
---------------	----

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

STANDARD #2- PEAK DISCHARGE RATES

<u>Summit Engineering & Survey, Inc.</u> 710 Main Street North Oxford MA 01537 (P) 508-987-8713 (F) 508-987-8714

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Subcatchment 1:	Runoff Area=407,066 sf 0.50% Impervious Runoff Depth=0.81" Flow Length=990' Tc=34.4 min CN=72 Runoff=4.25 cfs 0.629 af
Subcatchment 2:	Runoff Area=228,530 sf 0.00% Impervious Runoff Depth=0.71" Flow Length=490' Tc=23.0 min CN=70 Runoff=2.42 cfs 0.312 af
Subcatchment 3:	Runoff Area=183,174 sf 0.00% Impervious Runoff Depth=0.71" Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=1.70 cfs 0.250 af
Subcatchment 200:	Runoff Area=101,682 sf 0.00% Impervious Runoff Depth=0.76" Flow Length=490' Tc=23.0 min CN=71 Runoff=1.17 cfs 0.148 af
Subcatchment 201: Roof	Runoff Area=27,374 sf 100.00% Impervious Runoff Depth>2.72" Tc=6.0 min CN=98 Runoff=1.78 cfs 0.143 af
Subcatchment 300:	Runoff Area=172,079 sf 0.00% Impervious Runoff Depth=0.71" Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=1.59 cfs 0.235 af
Pond 8P: RECHARGE BASIN	Peak Elev=734.58' Storage=4,675 cf Inflow=1.78 cfs 0.143 af Discarded=0.03 cfs 0.135 af Primary=0.02 cfs 0.007 af Outflow=0.05 cfs 0.142 af
Pond p200: 200 Series Analysis Point	Inflow=1.17 cfs 0.155 af Primary=1.17 cfs 0.155 af

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Subcatchment 1:	Runoff Area=407,066 sf 0.50% Impervious Runoff Depth=1.82" Flow Length=990' Tc=34.4 min CN=72 Runoff=10.34 cfs 1.418 af
Subcatchment 2:	Runoff Area=228,530 sf 0.00% Impervious Runoff Depth=1.67" Flow Length=490' Tc=23.0 min CN=70 Runoff=6.30 cfs 0.732 af
Subcatchment 3:	Runoff Area=183,174 sf 0.00% Impervious Runoff Depth=1.67" Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=4.41 cfs 0.587 af
Subcatchment 200:	Runoff Area=101,682 sf 0.00% Impervious Runoff Depth=1.75" Flow Length=490' Tc=23.0 min CN=71 Runoff=2.94 cfs 0.340 af
Subcatchment 201: Roof	Runoff Area=27,374 sf 100.00% Impervious Runoff Depth>4.16" Tc=6.0 min CN=98 Runoff=2.70 cfs 0.218 af
Subcatchment 300:	Runoff Area=172,079 sf 0.00% Impervious Runoff Depth=1.67" Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=4.14 cfs 0.551 af
Pond 8P: RECHARGE BASIN	Peak Elev=734.89' Storage=5,476 cf Inflow=2.70 cfs 0.218 af Discarded=0.03 cfs 0.140 af Primary=0.54 cfs 0.078 af Outflow=0.57 cfs 0.218 af
Pond p200: 200 Series Analysis Point	Inflow=3.38 cfs 0.418 af Primary=3.38 cfs 0.418 af

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Subcatchment 1:	Runoff Area=407,066 sf 0.50% Impervious Runoff Depth=2.43" Flow Length=990' Tc=34.4 min CN=72 Runoff=13.99 cfs 1.893 af
Subcatchment 2:	Runoff Area=228,530 sf 0.00% Impervious Runoff Depth=2.26" Flow Length=490' Tc=23.0 min CN=70 Runoff=8.67 cfs 0.989 af
Subcatchment 3:	Runoff Area=183,174 sf 0.00% Impervious Runoff Depth=2.26" Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=6.06 cfs 0.792 af
Subcatchment 200:	Runoff Area=101,682 sf 0.00% Impervious Runoff Depth=2.35" Flow Length=490' Tc=23.0 min CN=71 Runoff=4.02 cfs 0.456 af
Subcatchment 201: Roof	Runoff Area=27,374 sf 100.00% Impervious Runoff Depth>4.92" Tc=6.0 min CN=98 Runoff=3.18 cfs 0.258 af
Subcatchment 300:	Runoff Area=172,079 sf 0.00% Impervious Runoff Depth=2.26" Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=5.69 cfs 0.744 af
Pond 8P: RECHARGE BASIN	Peak Elev=735.04' Storage=5,858 cf Inflow=3.18 cfs 0.258 af Discarded=0.03 cfs 0.141 af Primary=1.16 cfs 0.116 af Outflow=1.19 cfs 0.257 af
Pond p200: 200 Series Analysis Point	Inflow=5.18 cfs 0.573 af Primary=5.18 cfs 0.573 af

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Subcatchment 1:	Runoff Area=407,066 sf 0.50% Impervious Runoff Depth=3.41" Flow Length=990' Tc=34.4 min CN=72 Runoff=19.75 cfs 2.653 af
Subcatchment 2:	Runoff Area=228,530 sf 0.00% Impervious Runoff Depth=3.21" Flow Length=490' Tc=23.0 min CN=70 Runoff=12.46 cfs 1.402 af
Subcatchment 3:	Runoff Area=183,174 sf 0.00% Impervious Runoff Depth=3.21" Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=8.69 cfs 1.124 af
Subcatchment 200:	Runoff Area=101,682 sf 0.00% Impervious Runoff Depth=3.31" Flow Length=490' Tc=23.0 min CN=71 Runoff=5.73 cfs 0.643 af
Subcatchment 201: Roof	Runoff Area=27,374 sf 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=3.91 cfs 0.318 af
Subcatchment 300:	Runoff Area=172,079 sf 0.00% Impervious Runoff Depth=3.21" Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=8.17 cfs 1.056 af
Pond 8P: RECHARGE BASIN	Peak Elev=735.16' Storage=6,191 cf Inflow=3.91 cfs 0.318 af Discarded=0.03 cfs 0.142 af Primary=2.89 cfs 0.175 af Outflow=2.93 cfs 0.317 af
Pond p200: 200 Series Analysis Point	Inflow=7.58 cfs 0.818 af Primary=7.58 cfs 0.818 af

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Subcatchment 101:	Runoff Area=53,263 sf 56.41% Impervious Runoff Depth=1.82" Tc=6.0 min CN=88 Runoff=2.55 cfs 0.185 af
Subcatchment 102:	Runoff Area=44,799 sf 68.72% Impervious Runoff Depth=1.98" Flow Length=160' Tc=6.3 min CN=90 Runoff=2.31 cfs 0.170 af
Subcatchment 103:	Runoff Area=26,731 sf 67.77% Impervious Runoff Depth=1.98" Flow Length=320' Tc=7.0 min CN=90 Runoff=1.35 cfs 0.101 af
Subcatchment 104:	Runoff Area=18,115 sf 32.95% Impervious Runoff Depth=1.38" Tc=6.0 min CN=82 Runoff=0.66 cfs 0.048 af
Subcatchment 105:	Runoff Area=39,222 sf 27.33% Impervious Runoff Depth=1.31" Tc=6.0 min CN=81 Runoff=1.35 cfs 0.099 af
Subcatchment 106:	Runoff Area=68,972 sf 0.00% Impervious Runoff Depth=0.86" Flow Length=190' Tc=11.5 min CN=73 Runoff=1.19 cfs 0.113 af
Subcatchment 110:	Runoff Area=25,308 sf 45.96% Impervious Runoff Depth=1.59" Tc=6.0 min CN=85 Runoff=1.06 cfs 0.077 af
Subcatchment 111:	Runoff Area=10,855 sf 47.39% Impervious Runoff Depth=1.59" Tc=6.0 min CN=85 Runoff=0.45 cfs 0.033 af
Subcatchment 112:	Runoff Area=179,485 sf 2.01% Impervious Runoff Depth=0.91" Flow Length=820' Tc=40.4 min CN=74 Runoff=2.00 cfs 0.312 af
Subcatchment 113: Roof	Runoff Area=54,769 sf 100.00% Impervious Runoff Depth>2.72" Tc=6.0 min CN=98 Runoff=3.57 cfs 0.285 af
Reach 5R: REACH TO POINT OF ANALYSIS	Avg. Flow Depth=0.12' Max Vel=1.39 fps Inflow=2.90 cfs 0.924 af n=0.040 L=300.0' S=0.0400 '/' Capacity=20.33 cfs Outflow=2.88 cfs 0.924 af

ARCO Post Development 1 Prepared by {enter your compa HydroCAD® 10.00-25 s/n 09589 @	00 Series any name here}) 2019 HydroCAD Software Solutions	LLC		Тур	be III 24-h	nr 2-Year Rainfa Printed 5/	<i>ill=3.00"</i> ′12/2020 Page 2
Pond 2P: BASIN A	Dis	P scarded=0.12 cfs 0	eak Elev=728 .295 af Prima	.36' Storage ary=0.46 cfs	e=20,441 c 6 0.476 af	f Inflow=9.14 cfs Outflow=0.58 cfs	0.771 af 0.771 af
Pond 3P: BASIN B			Peak Elev=71	7.27' Storaç	ge=1,172 c	f Inflow=1.06 cfs Outflow=0.46 cfs	0.077 af 0.068 af
Pond 4P: RECHARGE BASIN	Discarded=0.07 cfs 0.195 af Pri	mary=0.37 cfs 0.05	Peak Elev=73 55 af Seconda	6.72' Storaç ary=0.23 cfs	ge=6,979 c 6 0.036 af	f Inflow=3.57 cfs Outflow=0.66 cfs	0.285 af 0.285 af
Pond P101:		18.0" Round Culv	vert n=0.013 I	Peak E _=300.0' S=	lev=740.74 =0.0100 '/'	' Inflow=2.55 cfs Outflow=2.55 cfs	0.185 af 0.185 af
Pond P102:		24.0" Round Culv	vert n=0.013 I	Peak E _=460.0' S=	lev=737.95 =0.0100 '/'	o' Inflow=4.85 cfs Outflow=4.85 cfs	0.355 af 0.355 af
Pond P103:		24.0" Round Culv	vert n=0.013 I	Peak E _=110.0' S=	lev=733.59 =0.0100 '/'	" Inflow=6.20 cfs Outflow=6.20 cfs	0.457 af 0.457 af
Pond P104:		12.0" Round Culv	vert n=0.013 I	Peak E _=160.0' S=	lev=739.41 =0.0200 '/'	' Inflow=0.66 cfs Outflow=0.66 cfs	0.048 af 0.048 af
	Total Runoff A	Area = 11.972 ac 67.	Runoff Volu 25% Perviou	me = 1.423 s = 8.052 a	af Avera ac 32.75	age Runoff Depti % Impervious =	n = 1.43" 3.921 ac

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Subcatchment 101:	Runoff Area=53,263 sf 56.41% Impervious Runoff Depth=3.20" Tc=6.0 min CN=88 Runoff=4.40 cfs 0.326 af
Subcatchment 102:	Runoff Area=44,799 sf 68.72% Impervious Runoff Depth>3.40" Flow Length=160' Tc=6.3 min CN=90 Runoff=3.86 cfs 0.291 af
Subcatchment 103:	Runoff Area=26,731 sf 67.77% Impervious Runoff Depth>3.40" Flow Length=320' Tc=7.0 min CN=90 Runoff=2.26 cfs 0.174 af
Subcatchment 104:	Runoff Area=18,115 sf 32.95% Impervious Runoff Depth=2.64" Tc=6.0 min CN=82 Runoff=1.26 cfs 0.091 af
Subcatchment 105:	Runoff Area=39,222 sf 27.33% Impervious Runoff Depth=2.55" Tc=6.0 min CN=81 Runoff=2.64 cfs 0.191 af
Subcatchment 106:	Runoff Area=68,972 sf 0.00% Impervious Runoff Depth=1.90" Flow Length=190' Tc=11.5 min CN=73 Runoff=2.87 cfs 0.250 af
Subcatchment 110:	Runoff Area=25,308 sf 45.96% Impervious Runoff Depth=2.91" Tc=6.0 min CN=85 Runoff=1.93 cfs 0.141 af
Subcatchment 111:	Runoff Area=10,855 sf 47.39% Impervious Runoff Depth=2.91" Tc=6.0 min CN=85 Runoff=0.83 cfs 0.060 af
Subcatchment 112:	Runoff Area=179,485 sf 2.01% Impervious Runoff Depth=1.97" Flow Length=820' Tc=40.4 min CN=74 Runoff=4.60 cfs 0.677 af
Subcatchment 113: Roof	Runoff Area=54,769 sf 100.00% Impervious Runoff Depth>4.16" Tc=6.0 min CN=98 Runoff=5.40 cfs 0.436 af
Reach 5R: REACH TO POINT OF ANALYSIS	Avg. Flow Depth=0.20' Max Vel=1.92 fps Inflow=8.14 cfs 2.084 af n=0.040 L=300.0' S=0.0400 '/' Capacity=20.33 cfs Outflow=8.12 cfs 2.084 af

ARCO Post Development 10 Prepared by {enter your compa HydroCAD® 10.00-25 s/n 09589 @	00 Series any name here}) 2019 HydroCAD Software Solut	Type III 24-hr	10-Year Rainfall=4.50" Printed 5/12/2020 Page 4
Pond 2P: BASIN A		Peak Elev=729.41' Storage=32,749 cf Discarded=0.16 cfs 0.339 af Primary=2.25 cfs 1.136 af	Inflow=17.58 cfs 1.475 af Outflow=2.41 cfs 1.475 af
Pond 3P: BASIN B		Peak Elev=717.78' Storage=1,827 cl	Inflow=1.93 cfs 0.141 af Outflow=0.91 cfs 0.132 af
Pond 4P: RECHARGE BASIN	Discarded=0.07 cfs 0.206 af	Peak Elev=737.07' Storage=8,849 ct Primary=1.82 cfs 0.152 af Secondary=0.54 cfs 0.078 af	Inflow=5.40 cfs 0.436 af Outflow=2.43 cfs 0.436 af
Pond P101:		Peak Elev=741.02 18.0" Round Culvert n=0.013 L=300.0' S=0.0100 '/'	Inflow=4.40 cfs 0.326 af Outflow=4.40 cfs 0.326 af
Pond P102:		Peak Elev=738.29 24.0" Round Culvert n=0.013 L=460.0' S=0.0100 '/'	Inflow=8.26 cfs 0.617 af Outflow=8.26 cfs 0.617 af
Pond P103:		Peak Elev=734.00' 24.0" Round Culvert n=0.013 L=110.0' S=0.0100 '/' C	Inflow=10.52 cfs 0.790 af Dutflow=10.52 cfs 0.790 af
Pond P104:		Peak Elev=739.59 12.0" Round Culvert n=0.013 L=160.0' S=0.0200 '/'	Inflow=1.26 cfs 0.091 af Outflow=1.26 cfs 0.091 af
	Total Run	off Area = 11.972 ac Runoff Volume = 2.637 af Avera 67.25% Pervious = 8.052 ac 32.75	ge Runoff Depth = 2.64" % Impervious = 3.921 ac

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Subcatchment 101:	Runoff Area=53,263 sf 56.41% Impervious Runoff Depth>3.95" Tc=6.0 min CN=88 Runoff=5.40 cfs 0.403 af
Subcatchment 102:	Runoff Area=44,799 sf 68.72% Impervious Runoff Depth>4.16" Flow Length=160' Tc=6.3 min CN=90 Runoff=4.69 cfs 0.357 af
Subcatchment 103:	Runoff Area=26,731 sf 67.77% Impervious Runoff Depth>4.16" Flow Length=320' Tc=7.0 min CN=90 Runoff=2.75 cfs 0.213 af
Subcatchment 104:	Runoff Area=18,115 sf 32.95% Impervious Runoff Depth=3.35" Tc=6.0 min CN=82 Runoff=1.59 cfs 0.116 af
Subcatchment 105:	Runoff Area=39,222 sf 27.33% Impervious Runoff Depth=3.25" Tc=6.0 min CN=81 Runoff=3.35 cfs 0.244 af
Subcatchment 106:	Runoff Area=68,972 sf 0.00% Impervious Runoff Depth=2.52" Flow Length=190' Tc=11.5 min CN=73 Runoff=3.85 cfs 0.332 af
Subcatchment 110:	Runoff Area=25,308 sf 45.96% Impervious Runoff Depth=3.65" Tc=6.0 min CN=85 Runoff=2.40 cfs 0.177 af
Subcatchment 111:	Runoff Area=10,855 sf 47.39% Impervious Runoff Depth=3.65" Tc=6.0 min CN=85 Runoff=1.03 cfs 0.076 af
Subcatchment 112:	Runoff Area=179,485 sf 2.01% Impervious Runoff Depth=2.61" Flow Length=820' Tc=40.4 min CN=74 Runoff=6.13 cfs 0.895 af
Subcatchment 113: Roof	Runoff Area=54,769 sf 100.00% Impervious Runoff Depth>4.92" Tc=6.0 min CN=98 Runoff=6.37 cfs 0.516 af
Reach 5R: REACH TO POINT OF ANALYSIS	Avg. Flow Depth=0.22' Max Vel=2.08 fps Inflow=10.58 cfs 2.749 af n=0.040 L=300.0' S=0.0400 '/' Capacity=20.33 cfs Outflow=10.54 cfs 2.749 af

ARCO Post Development 10 Prepared by {enter your compa	00 Series any name here}	Type III 24-h	r 25-Year Rainfall=5.30" Printed 5/12/2020
TIYUTOCAD@ 10:00-23 S/IT 09309 @	2019 Hydrocad Soltware Sold		raye o
Pond 2P: BASIN A		Peak Elev=730.12' Storage=42,114 cf Discarded=0.19 cfs 0.360 af Primary=2.88 cfs 1.517 af	Inflow=23.00 cfs 1.878 af Outflow=3.07 cfs 1.878 af
Pond 3P: BASIN B		Peak Elev=718.04' Storage=2,204 of	cf Inflow=2.40 cfs 0.177 af Outflow=1.07 cfs 0.168 af
Pond 4P: RECHARGE BASIN	Discarded=0.08 cfs 0.209 af	Peak Elev=737.17' Storage=9,405 Primary=3.38 cfs 0.213 af Secondary=0.60 cfs 0.094 af	cf Inflow=6.37 cfs 0.516 af Outflow=4.05 cfs 0.516 af
Pond P101:		Peak Elev=741.1 '/ 18.0" Round Culvert n=0.013 L=300.0' S=0.0100	6' Inflow=5.40 cfs 0.403 af Outflow=5.40 cfs 0.403 af
Pond P102:		Peak Elev=738.46 24.0" Round Culvert n=0.013 L=460.0' S=0.0100 '/'	Inflow=10.08 cfs 0.760 af Outflow=10.08 cfs 0.760 af
Pond P103:		Peak Elev=734.22 24.0" Round Culvert n=0.013 L=110.0' S=0.0100 '/'	Inflow=12.82 cfs 0.972 af Outflow=12.82 cfs 0.972 af
Pond P104:		Peak Elev=739.6 // 12.0" Round Culvert n=0.013 L=160.0' S=0.0200	8' Inflow=1.59 cfs 0.116 af Outflow=1.59 cfs 0.116 af
	Total Run	off Area = 11.972 ac Runoff Volume = 3.328 af Aver 67.25% Pervious = 8.052 ac 32.75	age Runoff Depth = 3.34" 5% Impervious = 3.921 ac

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Subcatchment 101:	Runoff Area=53,263 sf 56.41% Impervious Runoff Depth>5.10" Tc=6.0 min CN=88 Runoff=6.88 cfs 0.520 af
Subcatchment 102:	Runoff Area=44,799 sf 68.72% Impervious Runoff Depth>5.32" Flow Length=160' Tc=6.3 min CN=90 Runoff=5.92 cfs 0.456 af
Subcatchment 103:	Runoff Area=26,731 sf 67.77% Impervious Runoff Depth>5.32" Flow Length=320' Tc=7.0 min CN=90 Runoff=3.47 cfs 0.272 af
Subcatchment 104:	Runoff Area=18,115 sf 32.95% Impervious Runoff Depth=4.45" Tc=6.0 min CN=82 Runoff=2.10 cfs 0.154 af
Subcatchment 105:	Runoff Area=39,222 sf 27.33% Impervious Runoff Depth=4.34" Tc=6.0 min CN=81 Runoff=4.44 cfs 0.326 af
Subcatchment 106:	Runoff Area=68,972 sf 0.00% Impervious Runoff Depth=3.51" Flow Length=190' Tc=11.5 min CN=73 Runoff=5.39 cfs 0.463 af
Subcatchment 110:	Runoff Area=25,308 sf 45.96% Impervious Runoff Depth>4.78" Tc=6.0 min CN=85 Runoff=3.11 cfs 0.231 af
Subcatchment 111:	Runoff Area=10,855 sf 47.39% Impervious Runoff Depth>4.78" Tc=6.0 min CN=85 Runoff=1.33 cfs 0.099 af
Subcatchment 112:	Runoff Area=179,485 sf 2.01% Impervious Runoff Depth=3.61" Flow Length=820' Tc=40.4 min CN=74 Runoff=8.53 cfs 1.239 af
Subcatchment 113: Roof	Runoff Area=54,769 sf 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=7.83 cfs 0.636 af
Reach 5R: REACH TO POINT OF ANALYSIS	Avg. Flow Depth=0.27' Max Vel=2.39 fps Inflow=16.67 cfs 3.787 af n=0.040 L=300.0' S=0.0400 '/' Capacity=20.33 cfs Outflow=16.56 cfs 3.787 af

ARCO Post Development 10 Prepared by {enter your compared	00 Series	Type III 24	<i>hr 100-Year Rainfall=6.50"</i> Printed 5/12/2020
HydroCAD® 10.00-25 s/n 09589 @	2019 HydroCAD Software Solut	ions LLC	Page 8
Pond 2P: BASIN A		Peak Elev=730.96' Storage=54,80 Discarded=0.22 cfs 0.387 af Primary=6.24 cfs 2.109	03 cf Inflow=32.13 cfs 2.496 af 9 af Outflow=6.47 cfs 2.496 af
Pond 3P: BASIN B		Peak Elev=718.42' Storage=2,8	20 cf Inflow=3.11 cfs 0.231 af Outflow=1.26 cfs 0.222 af
Pond 4P: RECHARGE BASIN	Discarded=0.08 cfs 0.213 af	Peak Elev=737.27' Storage=9,9 Primary=5.47 cfs 0.306 af Secondary=0.65 cfs 0.11	988 cf Inflow=7.83 cfs 0.636 af 7 af Outflow=6.21 cfs 0.636 af
Pond P101:		Peak Elev=74 18.0" Round Culvert n=0.013 L=300.0' S=0.010	1.39' Inflow=6.88 cfs 0.520 af 0 '/' Outflow=6.88 cfs 0.520 af
Pond P102:		Peak Elev=738 24.0" Round Culvert n=0.013 L=460.0' S=0.0100	8.72' Inflow=12.80 cfs 0.976 af '/' Outflow=12.80 cfs 0.976 af
Pond P103:		Peak Elev=734 24.0" Round Culvert n=0.013 L=110.0' S=0.0100	1.65' Inflow=16.25 cfs 1.248 af '/' Outflow=16.25 cfs 1.248 af
Pond P104:		Peak Elev=73 12.0" Round Culvert n=0.013 L=160.0' S=0.020	89.81' Inflow=2.10 cfs 0.154 af 0 '/' Outflow=2.10 cfs 0.154 af
	Total Run	off Area = 11.972 ac Runoff Volume = 4.396 af A 67.25% Pervious = 8.052 ac 3	verage Runoff Depth = 4.41" 2.75% Impervious = 3.921 ac

Summary for Subcatchment 1:

Runoff = 4.25 cfs @ 12.54 hrs, Volume= 0.629 af, Depth= 0.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

A	rea (sf)	CN [Description				
	62,923	77 Woods, Good, HSG D					
14,539 96 Gravel surface, HSG C							
	4,086	92 F	Paved road	s w/open d	itches, 50% imp, HSG C		
3	25,518	70 \	Noods, Go	od, HSG C			
4	07,066	72 \	Neighted A	verage			
4	05,023	ç	99.50% Per	rvious Area			
	2,043	().50% Impe	ervious Area	a		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
16.8	50	0.0100	0.05		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.00"		
7.1	400	0.0350	0.94		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
10.0	410	0.0780	0.68	0.91	Parabolic Channel,		
					W=20.00' D=0.10' Area=1.3 sf Perim=20.0'		
					n= 0.100 Earth, dense brush, high stage		
0.5	130	0.0600	4.36	14.52	Parabolic Channel,		
					W=10.00' D=0.50' Area=3.3 sf Perim=10.1'		
					n= 0.040 Earth, cobble bottom, clean sides		
34.4	990	Total					

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Subcatchment 1:

Summary for Subcatchment 2:

Runoff = 2.42 cfs @ 12.37 hrs, Volume= 0.312 af, Depth= 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

 Ar	ea (sf)	CN D	Description		
2	28,530	70 V	Voods, Go	od, HSG C	
228,530		1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
16.8	50	0.0100	0.05		Sheet Flow,
6.2	440	0.0560	1.18		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
23.0	490	Total			

Summary for Subcatchment 3:

Runoff = 1.70 cfs @ 12.51 hrs, Volume= 0.250 af, Depth= 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Ar	ea (sf)	CN	Description		
1	79,524	70	Woods, Go	od, HSG C	
	3,650	77	Woods, Go	od, HSG D	
18	83,174	70	Weighted A	verage	
18	83,174		100.00% Pe	ervious Are	a
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
16.8	50	0.0100	0.05		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
14.7	440	0.0100	0.50		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
31.5	490	Total			

Subcatchment 3:

Summary for Subcatchment 200:

Runoff = 1.17 cfs @ 12.37 hrs, Volume= 0.148 af, Depth= 0.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

	A	rea (sf)	CN	Description						
		79,634	70	Woods, Go	loods, Good, HSG C					
		22,048	74	>75% Gras	75% Grass cover, Good, HSG C					
	1	01,682	71	Weighted A	verage					
	1	01,682		100.00% Pe	ervious Are	a				
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	16.8	50	0.0100	0.05		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.00"				
	6.2	440	0.0560) 1.18		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	00.0	400	Tatal							

23.0 490 Total

Subcatchment 200:

Summary for Subcatchment 201: Roof

Runoff = 1.78 cfs @ 12.09 hrs, Volume= 0.143 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Summary for Subcatchment 300:

Runoff = 1.59 cfs @ 12.51 hrs, Volume= 0.235 af, Depth= 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Ar	ea (sf)	CN	Description		
16	68,429	70	Woods, Go	od, HSG C	
	3,650	77	Woods, Go	od, HSG D	
17	72,079	70	Weighted A	verage	
17	72,079		100.00% Pe	ervious Are	a
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
16.8	50	0.0100	0.05		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
14.7	440	0.0100	0.50		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
31.5	490	Total			

Subcatchment 300:

Summary for Pond 8P: RECHARGE BASIN

Inflow Area	a =	0.628 ac,10	0.00% Impe	ervious,	Inflow Depth >	> 2.7	2" for	2-Ye	ar event	
Inflow	=	1.78 cfs @	12.09 hrs,	Volume	= 0.14	3 af				
Outflow	=	0.05 cfs @	15.94 hrs,	Volume	= 0.14	2 af, .	Atten= 9	97%,	Lag= 231	.4 min
Discarded	=	0.03 cfs @	15.94 hrs,	Volume	= 0.13	5 af				
Primary	=	0.02 cfs @	15.94 hrs,	Volume	= 0.00	7 af				

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 734.58' @ 15.94 hrs Surf.Area= 3,439 sf Storage= 4,675 cf

Plug-Flow detention time= 1,759.1 min calculated for 0.142 af (100% of inflow) Center-of-Mass det. time= 1,758.1 min (2,525.1 - 767.0)

Volume	Invert	Avail.Stor	rage Storag	age Description
#1 #2	732.00' 731.00'	8,42 34	27 cf Custo 2 cf Custo 1,035	om Stage Data (Prismatic) Listed below (Recalc) om Stage Data (Prismatic) Listed below (Recalc) 5 cf Overall x 33.0% Voids
		8,76	69 cf Total	Available Storage
Elevation (feet	n Su t)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
732.0 734.0 736.0	0 0 0	1,035 2,025 3,342	0 3,060 5,367	0 3,060 8,427
Elevation (feet	n Su :)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
731.0 732.0	0 0	1,035 1,035	0 1,035	0 1,035
Device	Routing	Invert	Outlet Devi	vices
#1	Primary	735.00'	10.0' long Head (feet) Coef. (Eng	x 10.0' breadth Broad-Crested Rectangular Weir) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 ulish) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64
#2	Discarded	731.00'	0.250 in/hr Conductivit	r Exfiltration over Surface area
#3 Primary 734.50' 12.0'' Round Culvert L= 50.0' CPP, mitered to conform to Inlet / Outlet Invert= 734.50' / 733.90' n= 0.013 Corrugated PE, smooth inte		ind Culvert CPP, mitered to conform to fill, Ke= 0.700 et Invert= 734.50' / 733.90' S= 0.0120 '/' Cc= 0.900 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

Discarded OutFlow Max=0.03 cfs @ 15.94 hrs HW=734.58' (Free Discharge) **2=Exfiltration** (Controls 0.03 cfs)

Primary OutFlow Max=0.02 cfs @ 15.94 hrs HW=734.58' (Free Discharge) -1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Culvert (Inlet Controls 0.02 cfs @ 0.82 fps)

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Pond 8P: RECHARGE BASIN
Summary for Pond p200: 200 Series Analysis Point

Inflow Are	a =	2.963 ac, 2	1.21% Impervious,	Inflow Depth = 0.	63" for 2-Year event
Inflow	=	1.17 cfs @	12.37 hrs, Volume	e= 0.155 af	
Primary	=	1.17 cfs @	12.37 hrs, Volume	e= 0.155 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs

Pond p200: 200 Series Analysis Point

Summary for Subcatchment 101:

Runoff = 2.55 cfs @ 12.09 hrs, Volume= 0.185 af, Depth= 1.82"

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Summary for Subcatchment 102:

Runoff = 2.31 cfs @ 12.09 hrs, Volume= 0.170 af, Depth= 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

A	rea (sf)	CN	Description		
	14,015	74	>75% Gras	s cover, Go	ood, HSG C
	30,784	98	Paved park	ing, HSG C	
	44,799	90	Weighted A	verage	
	14,015		31.28% Pe	rvious Area	
	30,784		68.72% Imp	pervious Ar	ea
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
5.8	50	0.0200	0.14		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.00"
0.5	110	0.0400) 4.06		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
6.2	160	Total			

6.3 160 Total

Subcatchment 102:

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Summary for Subcatchment 103:

Runoff = 1.35 cfs @ 12.10 hrs, Volume= 0.101 af, Depth= 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

A	rea (sf)	CN	Description		
	8,615	74 :	>75% Gras	s cover, Go	ood, HSG C
	18,116	98	Paved park	ing, HSG C	
	26,731	90	Weighted A	verage	
	8,615	;	32.23% Per	vious Area	
	18,116	(67.77% Imp	pervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.8	50	0.0200	0.14		Sheet Flow,
1.2	270	0.0330	3.69		Grass: Short n= 0.150 P2= 3.00" Shallow Concentrated Flow, Paved Kv= 20.3 fps
7.0	320	Total			

Subcatchment 103:

Summary for Subcatchment 104:

Runoff = 0.66 cfs @ 12.10 hrs, Volume= 0.048 af, Depth= 1.38"

	A	rea (sf)	CN	De	escriptio	n												
		12,147	74	>7	75% Gra	ss co	ver, Go	ood, HS	ЭС									
		5,968	98	Pa	aved par	king,	HSG C	;										
		18,115	82	W	eighted	Avera	age											
		12,147		67	7.05% Pe	erviou	is Area											
		5,968		32	2.95% In	perv	ious Ar	ea										
	Тс	l enath	Slo	ne	Velocity	Ca	nacity	Descri	ntion									
(m	nin)	(feet)	(ft	/ft)	(ft/sec)	00	(cfs)	200011	puon									
	6.0							Direct	Entr	у,								
							Subca	atchme	ent 1	04:								
							Hydro	graph										
	0.7-										1 	 		 		 		— Dunoff
	0.65-	0.66 c	S			i _ L	i i _!!_	i i	L			i 				L	i_	- Runon
	0.6-		 _	4		 _			 +		 	. T	σν	2 III	24	l-hi	r ¦	
	0.55		 			 		 		Vc	ar	B	ainf	- -	_'?	ก่กา	•	
	0.00					i				- 1 C		110	.	an.	-0.			
	0.5								Ru	no	tt .	Are	ea='	18,	11;	S		
(s)	0.45							R	lun	off	Vo	blu	me	=0.	048	8 a	f¦	
c x	0.4		 			 _		 	 	Ru	no	ff_I	Den	th	_1_	38'	•	
Flo	0.00							i i	!									
	0.0										 			=0	.v i			
	0.25								1					(CN:	=82	2	
	0.2					1		1 1					1				-	
	0.15					· 			+		 	-, 		 	 I I		 	
	0.1-	71 1			Г — — — — — — — — — — — — — — — — — — —	· 			r 		 	- 	 	т — — 	 I I	 I I		
	0.05-	レノ									i !		· _;		- -			
	0-	5 10	15 2	0 2	5 30	35	40 45	50 5	5 60) 6	5	 70	75	80	85	90	95	
							Ti	me (hours)									

Summary for Subcatchment 105:

Runoff = 1.35 cfs @ 12.10 hrs, Volume= 0.099 af, Depth= 1.31"

Summary for Subcatchment 106:

Runoff = 1.19 cfs @ 12.18 hrs, Volume= 0.113 af, Depth= 0.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

A	rea (sf)	CN	Description		
	9,953	80	>75% Gras	s cover, Go	ood, HSG D
	23,172	74	>75% Gras	s cover, Go	ood, HSG C
	35,847	70	Woods, Go	od, HSG C	
	68,972	73	Weighted A	verage	
	68,972		100.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
9.7	50	0.0400	0.09		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
1.8	140	0.0700	1.32		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
11.5	190	Total			

Subcatchment 106:

Summary for Subcatchment 110:

Runoff = 1.06 cfs @ 12.09 hrs, Volume= 0.077 af, Depth= 1.59"

 Area (sf)	CN	Description			
 12,176	74	>75% Gras	s cover, Go	ood, HSG C	
11,632	98	Paved park	ing, HSG C		
 1,500	80	>75% Gras	s cover, Go	ood, HSG D	
 25,308	85	Weighted A	verage		
13,676		54.04% Per	vious Area		
11,632		45.96% Imp	pervious Ar	ea	
Tc Length	Slop	be Velocity	Capacity	Description	
 (min) (feet)	(ft/	ft) (ft/sec)	(cfs)		
6.0				Direct Entry,	
			Subca	atchment 110:	
			Hydro	graph	_
					7

Summary for Subcatchment 111:

Runoff = 0.45 cfs @ 12.09 hrs, Volume= 0.033 af, Depth= 1.59"

Area	(sf)	CN	Desci	riptior	ı													
5,	711	74	>75%	Gras	s cove	er, Go	od, H	SG ()									
5,	144	98	Pave	d park	king, H	SG C												
10,	855	85	Weig	hted A	Averag	e												
5,	711		52.61	% Pe	rvious	Area												
5,	144		47.39	1% IM	pervio	us Are	ea											
Tc Le (min) (ngth feet)	Slope (ft/ft	e Ve :) (ft	locity t/sec)	Capa	acity (cfs)	Desc	criptio	on									
6.0	î						Dire	ct En	try,									
					S	ubca	atchr	nent	111	1:								
					Ŭ	Hydro	aranh			••								
0.5										!								
0.48	0.45 cfs]	+ I	- +		- ·	+	- +		·	 		· +	- 	-	!	- Runoff	
0.46			+	- -	·						!			~ 1				
0.42	· -ii-		+	- ;	·			- +	- -	i	i -	ype	3 111	24	-11	Fi-		
0.38			+ I	- +		 	+ I	-+	2-Y	'ea	r-Ra	ainf	all:	:3.(00'	♥ -		
0.36 0.34	-ii-		+	- -	· -			R	un	off	Δre	='	10	855	5 51	F - !-		
0.32	· -ii·		+	- +	·		+	-+					,			¦-		
ເຊິ່ 0.28			+	-+			+	RU	ηστ	TV	oiu	me	=0.	03.	s a			
0.26 0.24	·		+	- †	- -			- +	R	uno	off l	Dep)th=	-1.	59'	∎ -¦-		
• 0.22	·		+	- +	·		-	- -		 '	¦	Tc	=6	0 r	nin			
0.18	· - ·	+-	+ I	-+			+ I	-+	-+	 	 		+			!-		
0.16 0.14		<u>-</u>	†	- -			i	-+		i	i	i	; - - C)N:	-85) -i-		
0.12	· - ·		+	- +			 	- +		¦			+					
0.08			+	- +			 	- +		·	<u> </u>		+			-		
0.06			+		· -					·			·			'-		
0.02				$-\frac{1}{1}$		- $ $ $-$	+	$-\frac{1}{1}$	-	·			· +	-		¦-		
5	10 15	5 20	25	30	35 40	45 Ti	50 me (hou	55 urs)	60	65	70	75	80	85	90	95		

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Summary for Subcatchment 112:

Runoff = 2.00 cfs @ 12.61 hrs, Volume= 0.312 af, Depth= 0.91"

A	rea (sf)	CN	Description		
	61,729	77	Woods, Go	od, HSG D	
	4,086	92	Paved road	s w/open d	itches, 50% imp, HSG C
	89,877	70	Woods, Go	od, HSG C	
	1,556	98	Paved park	ing, HSG C	
	22,237	74	>75% Gras	s cover, Go	ood, HSG C
1	79,485	74	Weighted A	verage	
1	75,886		97.99% Pei	rvious Area	
	3,599		2.01% Impe	ervious Area	a
			•		
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
10.8	50	0.0300	0.08		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
3.3	200	0.0400	0 1.00		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
24.3	200	0.0200	0.14	0.73	Parabolic Channel,
					W=40.00' D=0.20' Area=5.3 sf Perim=40.0'
					n= 0.400 Sheet flow: Woods+light brush
2.0	370	0.0300) 3.08	10.27	Parabolic Channel,
					W=10.00' D=0.50' Area=3.3 sf Perim=10.1'
					n= 0.040 Earth, cobble bottom, clean sides
40.4	820	Total			

Hydrograph - Runoff 2.00 cfs 2 Type III 24-hr 2-Year Rainfall=3.00" Runoff Area=179,485 sf Runoff Volume=0.312 af Flow (cfs) Runoff Depth=0.91" 1 Flow Length=820' Tc=40.4 min **CN=74** 0 15 20 30 50 65 70 75 5 10 25 35 40 45 55 60 80 85 90 95 Time (hours)

Subcatchment 112:

|--|

Summary for Subcatchment 113: Roof

Runoff = 3.57 cfs @ 12.09 hrs, Volume= 0.285 af, Depth> 2.72"

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Summary for Reach 1R: (new Reach)

Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.59 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 450.0' Slope= 0.0075 '/' Inlet Invert= 100.00', Outlet Invert= 96.63'

Reach 1R: (new Reach)

Summary for Reach 5R: REACH TO POINT OF ANALYSIS

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 2P: BASIN A

Inflow Area	a =	7.022 ac, 4	9.17% Imp	ervious,	Inflow De	pth =	1.32'	" for 2-	Year ev	ent
Inflow	=	9.14 cfs @	12.10 hrs,	Volume	=	0.771	af			
Outflow	=	0.58 cfs @	15.05 hrs,	Volume	=	0.771	af, A	tten= 94%	%, Lag=	177.2 min
Discarded	=	0.12 cfs @	15.05 hrs,	Volume	=	0.295	af			
Primary	=	0.46 cfs @	15.05 hrs,	Volume	=	0.476	af			

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 728.36' @ 15.05 hrs Surf.Area= 10,645 sf Storage= 20,441 cf

Plug-Flow detention time= 674.9 min calculated for 0.771 af (100% of inflow) Center-of-Mass det. time= 676.1 min (1,505.6 - 829.6)

Volume	Invert	Avail.Stor	rage Storage D	escription	
#1	726.00'	72,52	28 cf Custom S	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee	n Su t)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
726.0 728.0 730.0)0)0)0	6,793 9,952 13,814	0 16,745 23,766	0 16,745 40,511	
732.0 Device	0 Routing	18,203 Invert	32,017 Outlet Devices	72,528	
#1	Primary	725.00'	18.0'' Round C L= 50.0' CPP, Inlet / Outlet Inv n= 0.013 Corru	Culvert square edge h /ert= 725.00' / lgated PE, smo	eadwall, Ke= 0.500 723.00' S= 0.0400 '/' Cc= 0.900 poth interior, Flow Area= 1.77 sf
#2 #3 #4	Device 1 Device 1 Device 1	726.50' 728.20' 730.70'	3.0" Vert. Orific 6.0" Vert. Orific 24.0" Horiz. Or	ce/Grate C= (ce/Grate X 2.00 ifice/Grate C	C=0.600 = 0.600
#5	Primary	731.00'	10.0' long x 10 Head (feet) 0.2 Coef. (English)	0.0' breadth Bro 0.0 0.40 0.60 (2.49 2.56 2.7	bad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.69 2.68 2.69 2.67 2.64
#6	Discarded	/26.00'	0.250 in/hr Exfi Conductivity to	Groundwater E	Elevation = 724.00'

Discarded OutFlow Max=0.12 cfs @ 15.05 hrs HW=728.36' (Free Discharge) **6=Exfiltration** (Controls 0.12 cfs)

Primary OutFlow Max=0.46 cfs @ 15.05 hrs HW=728.36' (Free Discharge) 1=Culvert (Passes 0.46 cfs of 13.74 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.31 cfs @ 6.34 fps) 3=Orifice/Grate (Orifice Controls 0.15 cfs @ 1.36 fps) 4=Orifice/Grate (Controls 0.00 cfs) 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Pond 2P: BASIN A

Summary for Pond 3P: BASIN B

Inflow Area	a =	0.581 ac, 45.96% Impervious, Inflow Depth = 1.59"	for 2-Year event
Inflow	=	1.06 cfs @ 12.09 hrs, Volume= 0.077 af	
Outflow	=	0.46 cfs @ 12.32 hrs, Volume= 0.068 af, Atte	n= 57%, Lag= 13.8 min
Primary	=	0.46 cfs @ 12.32 hrs, Volume= 0.068 af	

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 717.27' @ 12.32 hrs Surf.Area= 1,185 sf Storage= 1,172 cf

Plug-Flow detention time= 128.6 min calculated for 0.068 af (89% of inflow) Center-of-Mass det. time= 74.1 min (903.1 - 829.0)

Volume	Inver	t Avail.Sto	rage S	storage D	escription	
#1 716.00' 6,26		66 cf C	Sustom S	tage Data (Pri	ismatic) Listed below (Recalc)	
Elevatio (fee	on S et)	Surf.Area (sq-ft)	Inc.S (cubic-f	tore eet)	Cum.Store (cubic-feet)	
716.0	00	662		0	0	
718.0	00	1,486	2,	148	2,148	
720.0	00	2,632	4,	118	6,266	
Device	Routing	Invert	Outlet	Devices		
#1	Primary	715.00'	12.0'' L= 50.0 Inlet / 0 n= 0.0	Round C 0' CPP, Outlet Inv 13 Corru	Culvert square edge h vert= 715.00' / ugated PE, smo	neadwall, Ke= 0.500 714.00' S= 0.0200 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf
#2	Device 1	716.50'	3.0" Ve	ert. Orific	ce/Grate C=	0.600
#3	Device 1	717.00'	4.0'' Ve	ert. Orific	ce/Grate X 2.0	0 C= 0.600
#4	Device 1	718.50'	24.0" H Limited	Horiz. Or id to weir f	i fice/Grate C flow at low hea	λ= 0.600 ads
#5	Primary	719.00'	10.0' lo Head (Coef. (ong x 10 feet) 0.2 English)	.0' breadth Br 0 0.40 0.60 2.49 2.56 2.	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=0.45 cfs @ 12.32 hrs HW=717.27' (Free Discharge)

1=Culvert (Passes 0.45 cfs of 5.03 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.19 cfs @ 3.86 fps)

-3=Orifice/Grate (Orifice Controls 0.26 cfs @ 1.76 fps)

4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Pond 3P: BASIN B

Summary for Pond 4P: RECHARGE BASIN

Inflow Area	=	1.257	ac,100	0.00% Imp	pervious,	Inflow	Depth >	2.7	2" fo	or 2-Ye	ar eve	nt
Inflow =	=	3.57 c	fs @	12.09 hrs.	Volume	=	0.285	af				
Outflow =	=	0.66 c	fs @	12.53 hrs,	Volume	=	0.285	af,	Atten	= 82%,	Lag=	26.8 min
Discarded =	=	0.07 c	fs @	12.53 hrs,	Volume	=	0.195	af				
Primary =	=	0.37 c	fs @	12.53 hrs,	Volume	=	0.055	af				
Secondary =	=	0.23 c	fs @	12.53 hrs,	Volume	=	0.036	af				

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 736.72' @ 12.53 hrs Surf.Area= 6,966 sf Storage= 6,979 cf

Plug-Flow detention time= 768.5 min calculated for 0.285 af (100% of inflow) Center-of-Mass det. time= 767.8 min (1,534.8 - 767.0)

Volume	Invert	Avail.Stor	age Storag	ge Description	
#1	735.00'	14,04	6 cf Custo	om Stage Data (Prismatic) Listed below (Recalc)	
#2	734.00'	59	9 cf Custo	om Stage Data (Prismatic) Listed below (Recalc)	
			1,816	ocf Overall x 33.0% Voids	
		14,64	5 cf Total /	Available Storage	
Elevatio	n Su	rf.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
735.0	0	1,816	0	0	
736.0	0	4,208	3,012	3,012	
738.0	0	6,826	11,034	14,046	
Elevatio	n Su	rf.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
734.0	0	1,816	0	0	
735.0	0	1,816	1,816	1,816	
Device	Routing	Invert	Outlet Device	ices	
#1	Primary	737.00'	10.0' long	x 10.0' breadth Broad-Crested Rectangular Weir	
			Head (feet)) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
	D	70 (0.0)	Coef. (Engli	lish) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64	
#2	Discarded	/34.00'	0.250 in/hr	Extilitration over Surface area	
#0	Drimony	726 40'		ty to Groundwater Elevation = 732.00°	
#3	Filliary	730.40	12.0 HOUL	PP mitered to conform to fill Ke_ 0.700	
			Inlet / Outle	et Invert- 736 40' / 733 90' S- 0.0500 '/' Cc- 0.900	
			n = 0.013 C	Corrugated PE, smooth interior. Flow Area= 0.79 sf	
#4	Secondary	736.40'	6.0" Round	d Culvert	
	,		L= 50.0' C	CPP, mitered to conform to fill, Ke= 0.700	
			Inlet / Outle	et Invert= 736.40' / 734.40' S= 0.0400 '/' Cc= 0.900	
			n= 0.013 C	Corrugated PE, smooth interior, Flow Area= 0.20 sf	

Prepared by {enter your company name here} HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.00" Printed 5/12/2020 LLC Page 19

Discarded OutFlow Max=0.07 cfs @ 12.53 hrs HW=736.72' (Free Discharge) **2=Exfiltration** (Controls 0.07 cfs)

Primary OutFlow Max=0.37 cfs @ 12.53 hrs HW=736.72' (Free Discharge) -1=Broad-Crested Rectangular Weir (Controls 0.00 cfs) -3=Culvert (Inlet Controls 0.37 cfs @ 1.70 fps)

Secondary OutFlow Max=0.22 cfs @ 12.53 hrs HW=736.72' (Free Discharge) 4=Culvert (Inlet Controls 0.22 cfs @ 1.70 fps)

Pond 4P: RECHARGE BASIN

Summary for Pond P101:

Inflow Area	ι =	1.223 ac, 56.41% Impervious, Inflow Depth = 1.82" for 2-Year eve	nt
Inflow	=	2.55 cfs @ 12.09 hrs, Volume= 0.185 af	
Outflow	=	2.55 cfs @ 12.09 hrs, Volume= 0.185 af, Atten= 0%, Lag= 0	.0 min
Primary	=	2.55 cfs @ 12.09 hrs, Volume= 0.185 af	

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 740.74' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	740.00'	18.0" Round Culvert L= $300.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $740.00'$ / $737.00'$ S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.50 cfs @ 12.09 hrs HW=740.73' (Free Discharge) 1=Culvert (Inlet Controls 2.50 cfs @ 2.91 fps)

Pond P101:

ARCO Post Development 100 Series	Туре
Prepared by {enter your company name here}	
HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions	LLC

Summary for Pond P102:

Inflow Area	ι =	2.251 ac, 6	2.03% Impervic	ous, Inflow De	pth = 1.89"	for 2-Year event
Inflow	=	4.85 cfs @	12.09 hrs, Vol	ume=	0.355 af	
Outflow	=	4.85 cfs @	12.09 hrs, Vol	ume=	0.355 af, Atte	n= 0%, Lag= 0.0 min
Primary	=	4.85 cfs @	12.09 hrs, Vol	ume=	0.355 af	

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 737.95' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	737.00'	24.0'' Round Culvert L= 460.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $737.00' / 732.40'$ S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=4.77 cfs @ 12.09 hrs HW=737.94' (Free Discharge) **1=Culvert** (Inlet Controls 4.77 cfs @ 3.30 fps)

Pond P102:

Summary for Pond P103:

Inflow Area	ι =	2.865 ac, 6	3.26% Impe	ervious,	Inflow Depth	= 1.91"	for 2-Year e	event
Inflow	=	6.20 cfs @	12.09 hrs,	Volume	= 0.4	57 af		
Outflow	=	6.20 cfs @	12.09 hrs,	Volume	= 0.4	57 af, Atte	en= 0%, Lag=	= 0.0 min
Primary	=	6.20 cfs @	12.09 hrs,	Volume	= 0.4	57 af		

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 733.59' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	732.50'	24.0'' Round Culvert L= 110.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 732.50' / 731.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=6.12 cfs @ 12.09 hrs HW=733.58' (Free Discharge) -1=Culvert (Inlet Controls 6.12 cfs @ 3.54 fps)

Pond P103:

Summary for Pond P104:

Inflow Area	ι =	0.416 ac, 3	2.95% Imperv	vious, Inflow De	epth = 1.38"	for 2-Year event
Inflow	=	0.66 cfs @	12.10 hrs, V	/olume=	0.048 af	
Outflow	=	0.66 cfs @	12.10 hrs, V	/olume=	0.048 af, Atte	n= 0%, Lag= 0.0 min
Primary	=	0.66 cfs @	12.10 hrs, V	/olume=	0.048 af	

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 739.41' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	739.00'	12.0" Round Culvert L= 160.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 739.00' / 735.80' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.65 cfs @ 12.10 hrs HW=739.41' (Free Discharge) **1=Culvert** (Inlet Controls 0.65 cfs @ 2.17 fps)

Pond P104:

STANDARD #3 – LOSS OF ANNUAL RECHARGE

The site is predominately un-developed. The site design incorporates direct recharge of roof drains to infiltration basins. Basins A and B are designed to infiltrate retained runoff after pre-treatment. Soils were found to be Class C permeability.

The table below shows the required and provided recharge volumes for the project. As shown, the proposed condition exceeds the minimum requirement for the additional impervious areas.

Recharge volume Summary							
Soil	Recharge Factor (in.	Existing Impervious	Additional Impervious	Min. Req. Recharge			
Туре	runoff)	Area (sf)	Area (sf)	Volume (cf)			
Α	0.60	0	0	0			
В	0.35	0	0	0			
С	0.25	0	215,234	4,484			
D	0.10	0	0	0			
Total Re	equired		4,484				

Recharge	Volume	Summary
----------	--------	---------

Standard #3 Only Applies to Additional Impervious

Provided Recharge Volume (cf)				
South Roof Recharge	5,399			
North Roof Recharge	5,756			
Basin A	5,150			
Basin B	383			
Total Provided 16,688				

ARCO Post Development 100 SeriesTypePrepared by {enter your company name here}HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Hydrograph for Pond 2P: BASIN A

Time	Inflow	Storage	Elevation	Outflow	Discarded	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)
5.00	0.00	0	726.00	0.00	0.00	0.00
7.50	0.08	238	726.03	0.02	0.02	0.00
10.00	0.43	1.813	726.26	0.05	0.05	0.00
12.50	5.16	29,415	729.15	2.10	0.15	1.95
15.00	0.95	26,042	728.86	1.70	0.14	1.57
17.50	0.46	21,254	728.43	0.74	0.12	0.62
20.00	0.31	19,501	728.27	0.45	0.11	0.34
22.50	0.24	18,197	728.14	0.40	0.11	0.29
25.00	0.00	15,959	727.92	0.37	0.10	0.27
27.50	0.00	12,842	727.59	0.32	0.09	0.23
30.00	0.00	10,158	727.30	0.27	0.08	0.19
32.50	0.00	7,919	727.04	0.22	0.07	0.15
35.00	0.00	6,146	726.83	0.17	0.06	0.11
37.50	0.00	4,885	726.67	0.11	0.06	0.05
40.00	0.00	4,125	726.57	0.07	0.06	0.01
42.50	0.00	3,592	726.50	0.05	0.05	0.00
45.00	0.00	3,114	726.44	0.05	0.05	0.00
47.50	0.00	2,652	726.37	0.05	0.05	0.00
50.00	0.00	2,207	726.31	0.05	0.05	0.00
52.50	0.00	1,779	726.25	0.05	0.05	0.00
55.00	0.00	1,366	726.20	0.05	0.05	0.00
57.50	0.00	968	726.14	0.04	0.04	0.00
60.00	0.00	585	726.09	0.04	0.04	0.00
62.50	0.00	254	726.04	0.03	0.03	0.00
65.00	0.00	103	726.02	0.01	0.01	0.00
67.50	0.00	42	726.01	0.00	0.00	0.00
70.00	0.00	17	726.00	0.00	0.00	0.00
72.50	0.00	7	726.00	0.00	0.00	0.00
75.00	0.00	3	726.00	0.00	0.00	0.00
77.50	0.00	1	726.00	0.00	0.00	0.00
80.00	0.00	0	726.00	0.00	0.00	0.00
82.50	0.00	0	726.00	0.00	0.00	0.00
85.00	0.00	0	726.00	0.00	0.00	0.00
87.50	0.00	0	726.00	0.00	0.00	0.00
90.00	0.00	0	726.00	0.00	0.00	0.00
92.50	0.00	0	726.00	0.00	0.00	0.00
95.00	0.00	0	726.00	0.00	0.00	0.00

ARCO Post Development 100 SeriesTypePrepared by {enter your company name here}HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Hydrograph for Pond 3P: BASIN B

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
5.00	0.00	0	716.00	0.00
7.50	0.01	10	716.02	0.00
10.00	0.05	214	716.30	0.00
12.50	0.45	1,652	717.65	0.82
15.00	0.09	765	716.90	0.12
17.50	0.04	545	716.68	0.05
20.00	0.03	503	716.63	0.03
22.50	0.02	486	716.62	0.03
25.00	0.00	434	716.56	0.01
27.50	0.00	402	716.52	0.00
30.00	0.00	395	716.51	0.00
32.50	0.00	390	716.51	0.00
35.00	0.00	387	716.51	0.00
37.50	0.00	386	716.50	0.00
40.00	0.00	384	716.50	0.00
42.50	0.00	384	716.50	0.00
45.00	0.00	383	716.50	0.00
47.50	0.00	383	716.50	0.00
50.00	0.00	383	716.50	0.00
52.50	0.00	383	716.50	0.00
55.00	0.00	383	716.50	0.00
57.50	0.00	383	716.50	0.00
60.00	0.00	383	716.50	0.00
62.50	0.00	383	716.50	0.00
65.00	0.00	383	716.50	0.00
67.50	0.00	383	716.50	0.00
70.00	0.00	383	716.50	0.00
72.50	0.00	383	716.50	0.00
75.00	0.00	383	716.50	0.00
77.50	0.00	383	716.50	0.00
80.00	0.00	383	716.50	0.00
82.50	0.00	383	716.50	0.00
85.00	0.00	383	716.50	0.00
87.50	0.00	383	716.50	0.00
90.00	0.00	383	716.50	0.00
92.50	0.00	383	716.50	0.00
95.00	0.00	383	716.50	0.00

Hydrograph for Pond 8P: RECHARGE BASIN

Time	Inflow	Storage	Elevation	Outflow	Discarded	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)
5.00	0.05	4	731.01	0.00	0.00	0.00
7.50	0.09	509	732.16	0.01	0.01	0.00
10.00	0.20	1,618	733.00	0.02	0.02	0.00
12.50	0.88	6,072	735.12	1.09	0.03	1.05
15.00	0.17	5,823	735.02	0.18	0.03	0.14
17.50	0.08	5,781	735.01	0.09	0.03	0.05
20.00	0.06	5,769	735.00	0.06	0.03	0.03
22.50	0.05	5,763	735.00	0.05	0.03	0.01
25.00	0.00	5,658	734.96	0.03	0.03	0.00
27.50	0.00	5,384	734.86	0.03	0.03	0.00
30.00	0.00	5,117	734.75	0.03	0.03	0.00
32.50	0.00	4,856	734.65	0.03	0.03	0.00
35.00	0.00	4,602	734.54	0.03	0.03	0.00
37.50	0.00	4,355	734.44	0.03	0.03	0.00
40.00	0.00	4,114	734.33	0.03	0.03	0.00
42.50	0.00	3,880	734.23	0.03	0.03	0.00
45.00	0.00	3,652	734.12	0.02	0.02	0.00
47.50	0.00	3,432	734.01	0.02	0.02	0.00
50.00	0.00	3,217	733.91	0.02	0.02	0.00
52.50	0.00	3,008	733.80	0.02	0.02	0.00
55.00	0.00	2,805	733.69	0.02	0.02	0.00
57.50	0.00	2,607	733.59	0.02	0.02	0.00
60.00	0.00	2,414	733.48	0.02	0.02	0.00
62.50	0.00	2,227	733.37	0.02	0.02	0.00
65.00	0.00	2,046	733.26	0.02	0.02	0.00
67.50	0.00	1,870	733.16	0.02	0.02	0.00
70.00	0.00	1,699	733.05	0.02	0.02	0.00
72.50	0.00	1,534	732.94	0.02	0.02	0.00
/5.00	0.00	1,374	/32.83	0.02	0.02	0.00
//.50	0.00	1,219	/32./2	0.02	0.02	0.00
80.00	0.00	1,070	/32.61	0.02	0.02	0.00
82.50	0.00	926	/32.50	0.02	0.02	0.00
85.00	0.00	/8/	732.39	0.02	0.02	0.00
87.50	0.00	653	/32.28	0.01	0.01	0.00
90.00	0.00	525	/32.1/	0.01	0.01	0.00
92.50	0.00	401	/32.06	0.01	0.01	0.00
95.00	0.00	305	/31.89	0.01	0.01	0.00

ARCO Post Development 100 SeriesType IPrepared by {enter your company name here}HydroCAD® 10.00-25 s/n 09589 © 2019 HydroCAD Software Solutions LLC

Hydrograph for Pond 4P: RECHARGE BASIN

Time	Inflow	Storage	Elevation	Outflow	Discarded	Primary	Secondary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	(cfs)
5.00	0.05	4	734.01	0.00	0.00	0.00	0.00
7.50	0.09	448	734.75	0.01	0.01	0.00	0.00
10.00	0.19	1,394	735.35	0.03	0.03	0.00	0.00
12.50	0.83	7,437	736.81	0.97	0.07	0.58	0.33
15.00	0.16	6,122	736.55	0.21	0.06	0.09	0.06
17.50	0.08	5,792	736.48	0.11	0.06	0.03	0.02
20.00	0.05	5,590	736.44	0.07	0.06	0.01	0.00
22.50	0.04	5,435	736.41	0.06	0.06	0.00	0.00
25.00	0.00	5,130	736.34	0.06	0.06	0.00	0.00
27.50	0.00	4,621	736.23	0.06	0.06	0.00	0.00
30.00	0.00	4,132	736.12	0.05	0.05	0.00	0.00
32.50	0.00	3,664	736.01	0.05	0.05	0.00	0.00
35.00	0.00	3,218	735.90	0.05	0.05	0.00	0.00
37.50	0.00	2,797	735.79	0.05	0.05	0.00	0.00
40.00	0.00	2,402	735.68	0.04	0.04	0.00	0.00
42.50	0.00	2,032	735.57	0.04	0.04	0.00	0.00
45.00	0.00	1,687	735.46	0.04	0.04	0.00	0.00
47.50	0.00	1,367	735.34	0.03	0.03	0.00	0.00
50.00	0.00	1,072	735.23	0.03	0.03	0.00	0.00
52.50	0.00	803	735.10	0.03	0.03	0.00	0.00
55.00	0.00	569	734.95	0.02	0.02	0.00	0.00
57.50	0.00	435	734.73	0.01	0.01	0.00	0.00
60.00	0.00	311	734.52	0.01	0.01	0.00	0.00
62.50	0.00	197	734.33	0.01	0.01	0.00	0.00
65.00	0.00	91	734.15	0.01	0.01	0.00	0.00
67.50	0.00	6	734.01	0.00	0.00	0.00	0.00
70.00	0.00	0	734.00	0.00	0.00	0.00	0.00
72.50	0.00	0	734.00	0.00	0.00	0.00	0.00
75.00	0.00	0	/34.00	0.00	0.00	0.00	0.00
//.50	0.00	0	/34.00	0.00	0.00	0.00	0.00
80.00	0.00	0	/34.00	0.00	0.00	0.00	0.00
82.50	0.00	0	/34.00	0.00	0.00	0.00	0.00
85.00	0.00	0	/34.00	0.00	0.00	0.00	0.00
87.50	0.00	0	/34.00	0.00	0.00	0.00	0.00
90.00	0.00	0	/34.00	0.00	0.00	0.00	0.00
92.50	0.00	0	/34.00	0.00	0.00	0.00	0.00
95.00	0.00	0	734.00	0.00	0.00	0.00	0.00

STANDARD #4- 80% TSS REMOVAL

ESTIMATED PROPOSED NEW PAVED COVER= 112,390 S.F.

REQUIRED WATER QUALITY VOLUME:

Water Quality Volume						
Required Treatment Volume	1.0	Inches Over Impervious Areas				
Water Quality						
Watershed Series	Paved Area	Volume				
100 - Basin A	95,614	7,968				
100 - Basin B	11,632	969				
100 - Main Entrance	5,144	429				
200	0	0				
300	0	0				

The design of the drainage system is such that the site is routed through a series of treatment BMP's meeting the Standard. The attached TSS worksheets and Proprietary systems show the site meeting this requirement. No bypass is designed of the BMP's reducing the WQV.

PLEASE SEE THE FOLLOWING PAGES FOR TSS REMOVAL CALCULATIONS AND STORMCEPTOR® SIZING DETAILED REPORTS

INSTRUCTIONS:

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location:	6 Picker Road, Drainage Basin			
leet	А	В	С	D	E
	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (B*C)	Remaining Load (C-D)
	Deep Sump Catch Basins	0.25	1.00	0.25	0.75
oval orksł	Sediment Forebay	25%	0.75	0.19	0.56
Remo	Infiltration Basin	80%	0.56	0.45	0.11
TSS culati			0.11	0.00	0.11
Calo			0.11	0.00	0.11
		Total	TSS Removal =	89%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project: Prepared By: Date:	20-122, ARCO ARB 5/9/2020		*Equals remaining load from p which enters the BMP	revious BMP (E)

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location:	6 Picker Road, Main Access Ro	bad Low Point		
	А	В	С	D	E
	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (B*C)	Remaining Load (C-D)
leet	Deep Sump Catch Basins	0.25	1.00	0.25	0.75
oval orksh	Stormceptor 450i Proprietary Device	88%	0.75	0.66	0.09
TSS Rem ulation W	Infiltration Basin	80%	0.09	0.07	0.02
			0.02	0.00	0.02
Calo			0.02	0.00	0.02
		Total	TSS Removal =	98%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project: Prepared By: Date:	20-122, ARCO ARB 5/9/2020		*Equals remaining load from p which enters the BMP	revious BMP (E)

INSTRUCTIONS:

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location:	6 Picker Road, Main Entrance			
	А	В	С	D	Е
	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (B*C)	Remaining Load (C-D)
neet	Deep Sump Catch Basins	25%	1.00	0.25	0.75
oval orksł	Stormceptor 450i Proprietary Device	93%	0.75	0.70	0.05
Rem on W			0.05	0.00	0.05
TSS culati			0.05	0.00	0.05
Cal			0.05	0.00	0.05
		Total	TSS Removal =	95%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project: Prepared By: Date:	20-122, ARCO ARB 5/9/2020		*Equals remaining load from p which enters the BMP	revious BMP (E)

Brief Stormceptor Sizing Report - 6 Picker Road Entrance

Project Information & Location					
Project Name	6 Picker Road	Project Number	20-122		
City	Sturbridge	State/ Province	Massachusetts		
Country	United States of America	Date	5/9/2020		
Designer Informatio	n	EOR Information (optional)			
Name	Andrew Baum	Name			
Company	Summit Engineering & Survey, Inc.	Company			
Phone #	508-987-8713	Phone #			
Email	abaum@summitesinc.com	Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	6 Picker Road Entrance
Target TSS Removal (%)	80
TSS Removal (%) Provided	93
Recommended Stormceptor Model	STC 450i

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary		
Stormceptor Model	% TSS Removal Provided	
STC 450i	93	
STC 900	96	
STC 1200	96	
STC 1800	96	
STC 2400	97	
STC 3600	98	
STC 4800	98	
STC 6000	98	
STC 7200	99	
STC 11000	99	
STC 13000	99	
STC 16000	99	

Stormceptor[®]

Sizing Details				
Drainage Area		Water Quality Objective		
Total Area (acres)	0.25	TSS Removal (%)		80.0
Imperviousness %	48.0	Runoff Volume Capture (%)		
Rainfa	all	Oil Spill Capture Volume (Gal)		
Station Name	EAST BRIMFIELD LAKE	Peak Conveyed Flow Rate (CFS)		
State/Province	Massachusetts	Water Quality Flow Rate (CFS)		
Station ID #	2107	Up Stream Storage		
Years of Records	45	Storage (ac-ft)	Discha	rge (cfs)
Latitude	42°7'0"N	0.000	0.0	000
Longitude	72°8'0"W	Up Stream Flow Diversion		

Max. Flow to Stormceptor (cfs)

Particle Size Distribution (PSD) The selected PSD defines TSS removal		
Fine Distribution		
Particle Diameter (microns)	Distribution %	Specific Gravity
20.0	20.0	1.30
60.0	20.0	1.80
150.0	20.0	2.20
400.0	20.0	2.65
2000.0	20.0	2.65
Notes		

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit:

https://www.conteches.com/technical-guides/search?filter=1WBC0O5EYX

Brief Stormceptor Sizing Report - 6 Picker Road, Low Point

Project Information & Location			
Project Name	6 Picker Road	Project Number	20-122
City	Sturbridge	State/ Province	Massachusetts
Country	United States of America	Date	5/9/2020
Designer Information		EOR Information (optional)	
Name	Andrew Baum	Name	
Company	Summit Engineering & Survey, Inc.	Company	
Phone #	508-987-8713	Phone #	
Email	abaum@summitesinc.com	Email	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	6 Picker Road, Low Point	
Target TSS Removal (%)	80	
TSS Removal (%) Provided	88	
Recommended Stormceptor Model	STC 450i	

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary		
Stormceptor Model	% TSS Removal Provided	
STC 450i	88	
STC 900	93	
STC 1200	93	
STC 1800	93	
STC 2400	95	
STC 3600	95	
STC 4800	97	
STC 6000	97	
STC 7200	97	
STC 11000	98	
STC 13000	98	
STC 16000	99	
Stormceptor[®]

Sizing Details												
Drainage	Area	Water Quality Objective										
Total Area (acres)	0.58	TSS Removal (80.0									
Imperviousness %	46.0	Runoff Volume Cap	ture (%)									
Rainfa	all	Oil Spill Capture Volu										
Station Name	EAST BRIMFIELD LAKE	Peak Conveyed Flow Rate (CFS)										
State/Province	Massachusetts	Massachusetts Water Quality Flow Rate (CFS)										
Station ID #	2107	Up Stre	am Storage									
Years of Records	45	Storage (ac-ft)	Discha	rge (cfs)								
Latitude	42°7'0"N	0.000 0.000										
Longitude	72°8'0"W	Up Stream Flow Diversion										

Max. Flow to Stormceptor (cfs)

Particle Size Distribution (PSD) The selected PSD defines TSS removal												
Fine Distribution												
Particle Diameter (microns)Distribution %Specific Gravity												
20.0	20.0	1.30										
60.0	20.0	1.80										
150.0	20.0	2.20										
400.0	20.0	2.65										
2000.0 20.0 2.65												
Notes												

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit:

https://www.conteches.com/technical-guides/search?filter=1WBC0O5EYX

STANDARD #9- OPERATION & MAINTENANCE

OPERATION & MAINTENANCE PLAN:

CURRENT OWNER & RESPONSIBLE PARTY:

New England Cold, LLC (Contractor shall be responsible during construction)

FUTURE OWNER & RESPONSIBLE PARTY:

New England Cold, LLC

DURING CONSTRUCTION:

SILT FENCE BARRIER:

The silt fence barrier shall be installed prior to construction.

During construction the contractor shall inspect the silt fence barrier on a weekly basis and after any significant rainstorm resulting in greater than 0.5" of rainfall. The barrier shall be inspected for any breaches or disturbed silt fence and repaired immediately.

After construction the barrier shall be maintained as stated above until all new areas are vegetated.

After construction these duties shall transfer to the property owner.

CONSTRUCTION ENTRANCE APRONS:

Construction aprons shall be installed to protect Route 20. The construction entrance apron shall be installed prior to commencement of construction and shall be inspected weekly. The construction entrance apron shall be replaced when debris becomes noticeable on the existing pavement surfaces leading to and from the construction site.

SLOPE STABILIZATION:

The slope stabilization controls shall be installed immediately upon obtaining final grades as shown on the project plans. Slopes in the swale area shall be stabilized according to the details provided. All 3:1 slopes established on-site shall be loamed and seeded as soon as weather permits. Any 2:1 slopes established shall be covered with slope stabilization fabric, then loamed and seeded as soon as weather permits. Areas in failure shall be re-graded to final grade and stabilized as necessary.

Summit Engineering & Survey, Inc. 710 Main Street North Oxford MA 01537 (P) 508-987-8713 (F) 508-987-8714

TEMPORARY BASINS:

The temporary basins shall be inspected immediately after storm events and cleaned to remove sediment build-up. Outfalls shall be inspected for erosion or scouring. Additional rip rap shall be added as required to minimize erosion.

CATCH BASINS:

Catch basins shall entrances shall have temporary stone or other filtration device installed around inlet to prevent sediment deposits. Sediment shall be removed when accumulation exceeds 1" depth on paved surfaces.

CHECK DAMS:

Check Dams shall be inspected weekly and after rainfall in excess of 0.5". Accumulated sediment shall be removed when depth exceeds 3" on the upstream sided of the dam. Stone or fabric shall be replaced when evidence of clogging is present.

PROPRIETARY SEPARATOR:

The proprietary separator shall be inspected immediately after storm events and cleaned to remove sediment build-up. Cleaning methods shall adhere to the manufacturer's directions.

During construction the proprietary separator shall be inspected on a weekly basis for evidence of clogging or other situation that may adversely affect its function.

CONSTRUCTION COMPLETION:

The entire stormwater management system shall be inspected upon completion of construction. Portions of the system containing sediment shall be cleaned and all sediment properly removed.

AFTER CONSTRUCTION:

CATCH BASINS:

At a minimum, the catch basins shall be inspected and cleaned on a quarterly basis. It is preferred that collection of accumulated sediment shall be accomplished by means of vacuum pumping and not by means of a clamshell bucket. Disposal of accumulated sediment shall be performed in accordance with applicable local, state, and federal guidelines and regulations.

PROPRIETARY SEPARATOR:

The proprietary separator shall be inspected immediately after 0.5 inch storm events and cleaned to remove sediment build-up. Cleaning methods shall adhere to the manufacturer's directions. It is critical that sediment be removed periodically from the proprietary separator to insure it is not being carried to the detention areas and also to insure proper functioning of the separator.

The proprietary separator shall be inspected every three (3) months for evidence of clogging or other situation that may adversely affect its function.

SEDIMENT FORBAYS

Sediment forebays shall be visually inspected monthly for accumulation of debris, slope failure, or stone displacement. Slopes shall be mowed quarterly. Bottom shall be swept, vacuumed of accumulated debris semi-annually.

INFILTRATION BASINS

Inspect infiltration basins after major storm events (>3.0 inches) to verify stabilization and infiltration. Mow slopes, berms quarterly. Removed accumulated clippings from infiltration stone. Inspect basin semi-annually for the following:

- Signs of differential settlement
- Cracking
- Erosion
- Leakage in embankments
- Tree growth on embankments
- Condition of rip rap
- Sediment accumulation
- Turf health.

LONG TERM POLLUTION PREVENTION PLAN

The following are the material management practices that shall be used to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff.

Good Housekeeping: The following good housekeeping practices will be followed on site during the construction project and continued upon completion of the construction activities.

- 1. A concerted effort shall be made to store only enough product required to complete a particular task.
- 2. All materials stored on site shall be stored in a neat and orderly fashion in their appropriate containers and, if possible, under a roof or other secure enclosure.
- 3. Products shall be kept in their original containers with the original manufacture's label.
- 4. Substances shall not be mixed with one another unless recommended by the manufacturer.
- 5. Whenever possible, all of a product shall be used up before disposing of the container.
- 6. Manufacture's recommendations for proper use and disposal shall be followed.

Summit Engineering & Survey, Inc.

710 Main Street North Oxford MA 01537 (P) 508-987-8713 (F) 508-987-8714

7. The site superintendent shall inspect daily to ensure proper use and disposal of materials on site.

Hazardous Products: The following practices are intended to reduce the risks associated with hazardous materials.

- 1. Products shall be kept in original containers unless they are not re-sealable.
- 2. Where feasible, the original label and material safety data shall be retained, whereas they contain important product information.
- 3. If surplus product must be disposed of, follow manufacturers or local and State recommended methods for proper disposal.

Product Specific Practices: The following product-specific practices shall be followed on site: Petroleum Products:

- 1. All on site vehicles shall be monitored for leaks and receive regular preventative maintenance to reduce the risk of leakage.
- 2. Petroleum products shall be stored in tightly sealed containers which are clearly labeled.
- 3. Petroleum Products shall be stored in compliance with Fire Marshall regulations.

Bituminous Concrete:

Any bituminous concrete or asphalt substances used on site shall be applied according to the manufacturer's recommendations.

Fertilizers:

Fertilizers shall be applied in the minimum amounts recommended by the manufacturer. Once applied, fertilizers shall be worked into the soil to limit exposure to stormwater. Storage shall be in a covered shed or trailer. The contents of any partially-used bags of fertilizer shall be transferred to a sealable plastic bag or bin to avoid spills

Paints:

- 1. All containers shall be tightly sealed and stored when not required for use.
- 2. Excess paint shall not be discharged into any catch basin, drain manhole or any portion of the stormwater management system.
- 3. Excess paint shall be properly disposed of according to manufacturer's recommendations or State and local regulations.

Concrete Trucks:

Concrete trucks shall not be allowed to wash out or discharge surplus concrete or drum wash water on site.

SPILL CONTROL PRACTICES

In addition to the good housekeeping and material management practices discussed in the previous sections of this plan, the following practices shall be followed for spill prevention and cleanup:

1. Manufacturer's recommended methods for cleanup shall be readily available at the onsite trailer, and site personnel shall be made aware of the procedures and the location of the information.

- 2. Materials and equipment necessary for spill clean up shall be kept in the material storage area on site. Equipment and materials shall include, but not be limited to, brooms, dust pans, mops, rags, gloves, goggles, kitty litter, sand, sawdust and plastic and metal trash containers specifically for this purpose.
- 3. All spills shall be cleaned up immediately after discovery.
- 4. The spill area shall be kept well ventilated, and personnel shall wear appropriate protective clothing to prevent injury from contact with hazardous substance.
- 5. Spills of toxic or hazardous material shall be reported to the appropriate State and/or local authority in accordance with local and/or State regulations.
- 6. The spill prevention plan shall be adjusted to include measures to prevent a particular type of spill from reoccurring and instructions on how to clean up the spill if there is another occurrence. A description of the spill, what caused it, and the clean up measures shall also be included.
- 7. The "Manager" shall be the spill prevention and cleanup coordinator. The "Manager" shall designate at least three other site personnel who will be trained in the spill control practices identified above.

APPENDICES:

PRE-DEVELOPMENT DIAGRAM

POST-DEVELOPMENT DIAGRAM

PRE-DEVELOPMENT WATERSHED MAP

POST-DEVELOPMENT WATERSHED MAP

SOIL MAPS

FLOOD MAP

Natural Resources **Conservation Service**

Web Soil Survey National Cooperative Soil Survey

Soil Map-Worcester County, Massachusetts, Southern Part

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	13.7	8.9%
73A	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	4.1	2.7%
102C	Chatfield-Hollis-Rock outcrop complex, 0 to 15 percent slopes	11.4	7.4%
307B	Paxton fine sandy loam, 0 to 8 percent slopes, extremely stony	44.1	28.7%
307C	Paxton fine sandy loam, 8 to 15 percent slopes, extremely stony	28.5	18.5%
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	1.9	1.2%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	21.9	14.2%
651	Udorthents, smoothed	28.1	18.3%
Totals for Area of Interest		153.6	100.0%

Boring No : B-15

Page	1	of	1
------	---	----	---

Project:		Propo	sed Cold Storage F	acility						WAI P	roject No.:	GM2017067.000			
Location:		Six P	icker Road, Sturbrid	ge, Wo	orcester	County,	Massachusetts	;			Client:	Mid-Cape Develo	pment LLC		
Surface E	levatio	n:	± 731.0 fee	t abov	e NAVE	088	Date Started:		3/18/2020	Water Depth	Elevation	Cave-lı	Depth Elevation		
Terminatio	on Dep	th:	7.5 fee	t bgs			Date Complet	ed:	3/18/2020	(feet bgs)	(ft NAVD88)	(1	eet bgs) (ft NAVD88)		
Proposed	Locati	on:	SWM Area (S	take 7	02)		Logged By:	DC		During:	- V				
Drill / Test	Metho	od:	HSA / SPT				Contractor:	SK		At Completion:	- -	At Completion:			
							Equipment:	CME 8	350	24 Hours:	-	24 Hours:			
	SA	MPL	E INFORMATION		-	DEPTH	STRAT	TRATA DESCRIPTION OF MATERIALS							
Depth (feet)	No	Type	Blows Per 6"	Rec.	N	(feet)	UIIAI	^		(Classificati	on)				
(1001)		Type	Diow31 er o	()		0.0				(endeenhead	•,				
						1 -	TS	\$112	3" Forest Mat						
		\vee				-	SUBSOIL		7" Sandy Subsoil						
0-2	S-1	Å	2 - 2 - 2 - 2	8	4				Brown, Very Loos	e to Loose, Silty Sand with Gra	vel (SM)				
		/]								
		Λ /					1								
2 - 4	S-2	X	9 - 45 - 51 - 47	17	96	_			As Above, Very D	ense (SM)					
		$ \land $													
		\sim				- 1									
						5.0									
							1								
5 - 6.5	S-3	X	13 - 46 - 61	14	>100	.	1		As Above (SM)						
		$/ \setminus$]								
							I								
						-			Boring Log B-15	Ferminated upon Auger Refusal					
							+		at a Depth of 7.5	Feet Below Ground Surface.					
						-									
						10.0	1								
							1								
]								
]								
						_									
						.	4								
							-								
							$\frac{1}{2}$								
						-									
						15.0	1								
						-	1								
]								
						.	4								
						_	4								
						.	┫								
						-	-								
						•	1								
						-	1								
						20.0	1								
						_]								
						_	l								
						.	4								
						_	4								
						.	┫								
						-	4								
						•	1								
						-	1								
						25.0	1								
						-	1								

Boring No.: B-16

Project:		Propo	osed Cold Storage F	acility							WAI Pr	oject No :	GM2017067.000	
Location:		Six Pi	icker Road, Sturbrid	ge, W	orcester	County,	Massachusetts					Client:	Mid-Cape Develo	pment LLC
Surface El	evatio	n:	± 739.0 fee	t abov	e NAVE	88	Date Started:	:	3/13/2020	Water	r Depth	Elevation	Cave-li	Depth Elevation
Terminatio	on Dep	th:	3.5 fee	t bgs			Date Complete	ed:	3/13/2020	(f	eet bgs)	(ft NAVD88)	(1	feet bgs) (ft NAVD88)
Proposed	Locati	on:	Roadway (Sta	ke 71	6)		Logged By: DC During: 🐺							
Drill / Test	Metho	od:	HSA / SPT				Contractor: SK At Completion: 👳 At Completion:							
							Equipment: CME 850 24 Hours: 🛫 24 Hours:							<u> </u>
	SV.	MDI												
Denth	57			Rec		DEPT	STRAT	A		DESCRIPTIO	N OF M	ATERIALS	;	REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)				(Clas	sificatio	on)		
						0.0								
		\land /					TS	<u>\\\/</u>	6" Forest Mat					
0 - 2	S-1	Y	1 - 2 - 3 - 17	16	5		SUBSOIL		8" Sandy Subsoil					
		\wedge							Brown, Loose, Sil	ty Sand with Gravel (S	SM)			
		/ \				-	GLACIAL							
														Augor refugal @ 2.2 fbgg
														Auger relusal @ 3.3 lbgs
									Boring Log B-16	Ferminated upon Aug	er Refusal			
							1		at a Depth of 3.5	Feet Below Ground Si	urface.			
						5.0	1							
						_								
						.	4							
							_							
							+							
							-							
							4							
						10.0	4							
							1							
							T							
							4							
						_	_							
							4							
						-	-							
						15.0	+							
						'	1							
						-	1							
						_']							
						_								
						,	4							
						_	4							
						20.0	4							
						20.0	-							
							┫							
						-								
						'	1							
						-	1							
						'	Ť							
]							
						_								
						25.0								
1						1	1		1					

Boring No.: B-19

Page	1	of	1
------	---	----	---

Project:		Propr	sed Cold Storage F	acility							WALP	oiect No ·	GM2017067 000	
Location		Six P	icker Road Sturbrid	aciiity ae W/	orcester	County	Massachusette	3			11/41 1/1	Client	Mid-Cape Develo	pment LLC
Surface F	evatio	n:	± 719.0 fee	et abov	e NAV/	088	Date Started		3/18/2020	Wate	er Depth	Elevation	Cave-li	Depth Elevation
Terminatio	on Der	th:	10.0100	et bas			Date Complet	ed:	3/18/2020		(feet bas)	(ft NAVD88)	(1	feet bgs) (ft NAVD88)
Proposed	Locati	ion:	Roadway (Sta	ake 70	0)		Logged By:		0/10/2020	During:		\\		
Drill / Test	Metho	od:	HSA / SPT		0)		Contractor:	SK		At Completion:		¥	At Completion:	
2							Equipment:		350	24 Hours:	· ·	Ť	24 Hours:	<u>~</u>
							-1					¥		
	SA	MPLI	E INFORMATION	I		DEPT				DECODIDEN				DEMARKO
Depth		-		Rec.		"	SIRAI	A		DESCRIPTIC	UN UF M			REMARKS
(leet)	NO	туре	Blows Per 6	(m.)	N	(leet)		1		(Cia	Somean	5117		
						-	TS	NUZ	4" Topsoil					Bedrock outcrops nearby
]							
						_	GLACIAL							
							TILL		Brown, Silty Sand	l with Gravel (SM)				
						_	-							
							4							
<u> </u>				<u> </u>				14111	Boring Log B-19	Terminated upon Au	ıger Refusal			
						5.0	1		at a Depth of 3.8	Feet Below Ground	Surface.			
]							
						_								
							4							
						_	-							
							4							
						_	-							
							1							
							1							
						10.0								
							4							
						_	-							
							4							
						-	-							
							1							
]							
						_								
						15.0	4							
						15.0	-							
							4							
						-	1							
							1							
						-]							
						_	4							
							4							
						-	-							
						20.0	4							
							1							
							1							
						-]							
						_								
							4							
						-	4							
							4							
						-	-							
						25.0	1							
						-	1							
1	1			1			1		1					

Test Pit No : TP-1

Project:	Proposed	Industrial Fa	cility					WAI P	roiect No.:	GM2017067.000	
Location:	6 Picker R	oad, Sturbrid	dge, Worcester	County, Massac	nusetts				Client:	Mid-Cape Develo	oment LLC
Surface Eleva	ation: ±	734.0	feet NAVD88	Date Started		3/16/2020	Water	Depth	Elevation	Cave	-In Depth Elevation
Termination I	Depth:	4.0	feet bgs	Date Comple	ted:	3/16/2020	(fee	etbgs)	(ft NAVD88)		(feet bgs) (ft NAVD88)
Proposed Lo	cation:	SWM Area		Logged By:	DC .		During:	_	- 7		· · · · · ·
Excavating M	lethod:	Compact E	xcavator	Contractor:	СН		At Completion:	- 1	- \[\frac{1}{2}\]	At Completion:	
Test Method:		Visual Obse	ervation	Rig Type:	Takeu	ichi TB235	24 Hours:	-	- v		
				1							
SAMPLE			DEPTH	STRATA			DESCRIPTIC	ON OF N			REMARKS
Depth (ft.)	Number	Туре	(feet)				(Clas	ssificat	ion)		
			0.0								
				TS	\$112	8" Forest Mat					
				SUBSOIL	••••	7" Sandy Subso	bil				
			_								
				GLACIAL		Brown, Silty Sa	nd with Gravel, Cobbles, S	Sma ll Bou	lders (SM)		
				TILI							
	ļ										
2 4	C 1	CDAP									
3 - 4	5-1	GKAB									
					TEFF						
						Test Pit TP-1 T	erminated upon Refusal a	it Depth of	4 Feet Below Gro	und Surface.	
			5.0								
			_								
			_								
			_								
			10.0								
			15.0								
			13.0								

Test Pit No.: TP-2

Project:	Proposed	Industrial Fa	cility					WALF	Project No.:	GM2017067.000	
Location:	6 Picker R	oad, Sturbrid	dge, Worcester	County, Massach	nusetts				Client:	Mid-Cape Develo	pment LLC
Surface Eleva	ation: ±	731.0	feet NAVD88	Date Started:		3/16/2020	Wate	er Depth	Elevation	Cave	In Depth Elevation
Termination I	Depth:	3.8	feet bas	Date Complet	ted:	3/16/2020	(fe	eet bgs)	(ft NAVD88)		(feet bgs) (ft NAVD88)
Proposed Lo	cation:	SWM Area		Logged By:	DC .		Durina:		- T		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Excavating M	ethod:	Compact E	xcavator	Contractor:	СН		At Completion:		·¥	At Completion:	
Test Method:		Visual Obse	ervation	Rig Type:	Takeu	chi TB235	- 24 Hours:		· ↓		iŦ
					, arto a			-	· ¥		
SAMPLE		IATION	DEPTH	STRATA			DESCRIPT	ION OF	MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)				(Cla	assificat	ion)		
			0.0								
				TS	\$17	5" Forest Mat					
				SUBSOIL	• • • •	6" Sandy Subso	bil				
								(014)			
				GLACIAL		Brown, Silty Sa	nd with Gravel, Cobbles	s (SM)			
0.5.5.5		CD1 -		TILL							
2.5 - 3.5	S-1	GRAB									
			┥ →								
						Test Pit TP-2 T	erminated upon Refusal	l at Depth o	f 3.8 Feet Below G	round Surface.	
			5.0								
			_								
			_								
			\vdash								
			10.0								
			-								
			15.0								

Test Pit No: TP-3

Project:	Proposed	ndustrial Fa	cility					WAI F	Project No.:	GM2017067.000	
Location:	6 Picker R	oad, Sturbrid	lge, Worcester	County, Massach	nusetts				Client:	Mid-Cape Develop	oment LLC
Surface Eleva	tion: ±	724.0	feet NAVD88	Date Started:		3/16/2020	Wate	r Depth	Elevation	Cave	In Depth Elevation
Termination I	Depth:	2.8	feet bgs	Date Comple	ted:	3/16/2020	(fe	et bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Proposed Lo	cation:	SWM Area		Logged By:	DC -		During:	_	- A		
Excavating M	ethod:	Compact Ex	cavator	Contractor:	СН		At Completion:	2.0	722.0 🗸	At Completion:	
Test Method:		Visual Obse	ervation	Rig Type:	Takeu	chi TB235	24 Hours:	_	–		
SAMPLE		IATION	DEPTH				DESCRIPTI		MATERIALS		
Depth (ft.)	Number	Туре	(feet)	STRATA			(Cla	assificat	ion)		REMARKS
			0.0								
					N11.						
				TS	<u>\\\</u>	10" Forest Mat					
				SUBSOIL		6" Sandy Subso	il				
			+	GLACIAL							
1.5 - 2.5	S-1	GRAB	<u> </u>								
				TILL		Brown, Silty Sar	nd with Gravel, Cobbles	(SM)			
						Test Pit TP-3 Te	erminated upon Refusal	at Depth of	f 2.8 Feet Below G	ound Surface.	
			5.0								
			_								
			_								
			_								
			10.0								
			-								
			15.0								

Test Pit No : TP-4

Project:	Proposed	ndustrial Fa	cility					WAI F	Project No.:	GM2017067.000	
Location:	6 Picker R	oad, Sturbrid	lge, Worcester	County, Massach	usetts				Client:	Mid-Cape Develo	oment LLC
Surface Elev	ation: ±	716.0	feet NAVD88	Date Started:	:	3/16/2020	Wate	r Depth	Elevation	Cave	In Depth Elevation
Termination	Depth:	3.0	feet bgs	Date Complete	ed:	3/16/2020	(fe	et bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Proposed Lo	cation:	SWM Area	-	Logged By:			During:	_	T		
Excavating N	lethod:	Compact E:	xcavator	Contractor:	СН		At Completion:	3.0	713.0 🗸	At Completion:	
Test Method:		Visual Obse	ervation	Rig Type:	Fakeu	chi TB235	24 Hours:		<u> </u>		
SAMPLE		ATION	DEPTH	STRATA			DESCRIPTI	ON OF I	MATERIALS	<u>.</u>	DEMARKS
Depth (ft.)	Number	Туре	(feet)	JINAIA			(Cla	assificat	ion)		KEMARK5
			0.0								
				TS	<u>\\\/</u>	8" Forest Mat					
				SUBSOIL	·:·:·	6" Sandy Subso	il				
				GLACIAL		Brown Silty Sar	nd with Gravel Cobbles	(SM)			
2 - 3	S-1	GRAB		TILL		brown, only car		(0111)			
			<u> </u>			Teet Dit TD (T	minotod upon D. f	at Daa"		und Quet	
						Test Pit IP-4 Te	erminated upon Refusal	at Depth o	r 3 Feet Below Gro	und Surrace.	
			_								
			5.0								
			10.0								
			-								
			15.0								

National Flood Hazard Layer FIRMette

Legend

