Summit Engineering \& Survey, Inc.

HYDRAULIC / HYDROLOGIC CALCULATIONS

SITE PLAN
6 PICKER ROAD STURBRIDGE, MASSACHUSETTS

Prepared For:
NEW ENGLAND COLD STORAGE, LLC

Prepared By:
SUMMIT ENGINEERING \& SURVEY, INC. 710 MAIN STREET
OXFORD, MASSACHUSETTS

MAY 11, 2020

TABLE OF CONTENTS

Cover Page
Table of Contents
Drainage Summary
Stormwater Management Checklist
Stormwater Management Calculations
Standard \#2 Peak Discharge Rates
Standard \#3 Loss of Annual Recharge
Standard \#4 80\% TSS Removal
Standard \#9 Operation \& Maintenance Plan
\section*{Appendices}
Pre-Development Diagram
Post- Development Diagram
Pre-Development Watershed Subcatchments
Post-Development Watershed Subcatchments
Soil Maps
Flood Map

DRAINAGE SUMMARY

Summit Engineering \& Survey, Inc. is pleased to provide the following Hydraulic / Hydrologic analysis for the proposed site plan for New England Cold, LLC. The proposed development is located at 6 Picker Road, Sturbridge, Massachusetts. The existing site consists of predominantly un-developed land, much of it wooded with mature woodland. The hydrologic conditions were analyzed using TR-55 and HydroCAD® for the 2, 10, 25 and 100 year storm events utilizing Technical Paper 40, 24 hour Rainfall events.

The proposed site consists of the construction of a new 82,000 square foot freezer warehouse building, truck dock and supporting infrastructure. The site is the last remaining commercial lot on Picker Road to be developed. The project as designed conforms to the Massachusetts DEP Stormwater Management Policy.

EXISTING CONDITIONS:

The site is abutted by Picker Road on the west, Route 49 (Podunk Pike) to the east, the Mass Pike to the north and commercial lots on Technology Drive to the south east. The site is predominately wooded with a bordering vegetated wetland system on the westerly portion of the site. The wetland system conveys water from the south to the north toward the state highway.

The topography of the site is sloped. A majority of the site is graded toward the northwest. There is a high point parallel to Podunk Pike that is graded toward a wetland system on the easterly portion of the property.

There are four commercial properties located up stream of the site with varying types of drainage systems that flow onto the site. The storage facility conveys sheet flow onto the property. Sail Energy and WHM III, LLC are operational sites that conveys treated water onto the site, which flows into the wetland system. The 51 Technology, LLC property site is currently under construction. The approved design also discharges to the aforementioned northerly flowing wetland system.

The runoff from the site to the north is directed either to the existing 36 " culvert in the driveway for 8 Picker road or the wetland system to the north of 8 Picker Road.

For the purpose of the analysis of the effect on site development, the site was analyzed as three independent watersheds. In the Pre-Development Condition, Subcatchment 1 represents the tributary area of the property that flows to the 36 inch culvert at 8 Picker Road. Subcatchment 2 represents the tributary portion of the site that flows to the northerly wetland on 8 Picker Road. Subcatchment 3 represents the tributary area that flows to the east toward the intersection of Technology Park and Podunk Pike.

According to the online USGS soil survey, the analyzed area consists of soils with "C" hydrologic ratings. On site soil testing confirms the condition along with varying depths to bedrock. The cover consists of predominantly woodland. A portion of the abutting storage tactility has a gravel parking lot that was constructed over the property line. The delineated wetlands on the property were considered "D" type soils for this analysis.

Summit Engineering \& Survey, Inc.
710 Main Street North Oxford MA 01537 (P) 508-987-8713 (F) 508-987-8714

PROPOSED CONDITIONS:

The proposed condition of the site includes the construction of a main access road, a perimeter access road, a truck loading dock/terminal, employee parking lot and the 82,000 square foot warehouse/office space. The site is serviced by municipal water and sewer systems.

The site will be re-graded to support the project and control stormwater in accordance with the Massachusetts Stormwater Management Policy. The development includes the construction of two drainage basins, two roof drain recharge basins, catch basins and proprietary devices to provide stormwater treatment and attenuation to reduce the impact of surface alterations.

In order to analyze the surface water flows, the site was divided into multiple Subcatchents, Ponds and a Reach. The series (100, 200, 300) are then compared to the Pre-Development Conditions.

In summary, the peak rates of runoff were compared under pre-development and postdevelopment conditions for analysis of the 2 year, 10 year, 25 year and 100 year storm events. The following is a Peak Discharge Summary Table:

Design Point Analysis:

Watershed		Design Event			
		2 Year	10 Year	25 Year	100 Year
ұuәudo\|əләа-әлd	1	4.3	10.3	14.0	19.8
	2	2.4	6.3	8.7	12.5
	3	1.7	4.4	6.1	8.7
Post Development	100 Series	2.9	8.1	10.5	16.6
	200 Series	1.2	3.4	5.2	7.6
	300 Series	1.6	4.1	5.7	8.2

DEP Stormwater Management Standards:
Standard \#1: The proposed changes will not cause erosion in adjacent water of the Commonwealth, as BMP measures are proposed in accordance with the design requirements of the Stormwater Management handbook. The Erosion \& Sedimentation Control Plan provides for the installation of siltation barriers, temporary basins, temporary construction entrances and outlines intermediary measures to control runoff during construction and after construction.

Summit Engineering \& Survey, Inc.

Standard \#2: The proposed development peak discharge rates for the total off-site flow are less than or equal to pre-development discharge rates for the 2 year, 10 year, and 100 year storm events for the design points analyzed. Attached calculations show how the site mitigates the increased flow rates due to surface changes from the site development.

Standard \#3: The roof drain runoff is directed to two direct infilfration basins that meets the recharge requirement for Class C Soils. Basins A and B are also designed to infiltrate runoff from the driveway and parking areas after pre-treatment. Infiltration depths are designed to drain in under 72 hours as required by the Policy.

Standard \#4: Over 80\% TSS shall occur based on the BMP measurements provided. The treatment train varies for each section. TSS worksheets are provided in the report for each treatment train in the site. The water quality volume was determined using 1.0 " of runoff over the proposed impervious area.

Standard \#5: The proposed development will not generate higher potential pollutant loads and therefore will not require additional BMP practices.

Standard \#6: The proposed project is not near a critical area.
Standard \#7: The proposed project is not a redevelopment project.
Standard \#8: Erosion and sediment control measures are proposed as part of the proposed project.
Standard \#9: An Operation \& Maintenance plan is provided within this document
Standard \#10: This project does not propose any illicit discharges.

STORMWATER MANAGEMENT CHECKLIST

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. ${ }^{1}$ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8^{2}
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

[^0]
Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?
§ New developmentRedevelopment
\square Mix of New Development and Redevelopment

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:No disturbance to any Wetland Resource Areas
\square Site Design Practices (e.g. clustered development, reduced frontage setbacks)
\square Reduced Impervious Area (Redevelopment Only)Minimizing disturbance to existing trees and shrubsLID Site Design Credit Requested:
Credit 1
Credit 2
Credit 3Use of "country drainage" versus curb and gutter conveyance and pipe
Bioretention Cells (includes Rain Gardens)
\square Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
Treebox FilterWater Quality SwaleGrass ChannelGreen Roof
\square Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges
\boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist for Stormwater Report

Checklist (continued)

Standard 2: Peak Rate Attenuation

Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
\boxtimes Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.
\boxtimes Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2 -year and 10 -year 24 -hour storms. If evaluation shows that off-site flooding increases during the 100-year 24 -hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Q Soil Analysis provided.
\boxtimes Required Recharge Volume calculation provided.
\square Required Recharge volume reduced through use of the LID site Design Credits.
\boxtimes Sizing the infiltration, BMPs is based on the following method: Check the method used.
\boxtimes Static
\square Simple Dynamic
\square Dynamic Field ${ }^{1}$
\square Runoff from all impervious areas at the site discharging to the infiltration BMP.
\boxtimes Runoff from all impervious areas at the site is not discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
\boxtimes Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum extent practicable for the following reason:
\square Site is comprised solely of C and D soils and/or bedrock at the land surface
\square M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
\square Solid Waste Landfill pursuant to 310 CMR 19.000
\square Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.

Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

[^1]
Checklist for Stormwater Report

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
\boxtimes A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
\square Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
\square is within the Zone II or Interim Wellhead Protection Area
\square is near or to other critical areas
\square is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
\square involves runoff from land uses with higher potential pollutant loads.
The Required Water Quality Volume is reduced through use of the LID site Design Credits.
\boxtimes Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist for Stormwater Report

Checklist (continued)

Standard 4: Water Quality (continued)

\boxtimes The BMP is sized (and calculations provided) based on:
\boxtimes The $1 / 2$ " or 1 " Water Quality Volume or
\square The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
\boxtimes The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
\square A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

\square The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
\square The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.The NPDES Multi-Sector General Permit does not cover the land use.
\square LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.All exposure has been eliminated.
\square All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.
The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
\square Critical areas and BMPs are identified in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
\square Limited Project
\square Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
\square Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
\square Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
\square Bike Path and/or Foot PathRedevelopment Project
Redevelopment portion of mix of new and redevelopment.
\square Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
\square The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards $4-6$ to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
\boxtimes A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted before land disturbance begins.
\square The project is not covered by a NPDES Construction General Permit.
\square The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
\boxtimes The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
\boxtimes Name of the stormwater management system owners;
\boxtimes Party responsible for operation and maintenance;
\boxtimes Schedule for implementation of routine and non-routine maintenance tasks;
\square Plan showing the location of all stormwater BMPs maintenance access areas;
\square Description and delineation of public safety features;
\square Estimated operation and maintenance budget; and
\boxtimes Operation and Maintenance Log Form.
The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
\square A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
\square A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
Q An Illicit Discharge Compliance Statement is attached;
NO Illicit Discharge Compliance Statement is attached but will be submitted prior to the discharge of any stormwater to post-construction BMPs.

STANDARD \#2- PEAK DISCHARGE RATES

Subcatchment 1:

Subcatchment 2:

Subcatchment 3:

Subcatchment 200:

Subcatchment 201: Roof

Subcatchment 300:

Pond 8P: RECHARGE BASIN

Pond p200: 200 Series Analysis Point

Runoff Area=407,066 sf 0.50% Impervious Runoff Depth=0.81" Flow Length=990' Tc=34.4 min $\mathrm{CN}=72$ Runoff=4.25 cfs 0.629 af

Runoff Area=228,530 sf 0.00% Impervious Runoff Depth=0.71" Flow Length=490' $\mathrm{Tc}=23.0 \mathrm{~min} \quad \mathrm{CN}=70$ Runoff=2.42 cfs 0.312 af

Runoff Area $=183,174$ sf 0.00% Impervious Runoff Depth=0.71" Flow Length=490' Slope $=0.0100$ ' $/ / \mathrm{Tc}=31.5 \mathrm{~min} \quad \mathrm{CN}=70$ Runoff=1.70 cfs 0.250 af

Runoff Area=101,682 sf 0.00% Impervious Runoff Depth=0.76" Flow Length=490' Tc=23.0 min CN=71 Runoff=1.17 cfs 0.148 af

Runoff Area=27,374 sf 100.00\% Impervious Runoff Depth>2.72" $\mathrm{TC}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=1.78 cfs 0.143 af

Runoff Area $=172,079$ sf 0.00% Impervious Runoff Depth $=0.71$ " Flow Length=490' Slope $=0.0100$ '/' Tc=31.5 $\mathrm{min} \quad \mathrm{CN}=70$ Runoff=1.59 cfs 0.235 af

Peak Elev=734.58' Storage=4,675 cf Inflow=1.78 cfs 0.143 af Discarded $=0.03 \mathrm{cfs} 0.135$ af Primary $=0.02$ cfs 0.007 af Outflow $=0.05$ cfs 0.142 af

Subcatchment 1:

Subcatchment 2:

Subcatchment 3:

Subcatchment 200:

Subcatchment 201: Roof

Subcatchment 300:

Pond 8P: RECHARGE BASIN

Pond p200: 200 Series Analysis Point

Runoff Area=407,066 sf 0.50% Impervious Runoff Depth=1.82" Flow Length $=990^{\prime} \quad$ TC=34.4 $\mathrm{min} \quad \mathrm{CN}=72$ Runoff=10.34 cfs 1.418 af

Runoff Area $=228,530$ sf 0.00% Impervious Runoff Depth $=1.67^{\prime \prime}$ Flow Length=490' $\mathrm{Tc}=23.0 \mathrm{~min} \quad \mathrm{CN}=70$ Runoff $=6.30$ cfs 0.732 af

Runoff Area=183,174 sf 0.00% Impervious Runoff Depth $=1.67$ " Flow Length=490' Tc=23.0 min CN=71 Runoff=2.94 cfs 0.340 af

Runoff Area=27,374 sf 100.00% Impervious Runoff Depth >4.16 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=2.70 \mathrm{cfs} 0.218$ af

Runoff Area $=172,079$ sf $\quad 0.00 \%$ Impervious Runoff Depth $=1.67^{\prime \prime}$ Flow Length=490' Slope $=0.0100$ '/' Tc=31.5 $\mathrm{min} \quad \mathrm{CN}=70$ Runoff $=4.14 \mathrm{cfs} 0.551$ af

Peak Elev=734.89' Storage=5,476 cf Inflow=2.70 cfs 0.218 af Discarded $=0.03$ cfs 0.140 af Primary $=0.54$ cfs 0.078 af Outflow $=0.57$ cfs 0.218 af

Subcatchment 1:

Subcatchment 2:

Subcatchment 3:

Subcatchment 200:

Subcatchment 201: Roof

Subcatchment 300:

Pond 8P: RECHARGE BASIN

Pond p200: 200 Series Analysis Point

Runoff Area=407,066 sf 0.50% Impervious Runoff Depth=2.43" Flow Length=990' TC=34.4 $\mathrm{min} \mathrm{CN}=72$ Runoff $=13.99$ cfs 1.893 af

Runoff Area $=228,530$ sf 0.00% Impervious Runoff Depth $=2.26$ " Flow Length=490' $\mathrm{Tc}=23.0 \mathrm{~min} \quad \mathrm{CN}=70$ Runoff $=8.67 \mathrm{cfs} 0.989$ af

Runoff Area=183,174 sf 0.00% Impervious Runoff Depth=2.26" Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=6.06 cfs 0.792 af

Runoff Area $=101,682$ sf 0.00% Impervious Runoff Depth $=2.35^{\prime \prime}$ Flow Length=490' Tc=23.0 min CN=71 Runoff=4.02 cfs 0.456 af

Runoff Area=27,374 sf 100.00% Impervious Runoff Depth>4.92" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=3.18 \mathrm{cfs} 0.258$ af

Runoff Area $=172,079$ sf $\quad 0.00 \%$ Impervious Runoff Depth $=2.26$ " Flow Length=490' Slope=0.0100 '/' Tc=31.5 min CN=70 Runoff=5.69 cfs 0.744 af

Peak Elev=735.04' Storage=5,858 cf Inflow=3.18 cfs 0.258 af Discarded $=0.03$ cfs 0.141 af Primary $=1.16$ cfs 0.116 af Outflow=1.19 cfs 0.257 af

Time span=5.00-96.00 hrs, dt=0.05 hrs, 1821 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1:

Subcatchment 2:

Subcatchment 3:

Subcatchment 200:

Subcatchment 201: Roof

Subcatchment 300:

Pond 8P: RECHARGE BASIN

Pond p200: 200 Series Analysis Point

Runoff Area=407,066 sf 0.50% Impervious Runoff Depth=3.41" Flow Length $=990^{\prime}$ TC=34.4 $\mathrm{min} \quad \mathrm{CN}=72$ Runoff $=19.75$ cfs 2.653 af

Runoff Area $=228,530$ sf 0.00% Impervious Runoff Depth $=3.21^{\prime \prime}$ Flow Length=490' Tc=23.0 min CN=70 Runoff=12.46 cfs 1.402 af

Runoff Area $=183,174$ sf 0.00% Impervious Runoff Depth=3.21" Flow Length=490' $\mathrm{Tc}=23.0 \mathrm{~min} \quad \mathrm{CN}=71$ Runoff $=5.73 \mathrm{cfs} 0.643$ af

Runoff Area=27,374 sf 100.00% Impervious Runoff Depth>6.07" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=3.91 \mathrm{cfs} 0.318$ af

Runoff Area $=172,079$ sf 0.00% Impervious Runoff Depth $=3.21$ " Flow Length=490' Slope $=0.0100$ '/' Tc=31.5 $\mathrm{min} \quad \mathrm{CN}=70$ Runoff $=8.17 \mathrm{cfs} 1.056$ af

Peak Elev=735.16' Storage=6,191 cf Inflow=3.91 cfs 0.318 af Discarded $=0.03$ cfs 0.142 af Primary $=2.89$ cfs 0.175 af Outflow=2.93 cfs 0.317 af

Time span $=5.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1821$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 101:

Subcatchment 102:

Subcatchment 103:

Subcatchment 104:

Subcatchment 105:

Subcatchment 106:

Subcatchment 110:

Subcatchment 111:

Subcatchment 112:

Subcatchment 113: Roof

Reach 5R: REACH TO POINT OF ANALYSIS

Runoff Area=53,263 sf 56.41% Impervious Runoff Depth=1.82" $\mathrm{TC}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff $=2.55 \mathrm{cfs} 0.185$ af

Runoff Area=44,799 sf 68.72\% Impervious Runoff Depth=1.98" Flow Length=160' Tc=6.3 min $\quad \mathrm{CN}=90$ Runoff=2.31 cfs 0.170 af

Runoff Area=26,731 sf 67.77\% Impervious Runoff Depth=1.98" Flow Length=320' Tc=7.0 min $\quad \mathrm{CN}=90$ Runoff=1.35 cfs 0.101 af

Runoff Area $=18,115$ sf 32.95% Impervious Runoff Depth $=1.38$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff $=0.66 \mathrm{cfs} 0.048$ af

Runoff Area=39,222 sf 27.33\% Impervious Runoff Depth=1.31" $\mathrm{TC}=6.0 \mathrm{~min} \mathrm{CN}=81$ Runoff=1.35 cfs 0.099 af

Runoff Area $=68,972$ sf 0.00% Impervious Runoff Depth $=0.86$ " Flow Length=190' Tc=11.5 min $\mathrm{CN}=73$ Runoff=1.19 cfs 0.113 af

Runoff Area=25,308 sf 45.96\% Impervious Runoff Depth=1.59" $\mathrm{TC}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff $=1.06 \mathrm{cfs} 0.077$ af

Runoff Area $=10,855$ sf 47.39% Impervious Runoff Depth $=1.59$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff $=0.45 \mathrm{cfs} 0.033$ af

Runoff Area=179,485 sf 2.01\% Impervious Runoff Depth=0.91" Flow Length=820' Tc=40.4 min $\mathrm{CN}=74$ Runoff=2.00 cfs 0.312 af

Runoff Area=54,769 sf 100.00\% Impervious Runoff Depth>2.72" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=3.57 cfs 0.285 af

Avg. Flow Depth=0.12' Max Vel=1.39 fps Inflow=2.90 cfs 0.924 af

Pond 2P: BASIN A

Pond 3P: BASIN B

Pond 4P: RECHARGE BASIN

Pond P101:

Pond P102:

Pond P103:

Pond P104:

Peak Elev=728.36' Storage=20,441 cf Inflow=9.14 cfs 0.771 af Discarded $=0.12$ cfs 0.295 af Primary $=0.46$ cfs 0.476 af Oufflow $=0.58$ cfs 0.771 af Outflow $=0.46$ cfs 0.068 af

Peak Elev=736.72' Storage=6,979 cf Inflow=3.57 cfs 0.285 af Discarded $=0.07$ cfs 0.195 af Primary $=0.37$ cfs 0.055 af Secondary $=0.23$ cfs 0.036 af Outflow $=0.66$ cfs 0.285 af

Pond Peak Elev=740.74' Inflow=2.55 cfs 0.185 af 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=300.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=2.55 cfs 0.185 af

Peak Elev=737.95' Inflow=4.85 cfs 0.355 af 24.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=460.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=4.85 cfs 0.355 af

Peak Elev=733.59' Inflow=6.20 cfs 0.457 af 24.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=110.0$ ' $\mathrm{S}=0.0100$ '// Outlow=6.20 cfs 0.457 af

Peak Elev=739.41' Inflow=0.66 cfs 0.048 af 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=160.0$ ' $\mathrm{S}=0.0200$ '/' Outflow $=0.66$ cfs 0.048 af

Time span $=5.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1821$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 101:

Subcatchment 102:

Subcatchment 103:

Subcatchment 104:

Subcatchment 105:

Subcatchment 106:

Subcatchment 110:

Subcatchment 111:

Subcatchment 112:

Subcatchment 113: Roof

Reach 5R: REACH TO POINT OF ANALYSIS

Runoff Area=53,263 sf 56.41% Impervious Runoff Depth=3.20" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff $=4.40 \mathrm{cfs} 0.326$ af

Runoff Area $=44,799$ sf 68.72% Impervious Runoff Depth $>3.40 "$ Flow Length $=160$ ' $\mathrm{Tc}=6.3 \mathrm{~min} \mathrm{CN}=90$ Runoff $=3.86 \mathrm{cfs} 0.291$ af

Runoff Area=26,731 sf 67.77% Impervious Runoff Depth $>3.40^{\prime \prime}$ Flow Length $=320^{\prime} \quad \mathrm{Tc}=7.0 \mathrm{~min} \mathrm{CN}=90$ Runoff=2.26 cfs 0.174 af

Runoff Area $=18,115$ sf 32.95% Impervious Runoff Depth $=2.64$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff $=1.26 \mathrm{cfs} 0.091$ af
$\mathrm{TC}=6.0 \mathrm{~min} \quad \mathrm{CN}=81 \quad$ Runoff $=2.64 \mathrm{cfs} 0.191$ af
Runoff Area=68,972 sf 0.00% Impervious Runoff Depth $=1.90$ "

Runoff Area $=25,308$ sf 45.96% Impervious Runoff Depth $=2.91$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff $=1.93 \mathrm{cfs} 0.141$ af
$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff $=0.83 \mathrm{cfs} 0.060$ af
Runoff Area $=179,485$ sf 2.01% Impervious Runoff Depth $=1.97$ "
Runoff Area $=54,769$ sf 100.00% Impervious Runoff Depth >4.16 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=5.40 \mathrm{cfs} 0.436$ af
$\mathrm{n}=0.040 \mathrm{~L}=300.0^{\prime} \quad \mathrm{S}=0.0400 \mathrm{I} /$ ' Capacity=20.33 cfs Outflow=8.12 cfs 2.084 af

Pond 2P: BASIN A

Pond 3P: BASIN B

Pond 4P: RECHARGE BASIN

Peak Elev=729.41' Storage=32,749 cf Inflow=17.58 cfs 1.475 af Discarded $=0.16$ cfs 0.339 af Primary $=2.25$ cfs 1.136 af Outflow $=2.41 \mathrm{cfs} 1.475$ af Outflow= 0.91 cfs 0.132 af

Peak Elev=737.07' Storage=8,849 cf Inflow=5.40 cfs 0.436 af Discarded $=0.07$ cfs 0.206 af Primary $=1.82$ cfs 0.152 af Secondary $=0.54$ cfs 0.078 af Outflow $=2.43$ cfs 0.436 af
18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=300.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=4.40 cfs 0.326 af

Peak Elev=738.29' Inflow=8.26 cfs 0.617 af 24.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=460.0$ ' $\mathrm{S}=0.0100$ '//' Outflow=8.26 cfs 0.617 af

Peak Elev=734.00' Inflow=10.52 cfs 0.790 af 24.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=110 . \mathbf{0}^{\prime} \mathrm{S}=0.0100$ '/' Outflow=10.52 cfs 0.790 af

Peak Elev=739.59' Inflow=1.26 cfs 0.091 af 12.0" Round Culvert $n=0.013 \mathrm{~L}=160.0$ ' $\mathrm{S}=0.0200$ '// Outflow=1.26 cfs 0.091 af

Total Runoff Area $=11.972$ ac Runoff Volume $=2.637$ af Average Runoff Depth $=2.64$ " 67.25% Pervious = 8.052 ac 32.75% Impervious = 3.921 ac

Time span $=5.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1821$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 101:

Subcatchment 102:

Subcatchment 103:

Subcatchment 104:

Subcatchment 105:

Subcatchment 106:

Subcatchment 110:

Subcatchment 111:

Subcatchment 112:

Subcatchment 113: Roof

Reach 5R: REACH TO POINT OF ANALYSIS

Runoff Area=53,263 sf 56.41% Impervious Runoff Depth $>3.95{ }^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff $=5.40 \mathrm{cfs} 0.403$ af

Runoff Area=44,799 sf 68.72\% Impervious Runoff Depth>4.16" Flow Length=160' Tc=6.3 min $\quad \mathrm{CN}=90$ Runoff=4.69 cfs 0.357 af

Runoff Area=26,731 sf 67.77\% Impervious Runoff Depth>4.16" Flow Length=320' Tc=7.0 min $\quad \mathrm{CN}=90$ Runoff=2.75 cfs 0.213 af

Runoff Area=18,115 sf 32.95% Impervious Runoff Depth=3.35" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff=1.59 cfs 0.116 af

Runoff Area=39,222 sf 27.33\% Impervious Runoff Depth=3.25" $\mathrm{TC}=6.0 \mathrm{~min} \quad \mathrm{CN}=81$ Runoff $=3.35 \mathrm{cfs} 0.244$ af

Runoff Area $=68,972$ sf 0.00% Impervious Runoff Depth $=2.52$ " Flow Length=190' $\mathrm{Tc}=11.5 \mathrm{~min} \quad \mathrm{CN}=73$ Runoff=3.85 cfs 0.332 af

Runoff Area=25,308 sf 45.96\% Impervious Runoff Depth=3.65" $\mathrm{TC}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff=2.40 cfs 0.177 af

Runoff Area=10,855 sf 47.39% Impervious Runoff Depth=3.65" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff $=1.03 \mathrm{cfs} 0.076$ af

Runoff Area=179,485 sf 2.01\% Impervious Runoff Depth=2.61" Flow Length=820' Tc=40.4 min $\mathrm{CN}=74$ Runoff=6.13 cfs 0.895 af

Runoff Area $=54,769$ sf 100.00% Impervious Runoff Depth>4.92" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=6.37 cfs 0.516 af

Avg. Flow Depth=0.22' Max Vel=2.08 fps Inflow=10.58 cfs 2.749 af $\mathrm{n}=0.040 \mathrm{~L}=300.0^{\prime} \quad \mathrm{S}=0.0400$ '/' Capacity=20.33 cfs Outflow=10.54 cfs 2.749 af

Pond 2P: BASIN A

Pond 3P: BASIN B

Pond 4P: RECHARGE BASIN

Peak Elev=730.12' Storage=42,114 cf Inflow=23.00 cfs 1.878 af Discarded= 0.19 cfs 0.360 af Primary= 2.88 cfs 1.517 af Oufflow=3.07 cfs 1.878 af Oufflow=1.07 cfs 0.168 af

Peak Elev=737.17' Storage=9,405 cf Inflow=6.37 cfs 0.516 af Discarded $=0.08$ cfs 0.209 af Primary $=3.38$ cfs 0.213 af Secondary $=0.60$ cfs 0.094 af Outflow $=4.05$ cfs 0.516 af
18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=300.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=5.40 cfs 0.403 af

Peak Elev=738.46' Inflow=10.08 cfs 0.760 af 24.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=460.0^{\prime} \mathrm{S}=0.0100$ '/' Outflow=10.08 cfs 0.760 af

Peak Elev=734.22' Inflow=12.82 cfs 0.972 af
24.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=110.0^{\prime} \mathrm{S}=0.0100$ '// Outtlow=12.82 cfs 0.972 af

Peak Elev=739.68' Inflow=1.59 cfs 0.116 af
12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=160.0$ ' $\mathrm{S}=0.0200$ '//' Outflow=1.59 cfs 0.116 af

Total Runoff Area $=11.972$ ac Runoff Volume $=3.328$ af Average Runoff Depth $=3.34$ "
67.25% Pervious $=8.052$ ac 32.75% Impervious $=3.921$ ac

Time span $=5.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 1821$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 101:

Subcatchment 102:

Subcatchment 103:

Subcatchment 104:

Subcatchment 105:

Subcatchment 106:

Subcatchment 110:

Subcatchment 111:

Subcatchment 112:

Subcatchment 113: Roof

Reach 5R: REACH TO POINT OF ANALYSIS

Runoff Area=53,263 sf 56.41% Impervious Runoff Depth>5.10" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff=6.88 cfs 0.520 af

Runoff Area=44,799 sf 68.72\% Impervious Runoff Depth>5.32" Flow Length=160' Tc=6.3 min $\quad \mathrm{CN}=90$ Runoff=5.92 cfs 0.456 af

Runoff Area=26,731 sf 67.77\% Impervious Runoff Depth >5.32 " Flow Length=320' Tc=7.0 min $\quad \mathrm{CN}=90$ Runoff=3.47 cfs 0.272 af

Runoff Area $=18,115$ sf 32.95% Impervious Runoff Depth $=4.45$ " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff=2.10 cfs 0.154 af

Runoff Area=39,222 sf 27.33\% Impervious Runoff Depth=4.34" $\mathrm{TC}=6.0 \mathrm{~min} \quad \mathrm{CN}=81$ Runoff=4.44 cfs 0.326 af

Runoff Area $=68,972$ sf 0.00% Impervious Runoff Depth $=3.51^{\prime \prime}$ Flow Length=190' Tc=11.5 min $\mathrm{CN}=73$ Runoff=5.39 cfs 0.463 af

Runoff Area=25,308 sf 45.96\% Impervious Runoff Depth>4.78" $\mathrm{TC}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff $=3.11 \mathrm{cfs} 0.231$ af

Runoff Area $=10,855$ sf 47.39% Impervious Runoff Depth >4.78 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff=1.33 cfs 0.099 af

Runoff Area=179,485 sf 2.01\% Impervious Runoff Depth=3.61" Flow Length=820' Tc=40.4 min $\mathrm{CN}=74$ Runoff=8.53 cfs 1.239 af

Runoff Area $=54,769$ sf 100.00% Impervious Runoff Depth >6.07 " $\mathrm{TC}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=7.83 cfs 0.636 af

Avg. Flow Depth=0.27' Max Vel=2.39 fps Inflow=16.67 cfs 3.787 af $\mathrm{n}=0.040 \mathrm{~L}=300.0^{\prime} \quad \mathrm{S}=0.0400$ '/' Capacity=20.33 cfs Outflow=16.56 cfs 3.787 af

Pond 2P: BASIN A

Pond 3P: BASIN B

Pond 4P: RECHARGE BASIN

Pond P101:

Pond P102:

Pond P103:

Pond P104:

Peak Elev=730.96' Storage=54,803 cf Inflow=32.13 cfs 2.496 af Discarded $=0.22$ cfs 0.387 af Primary= 6.24 cfs 2.109 af Outflow= 6.47 cfs 2.496 af Peak Elev=718.42' Storage=2,820 cf Inflow=3.11 cfs 0.231 af Outflow=1.26 cfs 0.222 af

Peak Elev=737.27' Storage=9,988 cf Inflow=7.83 cfs 0.636 af Discarded $=0.08$ cfs 0.213 af Primary $=5.47$ cfs 0.306 af Secondary $=0.65$ cfs 0.117 af Outflow=6.21 cfs 0.636 af

Peak Elev=741.39' Inflow=6.88 cfs 0.520 af 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=300.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=6.88 cfs 0.520 af

Peak Elev=738.72' Inflow=12.80 cfs 0.976 af 24.0" Round Culvert $n=0.013 \mathrm{~L}=460.0^{\prime} \mathrm{S}=0.0100$ '/' Outflow=12.80 cfs 0.976 af

Peak Elev=734.65' Inflow=16.25 cfs 1.248 af 24.0" Round Culvert $n=0.013 \mathrm{~L}=110.0^{\prime} \mathrm{S}=0.0100$ '/' Outflow=16.25 cfs 1.248 af

Peak Elev=739.81' Inflow=2.10 cfs 0.154 af 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=160.0^{\prime} \mathrm{S}=0.0200$ '// Outflow=2.10 cfs 0.154 af

Total Runoff Area $=11.972$ ac Runoff Volume $=4.396$ af Average Runoff Depth $=4.41$ "
67.25% Pervious = 8.052 ac 32.75% Impervious = 3.921 ac

Summary for Subcatchment 1:

Runoff $=4.25$ cfs @ 12.54 hrs, Volume $=0.629$ af, Depth $=0.81^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

	rea (sf)	CN	Description		
	62,923	77	Woods, Good, HSG D		
	14,539	96	Gravel surface, HSG C		
	4,086	92	Paved roads w/open ditches, $50 \% \mathrm{imp}$, HSG C		
	25,518	70	Woods, Good, HSG C		
	407,066	72	Weighted Average		
	05,023		99.50\% Pervious Area 0.50% Impervious Area		
	2,043				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
16.8	50	0.0100	0.05		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.00$ "
7.1	400	0.0350	0.94		Shallow Concentrated Flow, Woodland Kv=5.0 fps
10.0	410	0.0780	0.68	0.91	Parabolic Channel, $\mathrm{W}=20.00^{\prime} \mathrm{D}=0.10^{\prime}$ Area= 1.3 sf Perim=20.0' $\mathrm{n}=0.100$ Earth, dense brush, high stage
0.5	130	0.0600	4.36	14.52	Parabolic Channel,
					$\mathrm{W}=10.00^{\prime} \mathrm{D}=0.50^{\prime}$ Area=3.3 sf Perim=10.1'
					$\mathrm{n}=0.040$ Earth, cobble bottom, clean sides

Subcatchment 1:
Hydrograph

Summary for Subcatchment 2:

Runoff $=2.42$ cfs @ 12.37 hrs, Volume $=0.312$ af, Depth $=0.71^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Area (sf)		CN	Description			
	28,530	70	oods, Go	d, HSG C		
228,530		100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
16.8	50	0.0100	0.05		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00{ }^{\prime \prime}$
6.2	440	0.0560	1.18		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

23.0490 Total

Subcatchment 2:
Hydrograph

Summary for Subcatchment 3:
Runoff $=1.70$ cfs @ 12.51 hrs, Volume $=0.250$ af, Depth $=0.71^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Area (sf)		CN	Description			
	$\begin{array}{r} 79,524 \\ 3,650 \end{array}$	$\begin{aligned} & 70 \\ & 77 \end{aligned}$	oods, Go oods, Go	d, HSG C od, HSG D		
	$\begin{aligned} & 83,174 \\ & 83,174 \end{aligned}$	70	eighted $00.00 \% \text { P }$	verage rvious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
16.8	50	0.0100	0.05		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.00$
14.7	440	0.0100	0.50		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

31.5490 Total

Subcatchment 3:

Summary for Subcatchment 200:

Runoff
$=$
1.17 cfs @
12.37 hrs, Volume=
0.148 af, Depth $=0.76{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Area (sf)		CN	Description			
	$\begin{aligned} & 79,634 \\ & 22,048 \end{aligned}$	$\begin{aligned} & 70 \\ & 74 \\ & \hline \end{aligned}$	oods, Go 75% Gras	d, HSG C cover, G	od, HSG C	
	$\begin{aligned} & 01,682 \\ & 01,682 \end{aligned}$	71	eighted $00.00 \% \text { P }$	verage rvious Are		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cts)	Description	
16.8	50	0.0100	0.05		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00{ }^{\prime \prime}$
6.2	440	0.0560	1.18		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

$23.0 \quad 490$ Total
Subcatchment 200:

Summary for Subcatchment 201: Roof

Runoff $=1.78$ cfs @ 12.09 hrs, Volume $=0.143$ af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

	Area (sf)	CN Description			
	27,374	98	oofs, HSG		
27,374		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry,

Subcatchment 201: Roof

Summary for Subcatchment 300:

Runoff $=1.59$ cfs @ 12.51 hrs, Volume $=0.235$ af, Depth $=0.71^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Area (sf)		CN	Description			
	$\begin{array}{r} 68,429 \\ 3,650 \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & 77 \end{aligned}$	oods, Go oods, Go	od, HSG C d, HSG D		
	$\begin{aligned} & 72,079 \\ & 72,079 \end{aligned}$	70	$\begin{aligned} & \hline \text { leighted } A \\ & 00.00 \% \text { P } \end{aligned}$	verage rvious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description	
16.8	50	0.0100	0.05		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.00{ }^{\prime \prime}$
14.7	440	0.0100	0.50		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

31.5490 Total

Subcatchment 300:

Summary for Pond 8P: RECHARGE BASIN

Inflow Area =	$0.628 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth > 2.72" for 2-Year event			
Inflow	1.78 cfs @	12.09 hrs , Volume=	0.143 af	
Outflow	0.05 cfs @	15.94 hrs, Volume=	0.142 af,	Atten= 97\%, Lag= 231.4 min
Discarded	0.03 cfs @	15.94 hrs , Volume=	0.135 af	
Primary	0.02 cfs @	15.94 hrs, Volume=	0.007 af	

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs
Peak Elev= 734.58' @ 15.94 hrs Surf.Area=3,439 sf Storage= 4,675 cf
Plug-Flow detention time $=1,759.1 \mathrm{~min}$ calculated for 0.142 af (100% of inflow)
Center-of-Mass det. time $=1,758.1 \mathrm{~min}(2,525.1-767.0)$

Discarded OutFlow Max=0.03 cfs @ 15.94 hrs HW=734.58' (Free Discharge)
$L_{2=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.03 \mathrm{cfs}$)
Primary OutFlow Max=0.02 cfs @ 15.94 hrs HW=734.58' (Free Discharge)
-1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
—3=Culvert (Inlet Controls 0.02 cfs @ 0.82 fps)

Pond 8P: RECHARGE BASIN

Hydrograph

Summary for Pond p200: 200 Series Analysis Point

Inflow Area $=\quad 2.963$ ac, 21.21% Impervious, Inflow Depth $=0.63^{\prime \prime}$ for 2 -Year event Inflow = 1.17 cfs @ 12.37 hrs, Volume $=0.155$ af Primary $=\quad 1.17 \mathrm{cfs} @ 12.37 \mathrm{hrs}$, Volume $=0.155 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs
Pond p200: 200 Series Analysis Point

Summary for Subcatchment 101:

Runoff $=2.55$ cfs @ 12.09 hrs, Volume $=0.185$ af, Depth= $1.82^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

	Area (sf)	CN	escription		
	$\begin{aligned} & \hline 23,217 \\ & 30,046 \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline 74 & 7 \\ 98 & F \end{array}$	$>75 \%$ Grass cover, Good, HSG C Paved parking, HSG C		
	$\begin{aligned} & \hline 53,263 \\ & 23,217 \\ & 30,046 \end{aligned}$	88	Weighted Average 43.59\% Pervious Area 56.41\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 102:

Runoff $=2.31$ cfs @ 12.09 hrs, Volume $=0.170$ af, Depth= $1.98{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"
 6.3160 Total

Subcatchment 102:

Summary for Subcatchment 103:

Runoff $=\quad 1.35$ cfs @
12.10 hrs , Volume=
0.101 af, Depth= 1.98 "

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

	Area (sf)	CN	Description		
	$\begin{array}{r} \hline 8,615 \\ 18,116 \\ \hline \end{array}$	74 $>75 \%$ Grass cover, Good, HSG C 98 Paved parking, HSG C			
	$\begin{array}{r} \hline 26,731 \\ 8,615 \\ 18,116 \end{array}$	90 Weighted Average 32.23\% Pervious Area 67.77\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.8	50	0.0200	0.14		Sheet Flow, Grass: Short
1.2	270	0.0330	3.69		Shallow Con Paved $\mathrm{Kv}=$

Subcatchment 103:

Summary for Subcatchment 104:

Runoff $=0.66$ cfs @ 12.10 hrs, Volume $=0.048$ af, Depth= 1.38 "
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Summary for Subcatchment 105:

Runoff $=1.35$ cfs @ 12.10 hrs, Volume $=0.099$ af, Depth= $1.31^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Summary for Subcatchment 106:

Runoff
$=$
1.19 cfs @
12.18 hrs, Volume=
0.113 af, Depth $=0.86$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

11.5190 Total

Subcatchment 106:

Summary for Subcatchment 110:

Runoff $=1.06$ cfs @ 12.09 hrs, Volume $=0.077$ af, Depth= 1.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Summary for Subcatchment 111:

Runoff $=0.45$ cfs @ 12.09 hrs, Volume $=0.033$ af, Depth= $1.59{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

Area (sf)	CN	Description
5,711	74	>75\% Grass cover, Good, HSG C
,, 44	98	Paved parking, HSG C

Summary for Subcatchment 112:

Runoff $=2.00$ cfs @ 12.61 hrs, Volume $=\quad 0.312$ af, Depth $=0.91^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

	Area (sf)	CN	Description		
	61,729	77 V	Woods, Good, HSG D		
	4,086	92 P	Paved roads w/open ditches, $50 \% \mathrm{imp}$, HSG C		
	89,877	70 N	Woods, Good, HSG C		
	1,556	98 P	Paved parking, HSG C		
	22,237	$74>$	>75\% Grass cover, Good, HSG C		
179,485		74			
	175,886		Weighted Average 97.99\% Pervious Area		
	3,599		2.01\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
10.8	50	0.0300	0.08		Sheet Flow,
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.00{ }^{\prime \prime}$
3.3	200	0.0400	- 1.00		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
24.3	200	0.0200	0.14	0.73	Parabolic Channel,
					$\mathrm{W}=40.00^{\prime} \mathrm{D}=0.20^{\prime}$ Area=5.3 sf Perim=40.0' $\mathrm{n}=0.400$ Sheet flow: Woods+light brush
2.0	370	0.0300	- 3.08	10.27	Parabolic Channel,
					$\mathrm{W}=10.00{ }^{\prime} \mathrm{D}=0.50^{\prime}$ Area=3.3 sf Perim=10.1'
					$\mathrm{n}=0.040$ Earth, cobble bottom, clean sides

Subcatchment 112:

Summary for Subcatchment 113: Roof

Runoff $=3.57$ cfs @ 12.09 hrs, Volume $=0.285$ af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

	rea (sf)	CN	Description		
	54,769	98	Roofs, HSG C		
	54,769		00.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry,

Subcatchment 113: Roof

Summary for Reach 1R: (new Reach)
Bank-Full Depth=1.25' Flow Area= 1.2 sf, Capacity= 5.59 cfs
15.0" Round Pipe
$\mathrm{n}=0.013$ Corrugated PE, smooth interior
Length $=450.0^{\prime}$ Slope $=0.0075$ '/'
Inlet Invert= 100.00', Outlet Invert= 96.63'

Reach 1R: (new Reach)
Hydrograph

Summary for Reach 5R: REACH TO POINT OF ANALYSIS

Routing by Stor-Ind+Trans method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs
Max. Velocity= 1.39 fps , Min. Travel Time $=3.6 \mathrm{~min}$
Avg. Velocity $=0.47 \mathrm{fps}$, Avg. Travel Time $=10.5 \mathrm{~min}$
Peak Storage= 621 cf @ 12.60 hrs
Average Depth at Peak Storage $=0.12^{\prime}$
Bank-Full Depth= 0.30' Flow Area= 8.0 sf, Capacity= 20.33 cfs
40.00 ' $\times 0.30^{\prime}$ deep Parabolic Channel, $n=0.040$ Earth, cobble bottom, clean sides

Length=300.0' Slope= 0.0400 '/'
Inlet Invert= 716.00', Outlet Invert= 704.00'

Reach 5R: REACH TO POINT OF ANALYSIS

Summary for Pond 2P: BASIN A

Inflow Area =	7.022 ac, 49.17\% Impervious, Inflow Depth = 1.32" for 2-Year event			
Inflow	9.14 cfs @	12.10 hrs , Volume=	0.771 af	
Outflow	0.58 cfs @	15.05 hrs, Volume=	0.771 af,	Atten= 94\%, Lag= 177.2 min
Discarded =	0.12 cfs @	15.05 hrs, Volume=	0.295 af	
Primary	0.46 cfs @	15.05 hrs, Volume=	0.476 af	

Routing by Stor-Ind method, Time Span=5.00-96.00 hrs, dt= 0.05 hrs
Peak Elev= 728.36' @ 15.05 hrs Surf.Area= 10,645 sf Storage= 20,441 cf
Plug-Flow detention time $=674.9 \mathrm{~min}$ calculated for 0.771 af $(100 \%$ of inflow)
Center-of-Mass det. time $=676.1 \mathrm{~min}(1,505.6-829.6)$

Discarded OutFlow Max=0.12 cfs @ 15.05 hrs HW=728.36' (Free Discharge)
$\Psi_{6=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.12$ cfs)
Primary OutFlow Max=0.46 cfs @ 15.05 hrs HW=728.36' (Free Discharge)

- $1=$ Culvert (Passes 0.46 cfs of 13.74 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.31 cfs @ 6.34 fps)
-3=Orifice/Grate (Orifice Controls 0.15 cfs @ 1.36 fps)
-4=Orifice/Grate (Controls 0.00 cfs)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: BASIN A
Hydrograph

Summary for Pond 3P: BASIN B

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs
Peak Elev= 717.27 @ 12.32 hrs Surf.Area=1,185 sf Storage= 1,172 cf
Plug-Flow detention time $=128.6$ min calculated for 0.068 af (89% of inflow)
Center-of-Mass det. time= $74.1 \mathrm{~min}(903.1-829.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	716.00^{\prime}	$6,266 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
716.00	662	0	0
718.00	1,486	2,148	2,148
720.00	2,632	4,118	6,266

Device	Routing	Invert	Outlet Devices
\#1	Primary	715.00'	12.0" Round Culvert
			$\mathrm{L}=50.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 715.00' / 714.00' S=0.0200 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf
\#2	Device 1	716.50'	3.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#3	Device 1	717.00'	4.0" Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$
\#4	Device 1	718.50'	24.0" Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#5	Primary	719.00'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Primary OutFlow Max=0.45 cfs @ 12.32 hrs HW=717.27' (Free Discharge)

- $1=$ Culvert (Passes 0.45 cfs of 5.03 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.19 cfs @ 3.86 fps)
$-3=$ Orifice/Grate (Orifice Controls 0.26 cfs @ 1.76 fps)
4=Orifice/Grate (Controls 0.00 cfs)
-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: BASIN B

Summary for Pond 4P: RECHARGE BASIN

Inflow Area =	$1.257 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth > 2.72" for 2-Year event			
Inflow	3.57 cfs @	12.09 hrs , Volume=	0.285 af	
Outflow	0.66 cfs @	12.53 hrs , Volume=	0.285 af ,	Atten= 82\%, Lag= 26.8 min
Discarded	0.07 cfs @	12.53 hrs , Volume=	0.195 af	
Primary	0.37 cfs @	12.53 hrs , Volume=	0.055 af	
Secondary =	0.23 cfs @	12.53 hrs , Volume=	0.036 af	

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs
Peak Elev= 736.72' @ 12.53 hrs Surf.Area=6,966 sf Storage= 6,979 cf
Plug-Flow detention time $=768.5$ min calculated for 0.285 af (100% of inflow)
Center-of-Mass det. time $=767.8 \mathrm{~min}(1,534.8-767.0)$

Discarded OutFlow Max=0.07 cfs @ 12.53 hrs HW=736.72' (Free Discharge) L2=Exfiltration (Controls 0.07 cfs)

Primary OutFlow Max=0.37 cfs @ 12.53 hrs HW=736.72' (Free Discharge)
-1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
-3=Culvert (Inlet Controls 0.37 cfs @ 1.70 fps)
Secondary OutFlow Max=0.22 cfs @ 12.53 hrs HW=736.72' (Free Discharge)
$\complement_{4=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 0.22$ cfs @ 1.70 fps)

Pond 4P: RECHARGE BASIN

Summary for Pond P101:

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs
Peak Elev= 740.74' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	740.00^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$L=300.0^{\prime} \quad$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $740.00^{\prime} / 737.00^{\prime} \quad \mathrm{S}=0.0100^{\prime} / /^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf	

Primary OutFlow Max=2.50 cfs @ 12.09 hrs HW=740.73' (Free Discharge)
L_ $_{1=\text { Culvert }}$ (Inlet Controls 2.50 cfs @ 2.91 fps)

Pond P101:

Hydrograph

Summary for Pond P102:

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs
Peak Elev= 737.95' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	737.00^{\prime}	$\mathbf{2 4 . 0 ^ { \prime \prime } \text { Round Culvert }}$
		$\mathrm{L}=460.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $737.00^{\prime} / 732.40^{\prime} \mathrm{S}=0.0100^{\prime} / / \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=3.14 \mathrm{sf}$	

Primary OutFlow Max=4.77 cfs @ 12.09 hrs HW=737.94' (Free Discharge)
—1=Culvert (Inlet Controls 4.77 cfs @ 3.30 fps)

Pond P102:

Hydrograph

Summary for Pond P103:

Inflow Area		$2.865 \mathrm{ac}, 63.26 \%$	Impervious, Inflow Depth $=1.91 "$	for $2-$ Year event
Inflow	$=$	$6.20 \mathrm{cfs} @$	12.09 hrs, Volume $=$	0.457 af
Outflow	$=$	$6.20 \mathrm{cfs} @$	12.09 hrs , Volume $=$	0.457 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$6.20 \mathrm{cfs} @ 12.09$ hrs, Volume $=$	0.457 af	

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs
Peak Elev= 733.59' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	732.50'	24.0" Round Culvert
			$\mathrm{L}=110.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 732.50' / 731.40' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=6.12 cfs @ 12.09 hrs HW=733.58' (Free Discharge)
L- $_{1=}$ Culvert (Inlet Controls 6.12 cfs @ 3.54 fps)

Pond P103:

Hydrograph

Summary for Pond P104:

Routing by Stor-Ind method, Time Span= 5.00-96.00 hrs, dt= 0.05 hrs
Peak Elev=739.41' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	739.00'	12.0" Round Culvert
			$\mathrm{L}=160.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 739.00' / 735.80' S=0.0200 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79$ sf

Primary OutFlow Max=0.65 cfs @ 12.10 hrs HW=739.41' (Free Discharge)
—1=Culvert (Inlet Controls 0.65 cfs @ 2.17 fps)

Pond P104:

STANDARD \#3 -LOSS OF ANNUAL RECHARGE

The site is predominately un-developed. The site design incorporates direct recharge of roof drains to infiltration basins. Basins A and B are designed to infiltrate retained runoff after pre-treatment. Soils were found to be Class C permeability.

The table below shows the required and provided recharge volumes for the project. As shown, the proposed condition exceeds the minimum requirement for the additional impervious areas.

Recharge Volume Summary

Soil Type	Recharge Factor (in. runoff)	Existing Impervious Area (sf)	Additional Impervious Area (sf)	Min. Req. Recharge Volume (cf)
A	0.60	0	0	0
B	0.35	0	0	0
C	0.25	0	215,234	4,484
D	0.10	0	0	0
Total Required				

Standard \#3 Only Applies to Additional Impervious

Provided Recharge Volume (cf)		
South Roof Recharge		5,399
North Roof Recharge		5,756
Basin A		5,150
Basin B		383
Total Provided		$\mathbf{1 6 , 6 8 8}$

Hydrograph for Pond 2P: BASIN A

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)
5.00	0.00	0	726.00	0.00	0.00	0.00
7.50	0.08	238	726.03	0.02	0.02	0.00
10.00	0.43	1,813	726.26	0.05	0.05	0.00
12.50	5.16	29,415	729.15	2.10	0.15	1.95
15.00	0.95	26,042	728.86	1.70	0.14	1.57
17.50	0.46	21,254	728.43	0.74	0.12	0.62
20.00	0.31	19,501	728.27	0.45	0.11	0.34
22.50	0.24	18,197	728.14	0.40	0.11	0.29
25.00	0.00	15,959	727.92	0.37	0.10	0.27
27.50	0.00	12,842	727.59	0.32	0.09	0.23
30.00	0.00	10,158	727.30	0.27	0.08	0.19
32.50	0.00	7,919	727.04	0.22	0.07	0.15
35.00	0.00	6,146	726.83	0.17	0.06	0.11
37.50	0.00	4,885	726.67	0.11	0.06	0.05
40.00	0.00	4,125	726.57	0.07	0.06	0.01
42.50	0.00	3,592	726.50	0.05	0.05	0.00
45.00	0.00	3,114	726.44	0.05	0.05	0.00
47.50	0.00	2,652	726.37	0.05	0.05	0.00
50.00	0.00	2,207	726.31	0.05	0.05	0.00
52.50	0.00	1,779	726.25	0.05	0.05	0.00
55.00	0.00	1,366	726.20	0.05	0.05	0.00
57.50	0.00	968	726.14	0.04	0.04	0.00
60.00	0.00	585	726.09	0.04	0.04	0.00
62.50	0.00	254	726.04	0.03	0.03	0.00
65.00	0.00	103	726.02	0.01	0.01	0.00
67.50	0.00	42	726.01	0.00	0.00	0.00
70.00	0.00	17	726.00	0.00	0.00	0.00
72.50	0.00	7	726.00	0.00	0.00	0.00
75.00	0.00	3	726.00	0.00	0.00	0.00
77.50	0.00	1	726.00	0.00	0.00	0.00
80.00	0.00	0	726.00	0.00	0.00	0.00
82.50	0.00	0	726.00	0.00	0.00	0.00
85.00	0.00	0	726.00	0.00	0.00	0.00
87.50	0.00	0	726.00	0.00	0.00	0.00
90.00	0.00	0	726.00	0.00	0.00	0.00
92.50	0.00	0	726.00	0.00	0.00	0.00
95.00	0.00	0	726.00	0.00	0.00	0.00

Hydrograph for Pond 3P: BASIN B

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Primary (cfs)
5.00	0.00	0	716.00	0.00
7.50	0.01	10	716.02	0.00
10.00	0.05	214	716.30	0.00
12.50	0.45	1,652	717.65	0.82
15.00	0.09	765	716.90	0.12
17.50	0.04	545	716.68	0.05
20.00	0.03	503	716.63	0.03
22.50	0.02	486	716.62	0.03
25.00	0.00	434	716.56	0.01
27.50	0.00	402	716.52	0.00
30.00	0.00	395	716.51	0.00
32.50	0.00	390	716.51	0.00
35.00	0.00	387	716.51	0.00
37.50	0.00	386	716.50	0.00
40.00	0.00	384	716.50	0.00
42.50	0.00	384	716.50	0.00
45.00	0.00	383	716.50	0.00
47.50	0.00	383	716.50	0.00
50.00	0.00	383	716.50	0.00
52.50	0.00	383	716.50	0.00
55.00	0.00	383	716.50	0.00
57.50	0.00	383	716.50	0.00
60.00	0.00	383	716.50	0.00
62.50	0.00	383	716.50	0.00
65.00	0.00	383	716.50	0.00
67.50	0.00	383	716.50	0.00
70.00	0.00	383	716.50	0.00
72.50	0.00	383	716.50	0.00
75.00	0.00	383	716.50	0.00
77.50	0.00	383	716.50	0.00
80.00	0.00	383	716.50	0.00
82.50	0.00	383	716.50	0.00
85.00	0.00	383	716.50	0.00
87.50	0.00	383	716.50	0.00
90.00	0.00	383	716.50	0.00
92.50	0.00	383	716.50	0.00
95.00	0.00	383	716.50	0.00

Hydrograph for Pond 8P: RECHARGE BASIN

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)
5.00	0.05	4	731.01	0.00	0.00	0.00
7.50	0.09	509	732.16	0.01	0.01	0.00
10.00	0.20	1,618	733.00	0.02	0.02	0.00
12.50	0.88	6,072	735.12	1.09	0.03	1.05
15.00	0.17	5,823	735.02	0.18	0.03	0.14
17.50	0.08	5,781	735.01	0.09	0.03	0.05
20.00	0.06	5,769	735.00	0.06	0.03	0.03
2.50	0.05	5,763	735.00	0.05	0.03	0.01
25.00	0.00	5,658	734.96	0.03	0.03	0.00
27.50	0.00	5,384	734.86	0.03	0.03	0.00
30.00	0.00	5,117	734.75	0.03	0.03	0.00
32.50	0.00	4,856	734.65	0.03	0.03	0.00
35.00	0.00	4,602	734.54	0.03	0.03	0.00
37.50	0.00	4,355	734.44	0.03	0.03	0.00
40.00	0.00	4,114	734.33	0.03	0.03	0.00
42.50	0.00	3,880	734.23	0.03	0.03	0.00
45.00	0.00	3,652	734.12	0.02	0.02	0.00
47.50	0.00	3,432	734.01	0.02	0.02	0.00
500	0.00	3,217	733.91	0.02	0.02	0.00
52.50	0.00	3,008	733.80	0.02	0.02	0.00
55.00	0.00	2,805	733.69	0.02	0.02	0.00
57.50	0.00	2,607	733.59	0.02	0.02	0.00
60.00	0.00	2,414	733.48	0.02	0.02	0.00
62.50	0.00	2,227	733.37	0.02	0.02	0.00
65.00	0.00	2,046	733.26	0.02	0.02	0.00
67.50	0.00	1,870	733.16	0.02	0.02	0.00
70.00	0.00	1,699	733.05	0.02	0.02	0.00
72.50	0.00	1,534	732.94	0.02	0.02	0.00
75.00	0.00	1,374	732.83	0.02	0.02	0.00
77.50	0.00	1,219	732.72	0.02	0.02	0.00
80.00	0.00	1,070	732.61	0.02	0.02	0.00
82.50	0.00	926	732.50	0.02	0.02	0.00
85.00	0.00	787	732.39	0.02	0.02	0.00
87.50	0.00	653	732.28	0.01	0.01	0.00
90.00	0.00	525	732.17	0.01	0.01	0.00
92.50	0.00	401	732.06	0.01	0.01	0.00
95.00	0.00	305	731.89	0.01	0.01	0.00

Hydrograph for Pond 4P: RECHARGE BASIN

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Secondary (cfs)
5.00	0.05	4	734.01	0.00	0.00	0.00	0.00
7.50	0.09	448	734.75	0.01	0.01	0.00	0.00
10.00	0.19	1,394	735.35	0.03	0.03	0.00	0.00
12.50	0.83	7,437	736.81	0.97	0.07	0.58	0.33
15.00	0.16	6,122	736.55	0.21	0.06	0.09	0.06
17.50	0.08	5,792	736.48	0.11	0.06	0.03	0.02
20.00	0.05	5,590	736.44	0.07	0.06	0.01	0.00
22.50	0.04	5,435	736.41	0.06	0.06	0.00	0.00
25.00	0.00	5,130	736.34	0.06	0.06	0.00	0.00
27.50	0.00	4,621	736.23	0.06	0.06	0.00	0.00
30.00	0.00	4,132	736.12	0.05	0.05	0.00	0.00
32.50	0.00	3,664	736.01	0.05	0.05	0.00	0.00
35.00	0.00	3,218	735.90	0.05	0.05	0.00	0.00
37.50	0.00	2,797	735.79	0.05	0.05	0.00	0.00
40.00	0.00	2,402	735.68	0.04	0.04	0.00	0.00
42.50	0.00	2,032	735.57	0.04	0.04	0.00	0.00
45.00	0.00	1,687	735.46	0.04	0.04	0.00	0.00
47.50	0.00	1,367	735.34	0.03	0.03	0.00	0.00
50.00	0.00	1,072	735.23	0.03	0.03	0.00	0.00
52.50	0.00	803	735.10	0.03	0.03	0.00	0.00
55.00	0.00	569	734.95	0.02	0.02	0.00	0.00
57.50	0.00	435	734.73	0.01	0.01	0.00	0.00
60.00	0.00	311	734.52	0.01	0.01	0.00	0.00
62.50	0.00	197	734.33	0.01	0.01	0.00	0.00
65.00	0.00	91	734.15	0.01	0.01	0.00	0.00
67.50	0.00	6	734.01	0.00	0.00	0.00	0.00
70.00	0.00	0	734.00	0.00	0.00	0.00	0.00
72.50	0.00	0	734.00	0.00	0.00	0.00	0.00
75.00	0.00	0	734.00	0.00	0.00	0.00	0.00
77.50	0.00	0	734.00	0.00	0.00	0.00	0.00
80.00	0.00	0	734.00	0.00	0.00	0.00	0.00
82.50	0.00	0	734.00	0.00	0.00	0.00	0.00
85.00	0.00	0	734.00	0.00	0.00	0.00	0.00
87.50	0.00	0	734.00	0.00	0.00	0.00	0.00
90.00	0.00	0	734.00	0.00	0.00	0.00	0.00
92.50	0.00	0	734.00	0.00	0.00	0.00	0.00
95.00	0.00	0	734.00	0.00	0.00	0.00	0.00

STANDARD \#4- 80\% TSS REMOVAL

ESTIMATED PROPOSED NEW PAVED COVER= 112,390 S.F.

REQUIRED WATER QUALITY VOLUME:

Water Quality Volume		
Required Treatment Volume	1.0	Inches Over Impervious Areas
Watershed Series	Paved Area	Water Quality Volume
$100-$ Basin A	95,614	7,968
$100-$ Basin B	11,632	969
$100-$ Main Entrance	5,144	429
200	0	0
300	0	0

The design of the drainage system is such that the site is routed through a series of treatment BMP's meeting the Standard. The attached TSS worksheets and Proprietary systems show the site meeting this requirement. No bypass is designed of the BMP's reducing the WQV.

PLEASE SEE THE FOLLOWING PAGES FOR TSS REMOVAL CALCULATIONS AND STORMCEPTOR® SIZING DETAILED REPORTS

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table
2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings
3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row
4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row
5. Total TSS Removal = Sum All Values in Column D

$$
\text { Location: } 6 \text { Picker Road, Drainage Basin A }
$$

	A $B M P ~^{1}$	B TSS Removal Rate ${ }^{1}$	C Starting TSS Load*	$\begin{gathered} \mathrm{D} \\ \text { Amount } \\ \text { Removed (} \mathrm{B}^{*} \mathrm{C} \text {) } \\ \hline \hline \end{gathered}$	E Remaining Load (C-D)
	Deep Sump Catch Basins	0.25	1.00	0.25	0.75
	Sediment Forebay	25\%	0.75	0.19	0.56
	Infiltration Basin	80\%	0.56	0.45	0.11
			0.11	0.00	0.11
			0.11	0.00	0.11

Total TSS Removal =
$\underbrace{89 \%}$

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project:
20-122, ARCO
Prepared By:
Date
ArB
$5 / 92020$

*Equals remaining load from previous BMP (E)
which enters the BMP

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table
2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings
3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row
4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row
5. Total TSS Removal = Sum All Values in Column D

Location: 6 Picker Road, Main Access Road Low Point

	A BMP^{1}	B TSS Removal Rate ${ }^{1}$	C Starting TSS Load*	D Amount Removed (B*C)	E Remaining Load (C-D)
	Deep Sump Catch Basins	0.25	1.00	0.25	0.75
	Stormceptor 450i Proprietary Device	88\%	0.75	0.66	0.09
	Infiltration Basin	80\%	0.09	0.07	0.02
			0.02	0.00	0.02
			0.02	0.00	0.02

Total TSS Removal =
$\square 98 \%$

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: $20-122$, ARCO
Prepared By: ARB
Date: $5 / 9 / 2020$

*Equals remaining load from previous BMP (E)
which enters the BMP

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table
2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings
3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row
4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row
5. Total TSS Removal = Sum All Values in Column D

Location: 6 Picker Road, Main Entrance

	A $B M P ~^{1}$	B TSS Removal Rate ${ }^{1}$	C Starting TSS Load*	D Amount Removed ($\mathrm{B}^{*} \mathrm{C}$)	E Remaining Load (C-D)
	Deep Sump Catch Basins	25\%	1.00	0.25	0.75
	Stormceptor 450i Proprietary Device	93\%	0.75	0.70	0.05
			0.05	0.00	0.05
			0.05	0.00	0.05
			0.05	0.00	0.05

Total TSS Removal =

95%

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: $20-122$, ARCO
Prepared By:
ARB
Date: $5 / 9 / 2020$

*Equals remaining load from previous BMP (E)
which enters the BMP

Brief Stormceptor Sizing Report - 6 Picker Road Entrance

Project Information \& Location			
Project Name	6 Picker Road	Project Number	$20-122$
City	Sturbridge	State/ Province	Massachusetts
Country	United States of America	Date	$5 / 9 / 2020$
Designer Information	Andrew Baum	EOR Information (optional)	
Name	Summit Engineering \& Survey, Inc.	Company	
Company	$508-987-8713$	Phone \#	
Phone \#	abaum@summitesinc.com	Email	
Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	6 Picker Road Entrance
Target TSS Removal (\%)	80
TSS Removal (\%) Provided	93
Recommended Stormceptor Model	STC 450i

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary	
Stormceptor Model	\% TSS Removal Provided
STC 450i	93
STC 900	96
STC 1200	96
STC 1800	96
STC 2400	97
STC 3600	98
STC 4800	98
STC 6000	98
STC 7200	99
STC 11000	99
STC 13000	99
STC 16000	99

A Hempronpant

For Stormceptor Specifications and Drawings Please Visit:
https://www.conteches.com/technical-guides/search?filter=1WBC005EYX

Brief Stormceptor Sizing Report - 6 Picker Road, Low Point

Project Information \& Location			
Project Name	6 Picker Road	Project Number	$20-122$
City	Sturbridge	State/ Province	Massachusetts
Country	United States of America	Date	$5 / 9 / 2020$
Designer Information	Andrew Baum	EOR Information (optional)	
Name	Summit Engineering \& Survey, Inc.	Company	
Company	508-987-8713	Phone \#	
Phone \#	abaum@summitesinc.com	Email	
Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	6 Picker Road, Low Point
Target TSS Removal (\%)	80
TSS Removal (\%) Provided	88
Recommended Stormceptor Model	STC 450i

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary	
Stormceptor Model	\% TSS Removal Provided
STC 450 i	88
STC 900	93
STC 1200	93
STC 1800	93
STC 2400	95
STC 3600	95
STC 4800	97
STC 6000	97
STC 7200	97
STC 11000	98
STC 13000	98
STC 16000	99

A Hempronpant

For Stormceptor Specifications and Drawings Please Visit:
https://www.conteches.com/technical-guides/search?filter=1WBC005EYX

STANDARD \#9- OPERATION \& MAINTENANCE

OPERATION \& MAINTENANCE PLAN:

CURRENT OWNER \& RESPONSIBLE PARTY:
 New England Cold, LLC (Contractor shall be responsible during construction)

FUTURE OWNER \& RESPONSIBLE PARTY:
 New England Cold, LLC
 DURING CONSTRUCTION:

SILT FENCE BARRIER:

The silt fence barrier shall be installed prior to construction.
During construction the contractor shall inspect the silt fence barrier on a weekly basis and after any significant rainstorm resulting in greater than 0.5 " of rainfall. The barrier shall be inspected for any breaches or disturbed silt fence and repaired immediately.

After construction the barrier shall be maintained as stated above until all new areas are vegetated.

After construction these duties shall transfer to the property owner.

CONSTRUCTION ENTRANCE APRONS:

Construction aprons shall be installed to protect Route 20. The construction entrance apron shall be installed prior to commencement of construction and shall be inspected weekly. The construction entrance apron shall be replaced when debris becomes noticeable on the existing pavement surfaces leading to and from the construction site.

SLOPE STABILIZATION:

The slope stabilization controls shall be installed immediately upon obtaining final grades as shown on the project plans. Slopes in the swale area shall be stabilized according to the details provided. All 3:1 slopes established on-site shall be loamed and seeded as soon as weather permits. Any 2:1 slopes established shall be covered with slope stabilization fabric, then loamed and seeded as soon as weather permits. Areas in failure shall be re-graded to final grade and stabilized as necessary.

Summit Engineering \& Survey, Inc.

TEMPORARY BASINS:

The temporary basins shall be inspected immediately after storm events and cleaned to remove sediment build-up. Outfalls shall be inspected for erosion or scouring. Additional rip rap shall be added as required to minimize erosion.

CATCH BASINS:

Catch basins shall entrances shall have temporary stone or other filtration device installed around inlet to prevent sediment deposits. Sediment shall be removed when accumulation exceeds 1" depth on paved surfaces.

CHECK DAMS:

Check Dams shall be inspected weekly and after rainfall in excess of 0.5 ". Accumulated sediment shall be removed when depth exceeds 3 " on the upstream sided of the dam. Stone or fabric shall be replaced when evidence of clogging is present.

PROPRIETARY SEPARATOR:

The proprietary separator shall be inspected immediately after storm events and cleaned to remove sediment build-up. Cleaning methods shall adhere to the manufacturer's directions.

> During construction the proprietary separator shall be inspected on a weekly basis for evidence of clogging or other situation that may adversely affect its function.

CONSTRUCTION COMPLETION:

The entire stormwater management system shall be inspected upon completion of construction. Portions of the system containing sediment shall be cleaned and all sediment properly removed

AFTER CONSTRUCTION:

CATCH BASINS:

At a minimum, the catch basins shall be inspected and cleaned on a quarterly basis. It is preferred that collection of accumulated sediment shall be accomplished by means of vacuum pumping and not by means of a clamshell bucket. Disposal of accumulated sediment shall be performed in accordance with applicable local, state, and federal guidelines and regulations.

PROPRIETARY SEPARATOR:

Summit Engineering \& Survey, Inc.

The proprietary separator shall be inspected immediately after 0.5 inch storm events and cleaned to remove sediment build-up. Cleaning methods shall adhere to the manufacturer's directions. It is critical that sediment be removed periodically from the proprietary separator to insure it is not being carried to the detention areas and also to insure proper functioning of the separator.

The proprietary separator shall be inspected every three (3) months for evidence of clogging or other situation that may adversely affect its function.

SEDIMENT FORBAYS

Sediment forebays shall be visually inspected monthly for accumulation of debris, slope failure, or stone displacement. Slopes shall be mowed quarterly. Bottom shall be swept, vacuumed of accumulated debris semi-annually.

INFILTRATION BASINS

Inspect infiltration basins after major storm events (>3.0 inches) to verify stabilization and infiltration. Mow slopes, berms quarterly. Removed accumulated clippings from infiltration stone. Inspect basin semi-annually for the following:

- Signs of differential settlement
- Cracking
- Erosion
- Leakage in embankments
- Tree growth on embankments
- Condition of rip rap
- Sediment accumulation
- Turf health.

LONG TERM POLLUTION PREVENTION PLAN

The following are the material management practices that shall be used to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff.

Good Housekeeping: The following good housekeeping practices will be followed on site during the construction project and continued upon completion of the construction activities.

1. A concerted effort shall be made to store only enough product required to complete a particular task.
2. All materials stored on site shall be stored in a neat and orderly fashion in their appropriate containers and, if possible, under a roof or other secure enclosure.
3. Products shall be kept in their original containers with the original manufacture's label.
4. Substances shall not be mixed with one another unless recommended by the manufacturer.
5. Whenever possible, all of a product shall be used up before disposing of the container.
6. Manufacture's recommendations for proper use and disposal shall be followed.

Summit Engineering \& Survey, Inc.
7. The site superintendent shall inspect daily to ensure proper use and disposal of materials on site.

Hazardous Products: The following practices are intended to reduce the risks associated with hazardous materials.

1. Products shall be kept in original containers unless they are not re-sealable.
2. Where feasible, the original label and material safety data shall be retained, whereas they contain important product information.
3. If surplus product must be disposed of, follow manufacturers or local and State recommended methods for proper disposal.

Product Specific Practices: The following product-specific practices shall be followed on site: Petroleum Products:

1. All on site vehicles shall be monitored for leaks and receive regular preventative maintenance to reduce the risk of leakage.
2. Petroleum products shall be stored in tightly sealed containers which are clearly labeled.
3. Petroleum Products shall be stored in compliance with Fire Marshall regulations.

Bituminous Concrete:
Any bituminous concrete or asphalt substances used on site shall be applied according to the manufacturer's recommendations.

Fertilizers:

Fertilizers shall be applied in the minimum amounts recommended by the manufacturer. Once applied, fertilizers shall be worked into the soil to limit exposure to stormwater.
Storage shall be in a covered shed or trailer. The contents of any partially-used bags of fertilizer shall be transferred to a sealable plastic bag or bin to avoid spills

Paints:

1. All containers shall be tightly sealed and stored when not required for use.
2. Excess paint shall not be discharged into any catch basin, drain manhole or any portion of the stormwater management system.
3. Excess paint shall be properly disposed of according to manufacturer's recommendations or State and local regulations.

Concrete Trucks:

Concrete trucks shall not be allowed to wash out or discharge surplus concrete or drum wash water on site.

SPILL CONTROL PRACTICES

In addition to the good housekeeping and material management practices discussed in the previous sections of this plan, the following practices shall be followed for spill prevention and cleanup:

1. Manufacturer's recommended methods for cleanup shall be readily available at the onsite trailer, and site personnel shall be made aware of the procedures and the location of the information.

Summit Engineering \& Survey, Inc.
2. Materials and equipment necessary for spill clean up shall be kept in the material storage area on site. Equipment and materials shall include, but not be limited to, brooms, dust pans, mops, rags, gloves, goggles, kitty litter, sand, sawdust and plastic and metal trash containers specifically for this purpose.
3. All spills shall be cleaned up immediately after discovery.
4. The spill area shall be kept well ventilated, and personnel shall wear appropriate protective clothing to prevent injury from contact with hazardous substance.
5. Spills of toxic or hazardous material shall be reported to the appropriate State and/or local authority in accordance with local and/or State regulations.
6. The spill prevention plan shall be adjusted to include measures to prevent a particular type of spill from reoccurring and instructions on how to clean up the spill if there is another occurrence. A description of the spill, what caused it, and the clean up measures shall also be included.
7. The "Manager" shall be the spill prevention and cleanup coordinator. The "Manager" shall designate at least three other site personnel who will be trained in the spill control practices identified above.

APPENDICES:

PRE-DEVELOPMENT DIAGRAM

POST-DEVELOPMENT DIAGRAM
PRE-DEVELOPMENT WATERSHED MAP
POST-DEVELOPMENT WATERSHED MAP
SOIL MAPS
FLOOD MAP

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
模 Clay Spot
\diamond Closed Depression
Gravel Pit
\therefore Gravelly Spot
(5) Landfill

A Lava Flow
Marsh or swamp
, Mine or Quarry
(C) Miscellaneous Water

- Perennial Water
- Rock Outcrop
\uparrow Saline Spot
\because Sandy Spot
Severely Eroded Spot
- Sinkhole

2) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:25,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Worcester County, Massachusetts, Southern Part
Survey Area Data: Version 12, Sep 12, 2019
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 18, 2019—Jul 9, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	13.7	8.9\%
73A	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	4.1	2.7\%
102C	Chatfield-Hollis-Rock outcrop complex, 0 to 15 percent slopes	11.4	7.4\%
307B	Paxton fine sandy loam, 0 to 8 percent slopes, extremely stony	44.1	28.7\%
307C	Paxton fine sandy loam, 8 to 15 percent slopes, extremely stony	28.5	18.5\%
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	1.9	1.2\%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	21.9	14.2\%
651	Udorthents, smoothed	28.1	18.3\%
Totals for Area of Interest		153.6	100.0\%

WHITESTONE
RECORD OF
Boring No.:
B-15
ASSOCIATES.INC. SUBSURFACE EXPLORATION

WHITESTONE
RECORD OF
Boring No.:
as SOCIATES, INC.

ASSOCIATES.INC. SUBSURFACE EXPLORATION

National Flood Hazard Layer FIRMette

Legend

SEE FIG REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

B- $\mathbf{2 0 . 2}$ Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation
(8)- - - Coastal Transect
min mi Base Flood Elevation Line (BFE)
Limit of Study
_Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER
FEATURES \qquad Profile Baseline

- Hydrographic Feature

Digital Data Available

MAP PANELS
No Digital Data Available Unmapped an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The baseman shown complies with FEMA's baseman accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 5/11/2020 at 1:22:51 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: baseman imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FiRM panel number, and FirM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

[^0]: ${ }^{1}$ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.
 ${ }^{2}$ For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

[^1]: ${ }^{1} 80 \%$ TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

