Environmental Services

Engineering Services

STORMWATER REPORT

PROPOSED "INTERSTATE TOWING" FACILITY #698 MAIN STREET (ROUTE 20) STURBRIDGE, MA

REVISED: NOVEMBER 30, 2022

PREPARED FOR:

WRECKER, LLC. 1660 WESTOVER ROAD CHICOPEE, MA 01020

PREPARED BY:

CMG ENVIRONMENTAL, INC. CMG ID 2022-035

67 Hall Road Sturbridge, MA 01566 Phone (774) 241-0901 Fax (774) 241-0906

TABLE OF CONTENTS

Project Description	1
Hydrologic Calculation Methodology	1
Flood Plain	2
Soils & Topography	2
Existing Conditions	3
Proposed Conditions	3
MA-DEP Stormwater Management Standards	4

TABLES

- Table 1
 Pre vs. Post-Development Runoff Summary
- Table 2
 Watershed Subcatchment Areas

ATTACHMENTS

Appendix A	MA-DEP Stormwater Checklist
Appendix B	USGS Site Location, FEMA Map
Appendix C	NRCS Soils Data, Test Pit Logs, & Rawls Rate Table
Appendix D	Pre-Development Drainage Calculations
Appendix E	Post-Development Drainage Calculations
Appendix F	Additional Stormwater Calculations
Appendix G	Hydrostorm Manufacturer's Design Submission
Appendix H	Stormwater System Long-Term O & M Plan

Stormwater Report Proposed "Interstate Towing" Facility #698 Main Street, Sturbridge, MA Revised November 30, 2022

Project Description:

The project Applicant, *Wrecker, LLC.*, retained *CMG Engineering* to prepare this engineering analysis of preand post-development drainage runoff conditions for a proposed **7,000 s.f. "Interstate Towing" Facility.** The proposed site improvements are located on assessor's parcel 415-02343-698 with a total area of 8.94 Acres, identified as #698 Main Street (Site).

The site is currently undeveloped woodlands with bordering vegetated wetlands located in the central portion of the site within the General Industrial zoning district. The property is within close proximity to municipal water and sewer located within the Main Street (Route 20) right-of-way.

The current site topography pitches towards the Route 20 right-of-way along the front of the site. There are currently no existing stormwater BMP's implemented on the site. A majority of the front portion of the site is within the local 200-foot jurisdictional wetland buffer and will require a Notice of Intent filing with the Sturbridge Conservation Commission.

The applicant is proposing to construct a 7,000 s.f. metal building with associated parking and utilities. The new building will be operated as the new "Interstate Towing" facility. The easterly portion of the site will be a paved storage yard to store equipment, impounded vehicles, and fleet vehicles. Per the Massachusetts Stormwater Handbook, the storage yard is considered a land use with higher potential pollutant loads (LUHPPL) and will utilize specific stormwater BMP's. Customer parking will be located in front of the proposed building. As previously stated, the existing parcel is currently undeveloped woodlands, therefore, the project is considered new development.

A copy of the "MA-DEP Checklist for Stormwater Report" is included as Appendix A.

Hydrology	
Computer Model:	HydroCAD 10.0 \Circ 2015 Applied Microcomputer Systems, drainage modeling software;
Hydrologic Methodology:	TR-55 Methodology is used for analysis of peak flow and drywell sizing.
Surface Runoff Conditions	
Rainfall Intensity:	TR-55 (Type III) – Rainfall Data
, , , , , , , , , , , , , , , , , , ,	2-Year Storm $= 3.20$ in.
	10-Year Storm $= 4.60$ in
	25-Year Storm $= 5.40$ in.
	100-Year Storm = 6.70 in.
Watershed Areas:	Watershed areas are calculated using AutoCAD software based on the subcatchment areas delineated on topographic mapping included as "Pre-Development Drainage" and "Post-Development Drainage". The areas shown, times of concentration and runoff coefficients are all consistent with the TR-55 drainage calculation method.

Hydrologic Calculation Methodology:

Flood Plain:

FEMA Flood Mapping:

Site is <u>not</u> in the 100-year flood plain based on Flood Insurance Rate Map (FIRM) Town of Sturbridge, Worcester County Massachusetts (All Jurisdictions) Map Number 25027C0907E, Effective Date July 04, 2011 (see **Appendix B**).

Soils & Topography:

The Site soils are mapped as and appear to be consistent with Paxton Fine Sandy Loam (305B) with $3 \sim 8\%$ slopes & (307B) with $0 \sim 8\%$ slopes classified as Hydrologic Soil Group "C".

A copy of the *National Resources Conservation Service* (NRCS) Soils Map, listed area soil types are included as **Appendix C.**

On-Site Soil Testing:

May 13, 2022 Soil Testing – O'Driscoll Land Surveying, Inc. (Daniel O'Driscoll, PLS, LSE)

On May 13, 2022 O'Driscoll Land Surveying, Inc. completed six (6) on-site soil test pits within the proposed project area. The purpose of these test pits was to verify the ESHGW and soil conditions within the proposed stormwater management areas.

Depth to Groundwater:

Estimated seasonal high groundwater (ESHGW) elevations based on soil mottling are as follows:

TH - 1	TH - 2	TH - 3	TH-4	TH - 6
ESHGW = 42 "	ESHGW=48"	ESHGW = 48 "	ESHGW = 78"	ESHGW =54"

TH – 5 did not contain mottling as the excavator encountered shallow refusal.

Soil Conditions:

Test pit TH - 1 was excavated in the northern portion of the proposed paved storage yard to approximately 5 ft. below ground surface (b.g.s.). Soil testing results are consistent with the NRCS mapping for sandy loam with an ESHGW located approximately 3.5 ft. b.g.s. Refusal was encountered at 5 ft. b.g.s.

Test pit TH - 2 was excavated in the central portion of the proposed paved storage yard to approximately 7 ft. b.g.s. Soil testing results were also consistent with the NRCS mapping for sandy loam with an ESHGW located approximately 4' b.g.s. Refusal was encountered at 7.25 ft. b.g.s.

Test pit TH - 3 was excavated at the entrance of the proposed paved storage yard to approximately 8.5' below grade. Soils were consistent with NRCS mapping for sandy loam with ESHGW at 4'b.g.s.

Test pit TH - 4 was excavated in the location of the proposed customer parking area to approximately 6.5' b.g.s. Soils were consistent with NRCS mapping for sandy loam. Mottling was observed at the bottom of the excavation, therefore indicating ESHGW at 6.5' b.g.s.

Test pit TH - 5 was excavated in the westerly portion of the site to approximately 30" b.g.s. Soils were consistent with the rest of the site with sandy loam. Shallow refusal was encountered in this test pit at 30" b.g.s.

Test pit TH - 6 was excavated in the location of the proposed stormwater basin to approximately 6.5' b.g.s. Soils encountered in the test pit were loamy sands with ESHGW at 4.5' b.g.s.

Copies of Site Soil Investigation Data are also included in Appendix C.

Soil Permeability (k):

Based upon on-site classification by a State of Massachusetts Licensed Soil Evaluator Daniel O'Driscoll, PLS, Site subsurface soils within the development area are classified as a "sandy loam". Sandy loams correlate to a "B" type soil classification within the Rawls Rate soil permeability table, therefore the drainage design permeability has been identified as follows:

Design permeability (k) values of Type "B" Soils: k = 1.02 in / hr (Rawls Rate: Type "B" Soils) Sandy Loam

Existing Conditions:

The existing site currently consists of one industrial zoned property located at #698 Main Street with an area of 8.94 Acres. The parcel consists of undeveloped woodland with bordering vegetated wetlands located in the central portion of the site. The site topography pitches towards the Route 20 right-of-way which abuts the southern portion of the site. There is one (1) stormwater outfall location for the site:

Outfall 1S – **Main Street** Approximately 86,000 s.f. of the undeveloped woodland site discharges stormwater runoff, via overland flow, to the Main Street (Route 20) right-of-way. No existing stormwater BMP's are present on-site to treat and convey existing stormwater flows. Stormwater runoff entering the Main Street right-of-way is captured and conveyed the Mass DOT owned drainage system. Based on limited information obtained from Mass DOT as-built plans and ortho imagery, the drainage system appears to eventually discharge into East Brimfield Reservoir or one of its associated tributaries.

Outfall 2S – Bordering Vegetated Wetlands The remaining 18,700 +/- s.f. of the undeveloped woodland site discharge to a bordering vegetated wetland located in the southeastern portion of the site. As previously stated, the site does not currently employ stormwater management structures to treat and convey existing stormwater flows. The wetlands eventually discharge to East Brimfield Reservoir.

Proposed Conditions:

The project Applicant is proposing to construct a 7,000 s.f. metal building to be used as a towing operation. A paved parking area will be located along the front of the proposed building and a paved storage yard will be located on the eastern side of the proposed building. The proposed storage yard will be used to store fleet vehicles, impounded vehicles, and equipment and will be categorized as a Land Use with Higher Potential Pollutant Load (LUHPPL). Specific LUHPPL stormwater treatment technologies will be used for stormwater runoff associated with the storage yard. CMG is proposing the following Stormwater Management System for the Site in order to meet the MA-DEP Stormwater Management Standards for a new development project.

Outfall 1S – **Main Street** Subcatchment 1A consists of the proposed paved storage area, which is considered a LUHPPL. Per the Massachusetts Stormwater Handbook, the area categorized as a LUHPPL will need to utilize specific BMP's to capture potential hazardous material and also provide extensive TSS removal prior to infiltration. The paved storage area will utilize a combination of a deep-sump hooded catch basin and a Hydroworks water quality unit to capture and treat stormwater runoff from the LUHPPL. Stormwater flows will then be discharged to an off-line oil/ water separator to capture any potential release of oil from the storage yard. Once treated, flows from the oil/ water separator are then discharged to a stormwater flows will by-pass the oil/water separator to an underground infiltration system located underneath the front parking area. An overflow pipe will then convey stormwater to the infiltration basin located along the front of the site. An overflow broad crested weir will then discharge stormwater flows into the Route 20 right-of-way, which will be collected via the existing drainage system.

Subcatchment 1B consists of the proposed paved customer parking area located in the front of the proposed building. Stormwater flows will be captured and treated via a trench drain and Hydroworks water quality unit and then conveyed to the proposed infiltration basin located along the front portion of the site.

Subcatchment 1C consists of the front stormwater basin along the Route 20 right-of-way. During larger storm events, the basin will discharge stormwater flows into the Route 20 drainage system.

Subcatchment 1D consists of the remaining portion of the paved access driveway not conveyed or treated by the on-site stormwater management system. Stormwater runoff from this subcatchment will flow via overland flow to the Route 20 drainage system.

Stormwater runoff associated with the proposed building roof area will be collected and conveyed to the proposed stormwater basin via underground piping.

Outfall 2S – Bordering Vegetated Wetlands Subcatchment 2A consists of the remaining undeveloped portion of woodland located in the southwest portion of the site. A majority of this subcatchment falls within the jurisdictional wetland buffers, including a 25' "no disturb" buffer. As a result, a majority of this subcatchment will remain undeveloped woodland with a smaller area used to accommodate site grading. Stormwater runoff from this subcatchment will discharge via overland flow to the wetlands located in the southeast corner of the site.

Proposed Stormwater Management System:

Proposed "Interstate Towing" Facility:

- Deep sump hooded catch basins collect runoff for site's impervious and landscaped areas.
- An off-line 4,500-gallon oil grit separator treats stormwater runoff for paved storage area.
- Two (2) Hydrostorm water quality units treats stormwater runoff for the proposed paved parking and storage areas.
- A proposed underground infiltration system is proposed under the proposed customer parking area to enhance groundwater recharge on-site.
- A proposed stormwater infiltration basin will be utilized prior to stormwater discharges into the Route 20 right-of-way.
- Site Long-term Operation and Maintenance plan is provided for the Site.

MA-DEP Stormwater Management Standards:

STANDARD 1: (Untreated discharges):

No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

Proposed Full Compliance:

• Combination of on-site stormwater BMPs including deep sump catch basins with hoods, oil-grit separators, and water quality units provide treatment for on-site stormwater prior to discharge to Outfall 1S.

STANDARD 2: (Peak rate control and flood prevention):

Stormwater management systems must be designed so that post-development peak discharge rates do not exceed predevelopment peak discharge rates. This Standard may be waived for land subject to coastal storm flowage.

Proposed Full Compliance:

• No proposed increase to post-development Site peak runoff and Site is not in the 100-year flood plain.

STANDARD 3: (Recharge to Groundwater):

Loss of annual recharge to ground water shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development conditions based on soil type. This Standard is met when the storm water management system is design to infiltrate the required recharge volume as determined in accordance with the Massachusetts Storm water Handbook.

Proposed Full Compliance:

- The site will be utilizing a combination of underground infiltration chambers and a stormwater infiltration basin to meet the required recharge.
- Site specific BMPs are utilized to treat stormwater runoff associated with LUHPPL's prior to discharging to infiltration practices.

STANDARD 4: (TSS Removal):

Stormwater management systems must be designed to remove 80% of the average annual post construction load of Total Suspended Solids (TSS).

Proposed Full Compliance:

- Outfall 1S –will achieve minimum 96% TSS removal through a combination of; water quality units, an oil/ grit separator, and a stormwater infiltration basin.
- A "Long Term Operation and Maintenance Plan" is being provided as Appendix H.

STANDARD 5: (Higher Potential Pollutant Loads (LUHPPL)):

For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Storm water Handbook to eliminate or reduce the discharge of storm water runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention, all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, or storm water runoff, the proponent shall use the specific storm water BMP's determined by the Department to be suitable for such use as provided in the Massachusetts Storm water Handbook.

Proposed Full Compliance:

- The stormwater management design incorporates increased stormwater volumes (1") as required in LUHPPL areas by incorporating the following.
- The site will utilize water quality units and a 2,000-gallon oil grit separator to achieve TSS removal and provide oil storage in the case of a spill.
- Long Term Pollution Prevention Plan is included in Stormwater Management Report, Appendix H.

STANDARD 6: (Critical Areas)

Storm water discharges to a Zone II or Interim Wellhead Protection Area of a public water supply and storm water discharges near or any other critical area require the use of the specific storm water best management practices determined by the Department to be suitable for managing discharges to such area as provided in the Massachusetts Storm water Handbook.

Proposed Full Compliance:

• The site does not appear to lie within a Zone II, Interim Wellhead Protection Area, or any other critical area.

STANDARD 7: (Redevelopment)

"A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable; Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions."

Proposed Full Compliance:

• Site is considered new development and will meet all applicable Stormwater Management Standards.

STANDARD 8: (Erosion, Sediment Control):

A plan to control construction related impacts including erosion sedimentation and other pollution prevention sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) must be implemented.

Proposed Full Compliance:

- The "Erosion and Sedimentation Control Plan" Sheet C-4.0 and "Erosion and Sediment Control Details" Sheet C-4.1 are incorporated into the Plan Set.
- Project will disturb > 1 Acre, therefore an EPA–NPDES Stormwater General Permit is required prior to construction and will be accompanied with a comprehensive SWPP Plan.

STANDARD 9: (Operation and Maintenance):

A long-term operation and maintenance plan must be developed and implemented to ensure that storm water management systems function as designed.

Proposed Full Compliance:

o Long Term Operation and Maintenance Plan is included in Stormwater Management Report, Appendix H.

STANDARD 10: (Illicit Discharges):

All illicit discharges to the stormwater management system are prohibited.

Proposed Full Compliance:

• A signed "illicit discharge compliance statement" will be provided as part of the final "Storm water Management System Long-Term Operation & Maintenance Plan".

A copy of the "MA-DEP Checklist for Stormwater Report" is included as Appendix A.

Table No. 1 provides a summary of off-site Pre- and Post-Development peak runoff flow rates and volumes.

Table No. 2 provides a summary of the subcatchment drainage area calculations.

Appendix D & E includes the complete Pre-Development and Post-Development *HydroCAD* drainage calculation reports and Figures D-1 and D-2 "Pre- "and "Post-Development Drainage Areas" plans.

Appendix F provides additional stormwater calculations.

Appendix G provides the Manufacturer's Design Report for the two Hydrostorm Water Quality Units.

Appendix H provides a DRAFT "Long Term Stormwater Operation & Maintenance Plan"

The complete Site Plans for the **"Proposed "Interstate Towing" Facility - #698 Main Street, Sturbridge, MA" prepared by CMG Engineering, dated 10/11/2022** (or latest version) provide details of the complete storm water management system design. Please note these plans are subject to review and approval by two (2) separate Town Boards including: the Sturbridge Conservation Commission & Planning Board.

TABLE 1

PRE- VS. POST-DEVELOPMENT STORMWATER RUNOFF SUMMARY

TABLE NO. 1

STORMWATER RUNOFF PEAK FLOW SUMMARY PROPOSED INTERSTATE TOWING FACILITY #698 MAIN ST STURBRIDGE, MA

Pre-Ex	isting Site Developmen	t (Fig D1) Con	nditions		
		2-Year	10-Year	25-Year	100-Year
1S - EX. CATCH BASIN (RT. 20)	Peak Flow (cfs)	1.43	3.44	4.49	6.55
2S - WETLANDS	Peak Flow (cfs)	0.40	0.95	1.23	1.79
Propo	sed - Site Development	(Fig D2) Con	ditions		
1S - EX. CATCH BASIN (RT. 20)	Peak Flow (cfs)	0.48	2.56	4.44	6.43
15 - BA, CATCH DASHN (KI, 20)					

Proposed - Site Development (Fig D2) Conditions					
1S - EX. CATCH BASIN (RT. 20)	Peak Flow (cfs)	0.48	2.56	4.44	6.43
15 - EA. CATCH BASHN (K1. 20)					
2S - WETLANDS	Peak Flow (cfs)	0.33	0.79	1.04	1.51

TABLE 2 SUBCATCHMENT DRAINAGE AREA CALCULATIONS

TABLE NO. 2DRAINAGE AREA CALCULATIONSPROPOSED INTERSTATE TOWING FACILITY#698 MAIN STREETSTURBRIDGE, MA

PRE-DEVELOPMENT DRAINAGE AREAS (s.f.)

			- (-)			
	Soil ⁻	Гуре С			V	Vatershed
Impervious	Gravel	Grass/Ldscp	Woods			Total
			19,266			19,266
			85,480			85,480
					Tota	
0	0	0	104,746			104,746 s.f.
		Total	Site Area=	104,746	s.f.	2.40 Ac
Total Impervious=		s.f.		2.40	Ac	
	0	Impervious Gravel 0 0	0 0 0 Total	ImperviousGravelGrass/LdscpWoods19,266 85,48000104,746 Total Site Area=	ImperviousGravelGrass/LdscpWoods19,266 85,48019,266 85,48000104,746 Total Site Area=104,746	Impervious Gravel Grass/Ldscp Woods 19,266 85,480 Tota 0 0 104,746 Total Site Area=

Total Open Space = 104,746 s.f.

POST-DEVELOPMENT DRAINAGE AREAS (s.f.)

On-Site		Soil T	ype C) Í			Watershed	
Area	Impervious	Gravel	Grass/Ldscp	Woods			Total	
1a	32,770		15,547				48,317	-
1b	6,282		3,924				10,206	
1c			4,828				4,828	
1d	3,546		6,082	6,083			15,711	
BLD	7,000						7,000	
2a				18,684			18,684	
							0	
							Total	-
	49,598	0	30,381	24,767			104,740	6 s.f.
			Total	Site Area=	104,746	s.f.	2.4	0 Ac
	Impervious=)pen Space =	49,598 55,148			2.40	Ac		

Note:

¹ All Drainage Areas are calculated using CAD Software based on Pre-

& Post Development Drainage Plans prepared by CMG date 10/10/22

Appendix A

MA-DEP Stormwater Checklist

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

11-30-22 OF 10-11-22

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (continued)

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

\boxtimes	Static
-------------	--------

Dynamic Field¹

Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- · Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

Checklist ((continued)
-------------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The ½" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project
 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
Bike Path and/or Foot Path
Redevelopment Project
Redevelopment portion of mix of new and redevelopment.
Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2. 3 and the pretreatment

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b)

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;

improves existing conditions.

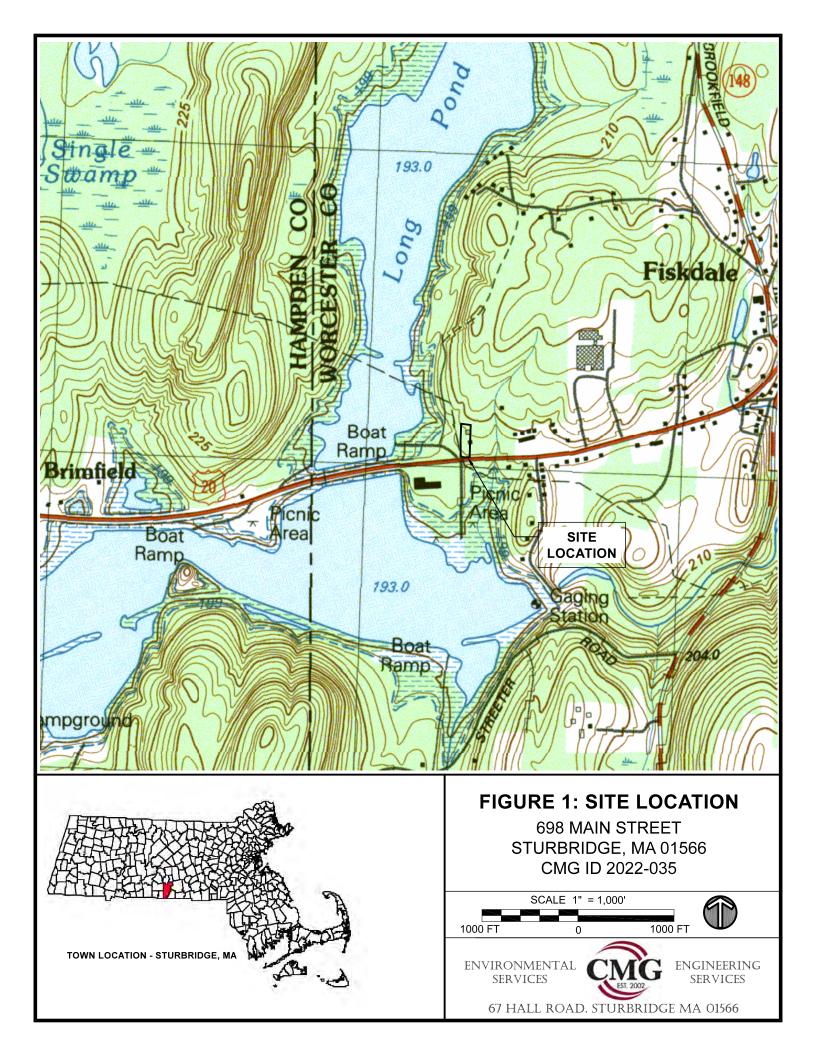
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

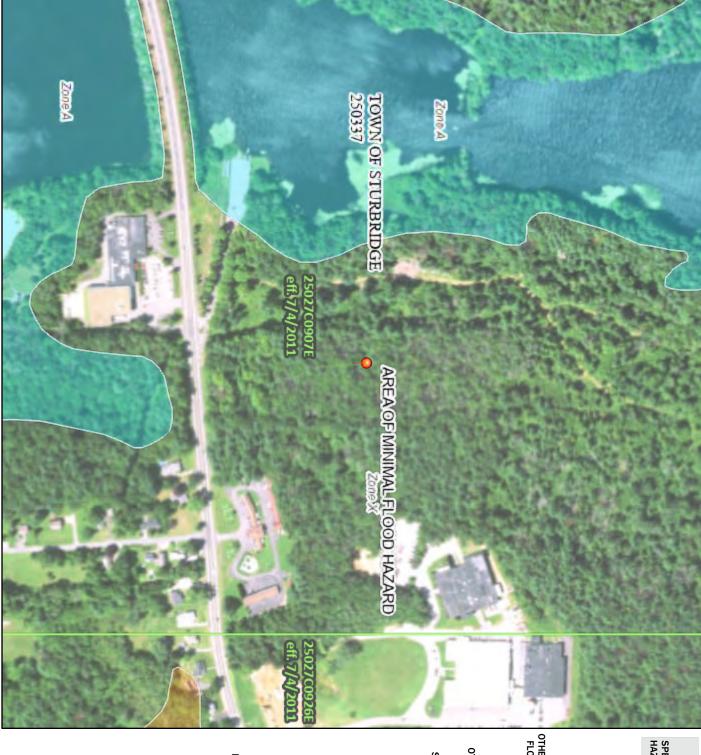

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Appendix B

USGS FIGURE FEMA Flood Plain Mapping



National Flood Hazard Layer FIRMette

72°8'3"W 42°7'4"N

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

0

250

500

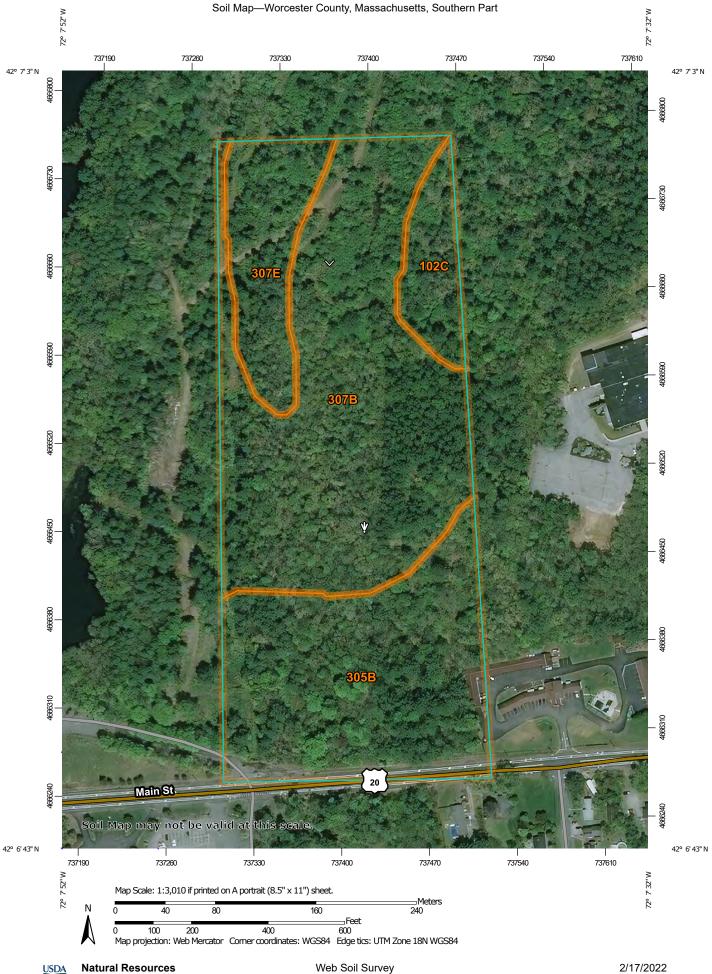
1,000

1,500

2,000

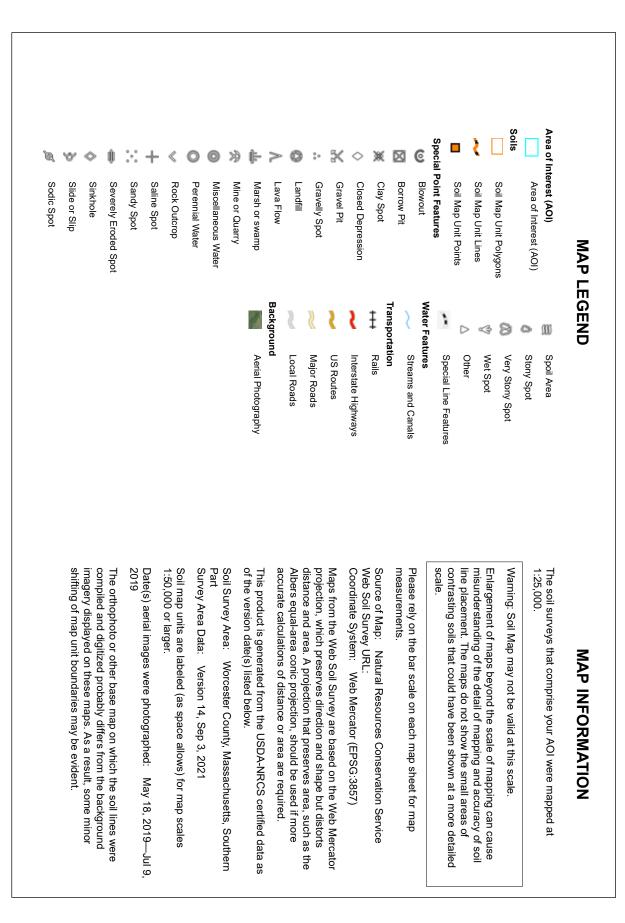
Feet

1:6,000


72°7'25"W 42°6'38"N

regulatory purposes.

unmapped and unmodernized areas cannot be used for


Appendix C

NCRS Soil Mapping & On-Site Soil Testing Logs

National Cooperative Soil Survey

Conservation Service

Natural Resources Conservation Service

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
102C	Chatfield-Hollis-Rock outcrop complex, 0 to 15 percent slopes	1.6	6.3%
305B	Paxton fine sandy loam, 3 to 8 percent slopes	8.4	33.3%
307B	Paxton fine sandy loam, 0 to 8 percent slopes, extremely stony	12.4	49.0%
307E	Paxton fine sandy loam, 15 to 35 percent slopes, extremely stony	2.9	11.4%
Totals for Area of Interest	1	25.3	100.0%

Worcester County, Massachusetts, Southern Part

305B—Paxton fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2t2qp Elevation: 0 to 1,570 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Paxton and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Paxton

Setting

Landform: Ground moraines, drumlins, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Ap - 0 to 8 inches: fine sandy loam Bw1 - 8 to 15 inches: fine sandy loam Bw2 - 15 to 26 inches: fine sandy loam Cd - 26 to 65 inches: gravelly fine sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 18 to 39 inches to densic material
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s

JSDA

Hydrologic Soil Group: C *Ecological site:* F144AY007CT - Well Drained Dense Till Uplands *Hydric soil rating:* No

Minor Components

Woodbridge

Percent of map unit: 9 percent Landform: Ground moraines, drumlins, hills Landform position (two-dimensional): Summit, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Ridgebury

Percent of map unit: 6 percent Landform: Hills, drainageways, depressions, ground moraines Landform position (two-dimensional): Toeslope, backslope, footslope Landform position (three-dimensional): Base slope, head slope, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Charlton

Percent of map unit: 5 percent Landform: Hills Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Data Source Information

Soil Survey Area: Worcester County, Massachusetts, Southern Part Survey Area Data: Version 14, Sep 3, 2021

Worcester County, Massachusetts, Southern Part

307B—Paxton fine sandy loam, 0 to 8 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 2w675 Elevation: 0 to 1,580 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Paxton, extremely stony, and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Paxton, Extremely Stony

Setting

Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Linear, convex Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material *A - 2 to 10 inches:* fine sandy loam *Bw1 - 10 to 17 inches:* fine sandy loam *Bw2 - 17 to 28 inches:* fine sandy loam *Cd - 28 to 67 inches:* gravelly fine sandy loam

Properties and qualities

Slope: 0 to 8 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 20 to 43 inches to densic material
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

USDA

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: C Ecological site: F144AY007CT - Well Drained Dense Till Uplands Hydric soil rating: No

Minor Components

Woodbridge, extremely stony

Percent of map unit: 10 percent Landform: Hills, drumlins, ground moraines Landform position (two-dimensional): Summit, backslope, footslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Charlton, extremely stony

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Ridgebury, extremely stony

Percent of map unit: 4 percent Landform: Drumlins, drainageways, depressions, ground moraines, hills Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Whitman, extremely stony

Percent of map unit: 1 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Worcester County, Massachusetts, Southern Part Survey Area Data: Version 14, Sep 3, 2021

Form	
1	
T	
in	
2	
S	
E.	
a	
i.	
4	
As	
Se	
SS	
3	
en	
4	
9	
0	
On-Site	
Sit	
0	
Se	
No.	
D.	
C C	
Sic	
po	
S	
m	
÷	
a	
ge	
N	
9	
UT	

5
f
3
1
-
41
rev
~
ŝ
-
5
8
~

A COLOR	Form 11 - 9	11 - Soi	Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal	ty Ass	sessmei	nt for	On-Sit	te Sew	age Dis	oosal	
On-S	Site Rev	iew (minim	C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)	les requi	ired at ever	y propo	sed prim	ary and r	eserve disp	osal area)	
Deep	Observatio	Deep Observation Hole Number: 5/22-1	er: 5/22-1	May 1	May 13, 2022	9:10 Time		Cldy 60's	s'(1 atituda	
1. Land Use	Jse Vacant lot	nt lot	noie #	Date	wooded	Ime		visible boulders	ders	Latitude	
1.6	tio	ocation:	n of Location:	eic.)	vegetation			Surface Stone	is (e.g., cooples,	Surrace Stones (e.g., coopples, stones, poulders, etc.)	etc.) Siope (%)
Soil Pa	arent Materi	Soil Parent Material: Ice Contact Outwash	t Outwash		M	Moraine		Side	Side slope		
					La	Landform		Posi	tion on Landscap	Position on Landscape (SU, SH, BS, FS, TS)	S, TS)
Distan	Distances from:	Oper	Open Water Body	N/A feet		D	Drainage Way	ay N/A feet	4	Wetlands	ands N/A feet
Inquitable		Property Line		TBD feet	TBD feet	Drinking	Drinking Water Well		_ feet	0	Other feet
5. Ground	dwater Obs	Groundwater Observed: Ves	No		If yes:		Depth Weeping from Pit	ing from Pit		Depth Star	Depth Standing Water in Hole
						Soil Log					
-	Soil Horizon	Soil Texture	Soil Matrix: Color-		Redoximorphic Features	tures	Coarse F	Coarse Fragments % by Volume		Soll	- X
nobru (iu)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	avel Cobbles & Stones	Soll Structure	(Moist)	Other
0-12	A	Loam	10 YR 3/3								
12-18	Bw	Sandy Loam	10 YR 6/6								
18-60	C1	Sandy Loam	10 YR 4/6	42"	5 YR 5/8		10%	10%	loose		
60+	Q										

D

Form 11 – Soil Suitability Assessment for On-Site Sewage Disposal + Page 2 of 5

t5form11 • rev. 3/15/18

			87+	16-87	10-16	0-10		Depth (in)		5. Grou	4. Unsuita	3. Dista		De	I. Land		Deep	C. On-	
A 1.000 - 1.00 - 1.00			Cr	C1	Bw	A	/Layer	Soil Horizon		ndwater Obs	able Materia	Distances from:	Soil Parent Material:	Description of Location:			Observatio	Site Rev	Form 11 - 9
				Sandy Loam	Sandy Loam	Loam	(USDA	Soil Texture		Groundwater Observed: 🗌 Yes	als Present:	Ope		ocation:	woodland, agricult	Vacant lot	Deep Observation Hole Number: 5/22-2	iew (minin	11 - Soi
				10 YR 4/6	10 YR 6/6	10 YR 3/3	Moist (Munsell)	Soil Matrix: Color-		No No	Unsuitable Materials Present: 🛛 Yes 🗌 No	Open Water Body	Ice Contact Outwash		(e.g., woodland, agricultural field, vacant lot, etc.)		ber: 5/22-2	On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)	Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal
				48 ["]) Depth				If Yes:	N/A feet			t, etc.)	Date	May 1	oles requ	ity As:
				10 YR 6/6			Color	Redoximorphic Features		If yes:	Disturbed Soil		La M		Vegetation	wooded	May 13, 2022	iired at eve	sessme
	Ţ						Percent	atures	Soil Log	<u>8</u>			Moraine Landform			Ime	9:30	ry propo	nt for
				10%			Gravel	Coarse Monthead Coarse Monthea		Depth Wee	I Fill Material	Drainage Way						sed prin	On-Si
				20%			Cobbles & Stones	Coarse Fragments % by Volume		Depth Weeping from Plt		N/A fee	Pos		Surface Stone	visible boulders	Cldy 60's	ary and i	te Sew
				loose				- Soil Structure			reet Weathered/Fractured Rock	ət	Side slope Position on Landsca		es (e.g., cobbles,	Iders	0's	reserve disp	rage Dis
							(Moist)	Soil		Depth St		Wet	Side slope Position on Landscape (SU, SH, BS, FS, TS)		Surface Stones (e.g., cobbles, stones, boulders, etc.)	Latitude	-	osal area)	posal
							Curci	Other		Depth Standing Water in Hole	Dtner feet Bedrock	Wetlands <u>N/A</u> feet	FS, TS)		s, etc.) Slope (%)	Longitude: 5			

Ø

Form 11 – Soil Suitability Assessment for On-Site Sewage Disposal • Page 2 of 5

t5form11 • rev. 3/15/18

		26-102	12-26	0-12	Colori (m)	Denth (in)		5. Groun	4. Unsuita		3. Distan		2. Soil P	Des	I. Land Use		Deep	C. On-
		C1	Bw	A	/Layer	Soil Horizon		dwater Obs	ble Materia		Distances from:		Soil Parent Material:	Description of Location:			Observatio	Site Rev
		Sandy Loam	Sandy Loam	Loam	(USDA	Soil Texture		Groundwater Observed: X Yes	ls Present:		Ope			ocation:	roodland, agricult	nt lot	Deep Observation Hole Number: 5/22-3	iew (minin
		10 YR 4/4	10 YR 6/6	10 YR 3/3		Soil Matrix: Color-		I No	Unsuitable Materials Present: 🗌 Yes 🛛 No	Property Line	Open Water Body		Ice Contact Outwash		(e.g., woodland, agricultural field, vacant lot, etc.)		Hole #	On-Site Review (minimum of two holes required at every proposed primary
		48"			Depth				If Yes:	TBD feet	N/A feet				, etc.)	Date	May	les requ
		10 YR 5/6			Color	Redoximorphic Features		If yes:	If Yes: Disturbed Soil			5	Z		Vegetation	wooded	May 13, 2022	ired at eve
		20%			Percent	atures	Soil Log			Drinkin	D	Landform	Moraine				8:40	ny propo
		20%			Gravel	Coarse % by		84" Depth Weeping from	Fill Material	Drinking Water Well	Drainage Way							sed prin
		20%			Cobbles & Stones	Coarse Fragments % by Volume		g from Pit		Vell	Vay N/A feet	Pos	Sic		Surface Ston	visible boulders	Cldy 60's	nary and
		loose			Soli Sunctine	Coll Otmotion			Weathered/Fractured Rock	feet	et	Position on Landscape (SU, SH, BS, FS, TS)	Side slope		Surface Stones (e.g., cobbles, stones, boulders; etc.)	Iders	0's	and reserve disposal area)
					(Moist)	Soil		Depth S	actured Rock		We	pe (SU, SH, BS,			stones, boulder	Latitude		oosal area)
					Other	2		Depth Standing Water in Hole	Bedrock	Other feet	Wetlands N/A feet	FS, TS)		ļ	s, etc.) Slope (%)	Longitude:		

D

ŝ

Form 11 – Soil Suitability Assessment for On-Site Sewage Disposal + Page 2 of 5

t5form11 • rev. 3/15/18

Image: model ant lot, etc.) wooded vertice h Mo h Mo re TBD feet No If Yes: Disturbed S S If yes S S YR 5/8 S/4 78" 5/4 78"	C. On-Site	-Site Rev p Observatio	iew (<i>minii</i> n Hole Num	num of two ho ber: <u>5/22-4</u> Hole #	oles requi	Assessme required at even May 13, 2022		y propo	nt for On-Sit y proposed prim	nt for On-Site Sew y proposed primary and n 8:25 Cldy 60 Weather	osed primar
Land Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Description of Location: Soil Parent Material: Ice Contact Outwash Moraine Distances from: Open Water Body N/A feet Inniki Distances from: Open Water Body N/A feet Drinki Unsuitable Materials Present: Yes No If Yes: Disturbed Soil Imathematical Groundwater Observed: Yes No If Yes: Disturbed Soil Imathematical 0-60 HTM Fill Soil Matrix: Color- (USDA Redoximorphic Features (USDA Soil Matrix: Color Percent 0-114 C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 >20% 0-114 C1 Sandy Loam 10 YR 5/4 78" 5 VR 5/8 >20%		se	n Hole Num nt lot	ber: <u>5/22-4</u> Hole #	May 1 Date	3, 2022 wooded	8:25 Time			Cldy 60 Weather visible bould	Cldy 60's Weather visible boulders
Soil Parent Material: Ice Contact Outwash Moraine Landform Distances from: Open Water Body N/A feet Landform Property Line TBD feet Disturbed Soil Disturbed Soil Disturbed Soil Disturbed Soil If Yes: Disturbed Soil Disturbed Soil If Yes: Disturbed Soil If Yes: Soil Loc Groundwater Observed: Yes Soil Matrix: Color- Redoxtmorphic Features Soil Loc Soil Loc Soil Loc Soil Loc Percen 0-60 HTM Fill Soil Matrix: Color- Depth Color Percen 0-114 C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 >20% 0-114 C1 Sandy Loam 10 YR 5/4 10 9 9 9 0-114 C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 >20% 9 9 0-114 Unit Unit Unit Unit Unit Unit 10 10 10 10 10 10 10 10 10 10 10 10 10 10	5	tio	ocation:	ltural field, vacant lot	t, etc.)	Vegetation		1 1		Surface Stone	Surface Stones (e.g., cobbles, stones, boulders, etc.)
Distances from: Open Water Body Property Line Groundwater Observed: N/A Yes iet Yes N/A If Yes: Itel Disturbed Soil Drinki Disturbed Soil Groundwater Observed: Yes No If Yes: Disturbed Soil I Groundwater Observed: Yes No If Yes: Disturbed Soil I O-60 HTM Fill Soil Matrix: Color (USDA Soil Matrix: Color Moist (Munsell) Redoxtmorphic Features Depth Percen 0-114 C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 >20% 0-114 C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 >20%		Parent Materi		tact Outwash			Noraine			Side	Side slope
Property Line TBD feet Drinki TBD feet TBD feet TBD feet Disturbed Soil Drinki Groundwater Observed: Yes No If Yes: Disturbed Soil If yes: Soil Ic Soil Horizon Soil Texture (USDA Soil Matrix: Color- (USDA Redoximorphic Features (USDA Redoximorphic Features 0-60 HTM Fill Depth Color Percen 0-114 C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 >20% 0-114 C1 Sandy Loam 10 YR 5/4 78 5 YR 5/8 >20% ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID </td <td></td> <td>ances from:</td> <td>Ope</td> <td>en Water Body</td> <td>N/A feet</td> <td>-</td> <td></td> <td></td> <td>rainage Wa</td> <td>Positive Positive Pos</td> <td>Drainage Way <u>N/A</u> feet Wetlands</td>		ances from:	Ope	en Water Body	N/A feet	-			rainage Wa	Positive Pos	Drainage Way <u>N/A</u> feet Wetlands
Groundwater Observed: Yes No If yes epth (in) Soil Horizon /Layer Soil Texture (USDA Soil Matrix: Color- Moist (Munsell) Redoximorphic Feat 0-60 HTM Fill Depth Color 0-61 C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 30-114 C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8	4. Unsuit	able Materia		Property Line ☐ Yes ⊠ No	TBD feet	☐ Disturbed		T (O	y Water W	'ell	J Water Well feet III Material Weathered/Fractured Rock
Soil Horizon Soil Texture (USDA Soil Matrix: Color- Moist (Munsell) Redoximorphic Feat HTM Fill Depth Color C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 Loam 10 YR 5/4 10 YR 5/4 10 YR 5/8 Loam 10 YR 5/4 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/4 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/4 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/4 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/4 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/8 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/8 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/8 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/8 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/8 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/8 10 YR 5/8 10 YR 5/8 Loam 10 YR 5/8 10 YR 5/8 10 YR 5/8 Loam<		indwater Obs	ls Present: [It yes: L	A THE R. LEWIS CO.			III IVIALEI IAI		
/Layer(USDAMoist (Munsell)DepthColorHTMFillIIIC1Sandy Loam10 YR 5/478"5 YR 5/8Image: Signal of the signa	lenth (in)		ls Present: [erved:		It yes: [lf ye	≌		Depth Weep	oing from	oing from
HTM Fill Ell C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8 Image: Second	un) under		Is Present: [erved: 🗌 Ye	Soil Matrix: Colo	If Yes	lf ye ximorphic Fe	es Dii	the second se	epth Weep	oing from ragment	oing from Pit
C1 Sandy Loam 10 YR 5/4 78" 5 YR 5/8	0-60	HTM	Is Present: [erved:] Ye Soil Texture (USDA	Soil Matrix: Colo Moist (Munsell)	Dep	lf ye ximorphic Fe Color	erc es		Depth Weep Coarse F % by V Gravel	oing from Fragment Volume Stone	ragment Cobble
	60-114		Is Present: [erved: □ Ye Soil Texture (USDA Fill	is No Soil Matrix: Colo Moist (Munsell)	Dep	lf ye oximorphic Fe Color	erc es		oepth Weep Coarse F % by V Gravel	ragment Volume Stone	ragments Cobbles & Soil Structure Stones
		C1	Is Present: [erved: □ Ye Soil Texture (USDA Fill Sandy Loar	No Soil Matrix: Colo Moist (Munsell)	Dep 78	If ye oximorphic Fe Color 5 YR 5/8	20 erc es bil		Depth Weep Coarse F % by v Gravel	oing from Tragment Volume Cobble Stone 30%	ragments Cobbles & Soil Structure Stones 30% Icose
		5	Is Present: [erved:] Ye Soil Texture (USDA Fill Sandy Loar	Soil Matrix: Colo Moist (Munsell)	Dep 78	If ye color 5 YR 5/8	20 erc es			Fill Material Depth Weeping from <u>% by Volume</u> Gravel Cobble Stone 20% 30%	Coarse Fragments % by Volume Soil Structure Gravel Cobbles & Stones 20% 30% 20% 30%
		3	Is Present: [soil Texture (USDA Fill Sandy Loar	Soil Matrix: Colo Moist (Munsell)	T Per 78	If ye Color 5 YR 5/8	20 erc s ii			Fill Material Depth Weeping from <u>% by Volume</u> Gravel Cobble Stone 20% 30%	Coarse Fragments % by Volume Gravel Soil Structure 20% 30% loose

0

Form
=
- Soil
Suitability
Assessment for
On-Site
Sewage Disposal
Page 2 of 5

O1
đ
¥
₹.
1
-
-
Ð
<
ω
-
(J)
1
00

Sep Observation Hole Number: 5/22 Hole Ind Use Vacant lot (e.g., woodland, agricultural field, v Description of Location; Description of Location; Sil Parent Material: Ice Contact Outw stances from: Open Water Property	Deep Observation Hole Number: 5/22-5 Ma Land Use Vacant lot (e.g., woodland, agricultural field, vacant lot, etc.) Date Description of Location;	Number: 5/22-5 Hole # May 13, 2022 A. agricultural field, vacant lot, etc.) Wooded A. agricultural field, vacant lot, etc.) Vegetation n: Vegetation n: Vegetation n: Vegetation Property Line TBD feet Property Line TBD feet Sent: Yes No	May 13, 2022 Date wooded wooded Vegetation h h Mor Land dy <u>N/A</u> feet ne <u>TBD</u> feet No If Yes: Disturbed So	May 13, 2022 10:20 Cld Date Wooded Time We wooded Vegetation Surface s h Vegetation Surface s h Moraine Surface s h Moraine Surface s h Moraine Surface s h Image Surface s Surface s h Vegetation Surface s h Vegetation Surface s h Moraine Surface s h Image Surface s Surface s No If Yes: If yes: Surface s Surface s If yes: Surface s Surface s Surface s Image Surface s Surface s Surface s Surface s Image Surface s <t< th=""><th>ar: <u>5/22-5</u> May 13, 2022 Time Cld Time Wooded Time Weible to Wei</th><th>Depth (in) Soil Horizon Soil '</th></t<>	ar: <u>5/22-5</u> May 13, 2022 Time Cld Time Wooded Time Weible to Wei	Depth (in) Soil Horizon Soil '
	# Ma # Dat acant lot, etc.) ash Body <u>N/A</u> fe	# May 13, 2022 # wooded acant lot, etc.) Vegetation ash Body <u>N/A</u> feet Line <u>TBD</u> feet Line <u>TBD</u> feet Disturbed	May 13, 2022 Date wooded ant lot, etc.) Vegetation h h h Mor Land dy <u>N/A</u> feet ne <u>TBD</u> feet No If Yes: Disturbed So	May 13, 2022 10:20 Cld Date Time Wea wooded Time wisble t wooded Vegetation Surface S h Vegetation Surface S h Moraine Surface S h Landform Landform dy N/A feet Drainage Way N/A ne TBD feet Drinking Water Well N/A No If Yes: Disturbed Soil Fill Material	May 13, 2022 10:20 Cld Date Time Wea wooded Time wisble t wooded Vegetation Surface S h Vegetation Surface S h Moraine Surface S h Landform Landform dy N/A feet Drainage Way N/A ne TBD feet Drinking Water Well N/A No If Yes: Disturbed Soil Fill Material	Soil Texture Soil Matrix: Color-
13, 2022 10:20 Cld Time visible t Vegetation Surface S Moraine Landform Drainage Way N/A Drinking Water Well	O T I V	O THE S	60's her Latitude Side slope Side slope feet feet feet MA MA Mathematical Long Sile	Latitude stones, boulders, etc pe (SU, SH, BS, FS, T Wetland Othe ictured Rock		Depth Standing Water in Hole oil istence oist) Other

0

Form 11 – Soil Suitability Assessment for On-Site Sewage Disposal • Page 2 of 5

t5form11 • rev. 3/15/18

	24-78	10-24	0-10	nebru (m)	Denth /in		5. Grou	4. Unsuit	3. Dista	2. Soil	De	I. Land		Deep	C. On	
	C1	Bw	A	-	Soil Horizon		ndwater Obs	able Materia	Distances from:	Soil Parent Material:	Description of Location:	Land Use (e.g., v	Vacant lot	Observatio	-Site Rev	The second secon
	Loamy Sand	Sandy Loam	Loam	(USDA	Soil Texture		Groundwater Observed: Yes	Ils Present:	Ope		ocation:	voodland, agricul	nt lot	Deep Observation Hole Number: 5/22-6	iew (minin	11-00
	5 YR 5/6	10 YR 6/6	10 YR 3/3	Moist (Munsell)			s 🛛 No	Property Line Unsuitable Materials Present: Yes No	Open Water Body	Ice Contact Outwash		(e.g., woodland, agricultural field, vacant lot, etc.)		ber: 5/22-6	On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)	I office the solution of the second
	54"			Depth				TBD feet If Yes: [N/A feet			t, etc.)	Date	May	oles req	19 70
	10 YR 5/8			Color	Redoximorphic Features		If yes:	et E	t			Vegetation	wooded	May 13, 2022	uired at eve	alliceae
	>20%			Percent	atures	Soil Log	N.	Soil	0	Moraine			Ime	10:55	ny propo	
				Gravel	Coarse % by		_ Depth We	Drinking Water Well	Drainage Way			J			sed prir	011-0
	30%			Cobbles & Stones	Coarse Fragments % by Volume		Depth Weeping from Pit	=1	NIA	Sid		Surface Stone	visible boulders	Cldy 60's	nary and r	ILE OEM
	loose			- Soll Structure				feet ☐ Weathered/Fractured Rock	Ŧ	Side slope Position on Landsca		s (e.g., cobbles	ders	s'C	eserve dis	age Dis
				(Moist)	Soil		Depth St		Wet	Side slope Position on Landscape (SU, SH, BS, FS, TS)		Surface Stones (e.g., cobbles, stones, boulders, etc.)	Latitude		oosal area)	posal
						ĉ	Depth Standing Water in Hole	Other Bedrock	Wetlands N/A	=S, TS)	1					
				Other	2		r in Hole	ck feet	A feet			Slope (%)	Longitude: 5			

0

Type III 24-hr Rainfall=1.29"

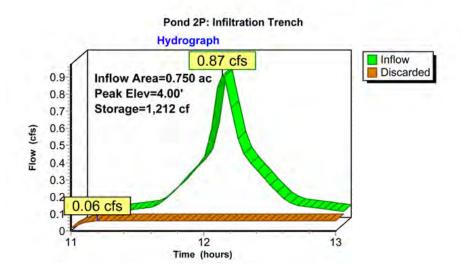
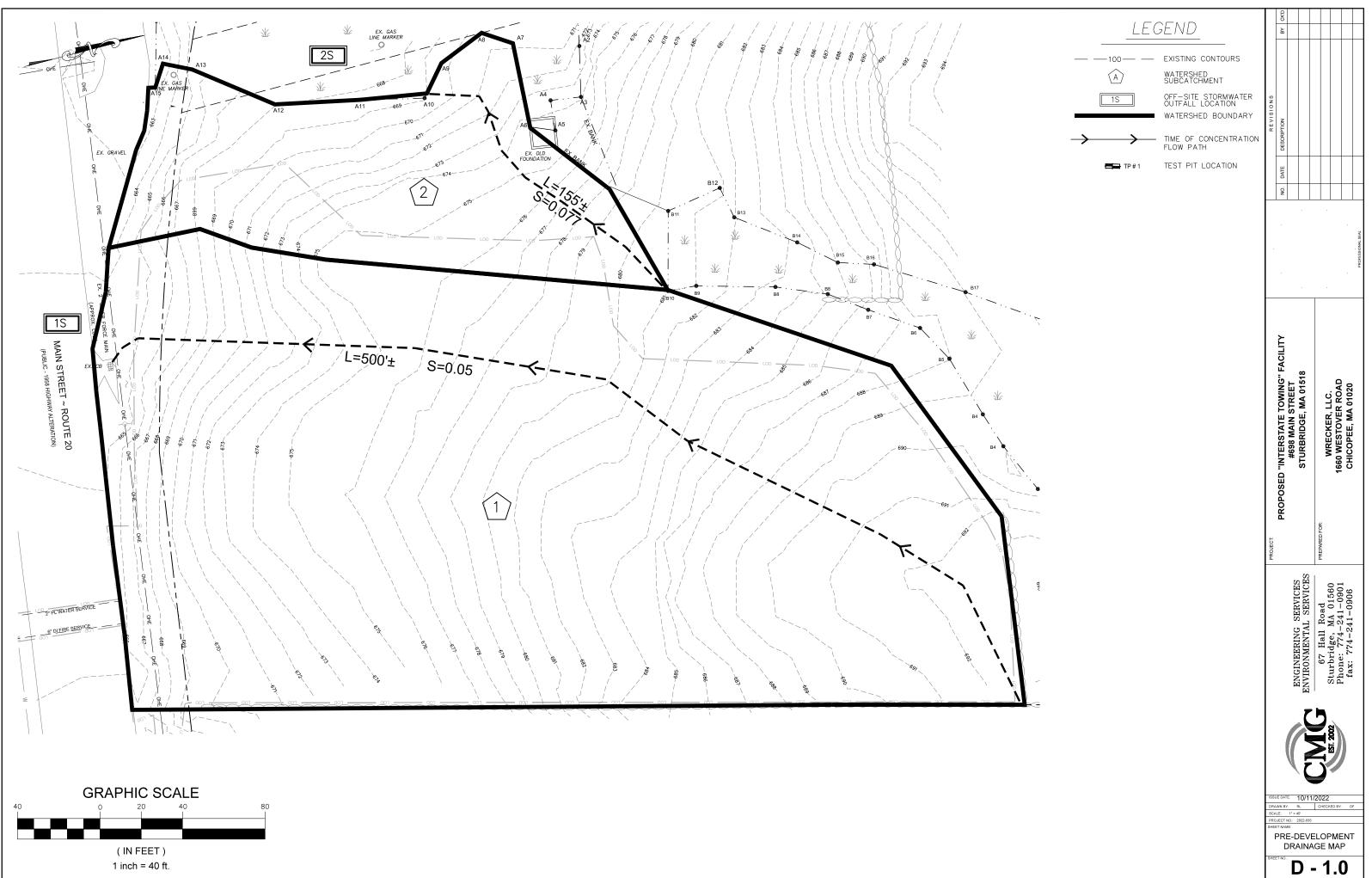
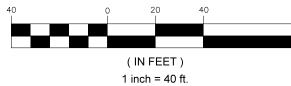
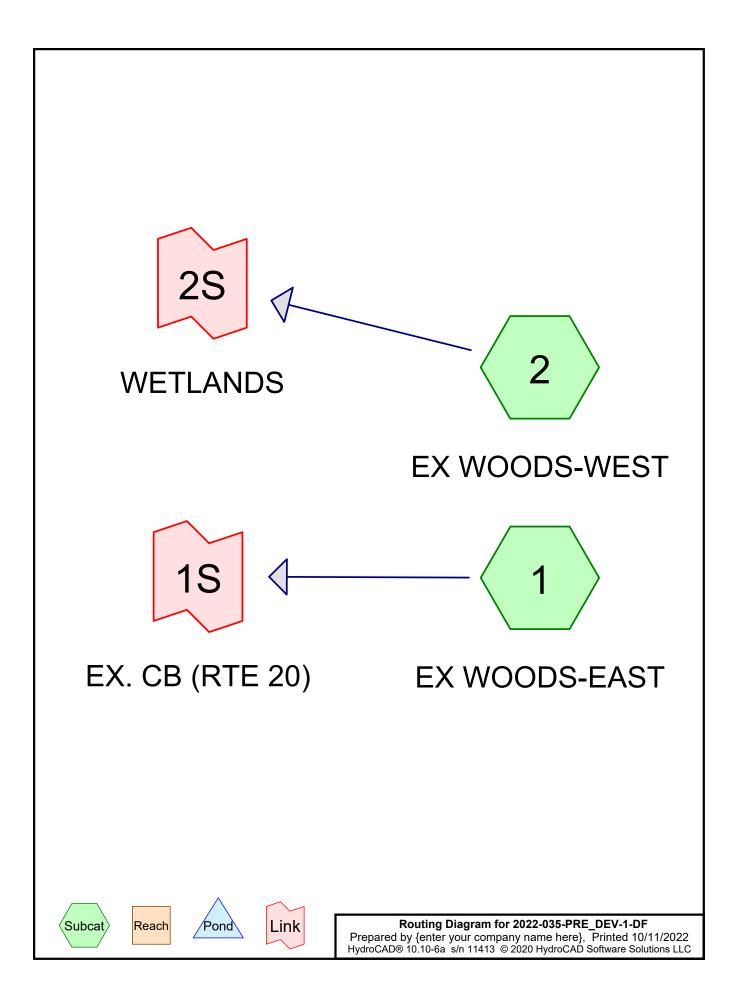


Table 2.3.3. 1982 Rawls Rates¹⁸

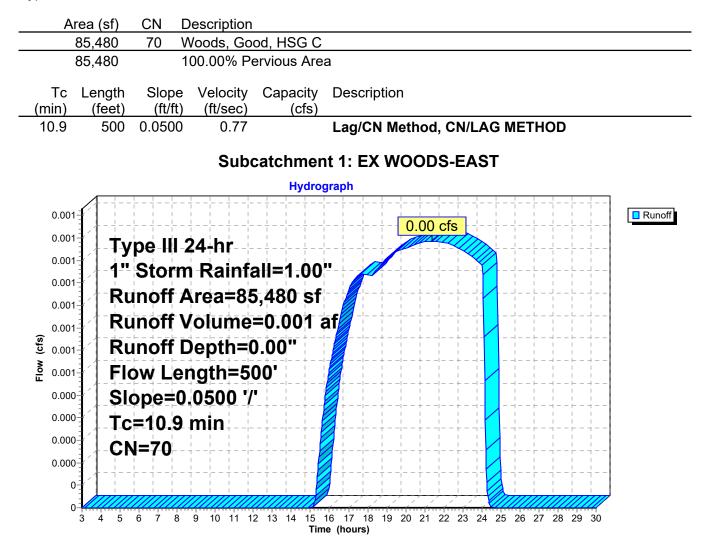

Texture Class	NRCS Hydrologic Soil Group	Infiltration Rate
	(HSG)	Inches/Hour
Sand	А	8.27
Loamy Sand	А	2.41
Sandy Loam	В	1.02
Loam	В	0.52
Silt Loam	С	0.27
Sandy Clay Loam	С	0.17
Clay Loam	D	0.09
Silty Clay Loam	D	0.06
Sandy Clay	D	0.05
Silty Clay	D	0.04
Clay	D	0.02


¹⁸ Rawls, Brakensiek and Saxton, 1982


Volume 3: Documenting Compliance with the Massachusetts Stormwater Management Standards

Appendix D

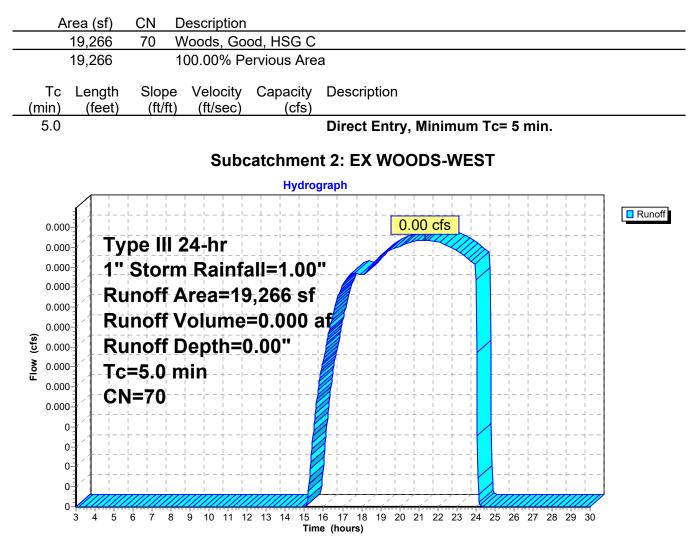
Pre-Development Drainage Calculations


2022-035-PRE_DEV-1-DF Prepared by {enter your company name HydroCAD® 10.10-6a s/n 11413 © 2020 Hydro	
Runoff by SCS TR	-30.00 hrs, dt=0.03 hrs, 901 points -20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment1: EX WOODS-EAST Flow Length=500'	Runoff Area=85,480 sf 0.00% Impervious Runoff Depth=0.00" Slope=0.0500 '/' Tc=10.9 min CN=70 Runoff=0.00 cfs 0.001 af
Subcatchment2: EX WOODS-WEST	Runoff Area=19,266 sf 0.00% Impervious Runoff Depth=0.00" Tc=5.0 min CN=70 Runoff=0.00 cfs 0.000 af
Link 1S: EX. CB (RTE 20)	Inflow=0.00 cfs 0.001 af Primary=0.00 cfs 0.001 af
Link 2S: WETLANDS	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 2.405 acRunoff Volume = 0.001 af
100.00% Pervious = 2.405 acAverage Runoff Depth = 0.00"
0.00% Impervious = 0.000 ac

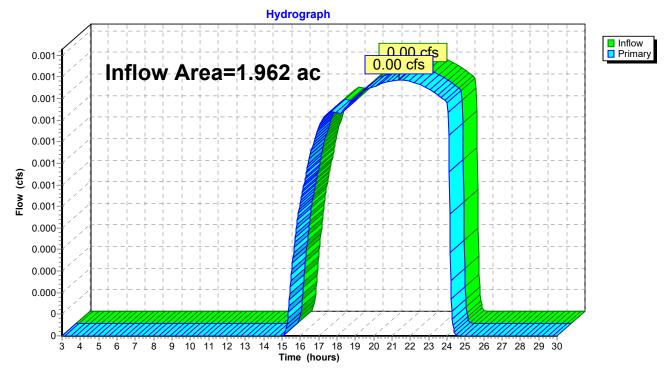
Summary for Subcatchment 1: EX WOODS-EAST

Runoff = 0.00 cfs @ 21.39 hrs, Volume= Routed to Link 1S : EX. CB (RTE 20) 0.001 af, Depth= 0.00"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Summary for Subcatchment 2: EX WOODS-WEST

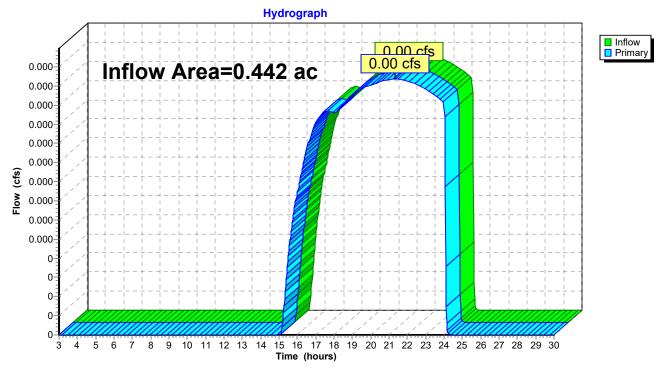
Runoff = 0.00 cfs @ 21.35 hrs, Volume= Routed to Link 2S : WETLANDS 0.000 af, Depth= 0.00"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Summary for Link 1S: EX. CB (RTE 20)

Inflow Area	a =	1.962 ac,	0.00% Impervious,	Inflow Depth = 0	.00" for 1" Storm event
Inflow	=	0.00 cfs @	21.39 hrs, Volume	= 0.001 af	F
Primary	=	0.00 cfs @	21.39 hrs, Volume	= 0.001 af	f, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs

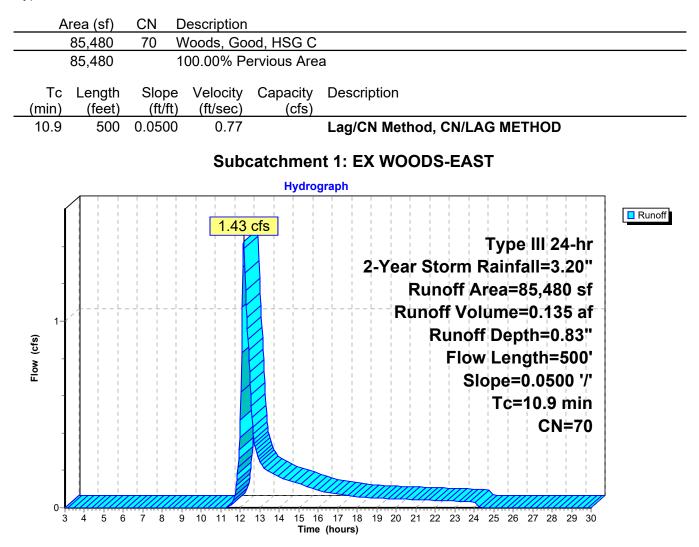


Link 1S: EX. CB (RTE 20)

Summary for Link 2S: WETLANDS

Inflow Area	a =	0.442 ac,	0.00% Impervious, I	Inflow Depth = 0.00	for 1" Storm event
Inflow	=	0.00 cfs @	21.35 hrs, Volume=	= 0.000 af	
Primary	=	0.00 cfs @	21.35 hrs, Volume=	= 0.000 af, A	tten= 0%, Lag= 0.0 min

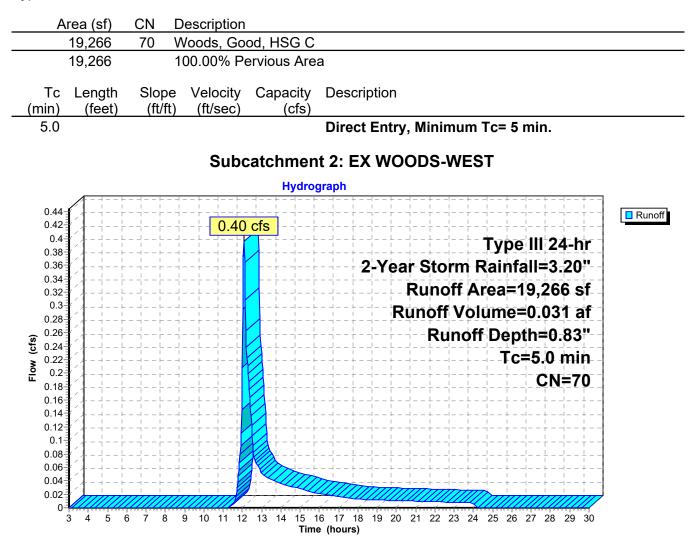
Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs


Link 2S: WETLANDS

2022-035-PRE_DEV-1-DF Prepared by {enter your company name he HydroCAD® 10.10-6a s/n 11413 © 2020 HydroC/	
Runoff by SCS TR-20).00 hrs, dt=0.03 hrs, 901 points) method, UH=SCS, Weighted-CN s method - Pond routing by Stor-Ind method
Subcatchment1: EX WOODS-EAST Flow Length=500' S	Runoff Area=85,480 sf 0.00% Impervious Runoff Depth=0.83" ope=0.0500 '/' Tc=10.9 min CN=70 Runoff=1.43 cfs 0.135 af
Subcatchment2: EX WOODS-WEST	Runoff Area=19,266 sf 0.00% Impervious Runoff Depth=0.83" Tc=5.0 min CN=70 Runoff=0.40 cfs 0.031 af
Link 1S: EX. CB (RTE 20)	Inflow=1.43 cfs 0.135 af Primary=1.43 cfs 0.135 af
Link 2S: WETLANDS	Inflow=0.40 cfs 0.031 af Primary=0.40 cfs 0.031 af
Total Runoff Area = 2.405 ac 10	Runoff Volume = 0.166 af Average Runoff Depth = 0.83" 0.00% Pervious = 2.405 ac 0.00% Impervious = 0.000 ac

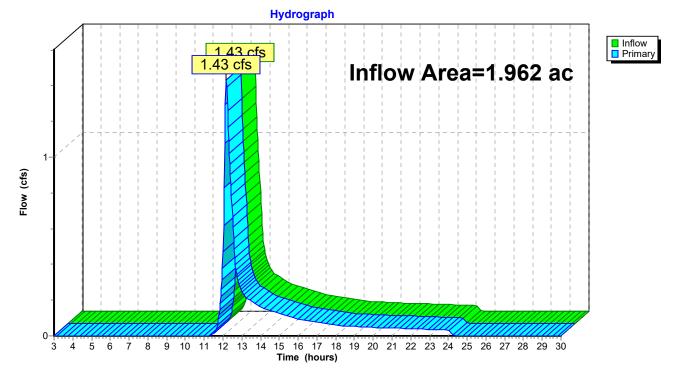
Summary for Subcatchment 1: EX WOODS-EAST

Runoff = 1.43 cfs @ 12.17 hrs, Volume= Routed to Link 1S : EX. CB (RTE 20) 0.135 af, Depth= 0.83"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

Summary for Subcatchment 2: EX WOODS-WEST

Runoff = 0.40 cfs @ 12.09 hrs, Volume= Routed to Link 2S : WETLANDS 0.031 af, Depth= 0.83"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

Summary for Link 1S: EX. CB (RTE 20)

Inflow Area =	1.962 ac,	0.00% Impervious, Inflov	v Depth = 0.83"	for 2-Year Storm event
Inflow =	1.43 cfs @	12.17 hrs, Volume=	0.135 af	
Primary =	1.43 cfs @	12.17 hrs, Volume=	0.135 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs

Link 1S: EX. CB (RTE 20)

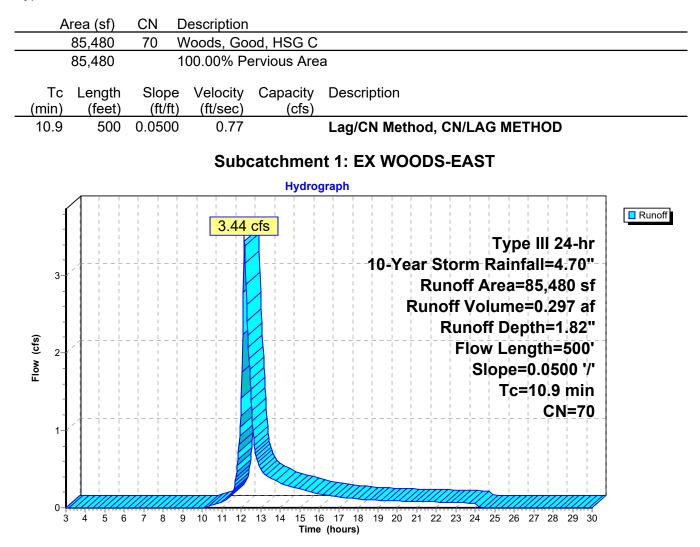
Summary for Link 2S: WETLANDS

Inflow Area	a =	0.442 ac,	0.00% Impervious, Inflow D	epth = 0.83"	for 2-Year Storm event
Inflow	=	0.40 cfs @	12.09 hrs, Volume=	0.031 af	
Primary	=	0.40 cfs @	12.09 hrs, Volume=	0.031 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs

Hydrograph Inflow Primary 0.40 cfs 0.40 cfs 0.44 0.42 Inflow Area=0.442 ac 0.4 0.38 0.36 0.34 0.32 0.3 0.28 0.26 0.26 0.24 0.22 0.22 0.2 0.2 0.18 0.16 0.14 0.12-0.1 0.08 0.06 0.04 0.02 0-15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 4 5 10 11 12 13 14 3 6 Ż 8 ģ

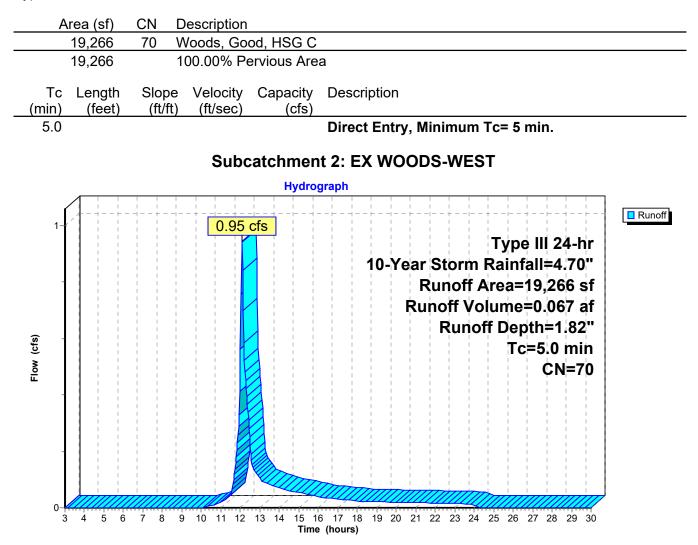
Link 2S: WETLANDS


2022-035-PRE_DEV-1-DF Prepared by {enter your company name here} <u>HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Softwa</u>	Type III 24-hr 10-Year Storm Rainfall=4.70" Printed 10/11/2022 are Solutions LLC Page 12
Time span=3.00-30.00 hrs, Runoff by SCS TR-20 method Reach routing by Stor-Ind+Trans method	d, UH=SCS, Weighted-CN
	Area=85,480 sf 0.00% Impervious Runoff Depth=1.82" 500 '/' Tc=10.9 min CN=70 Runoff=3.44 cfs 0.297 af
Subcatchment2: EX WOODS-WEST Runoff A	Area=19,266 sf 0.00% Impervious Runoff Depth=1.82" Tc=5.0 min CN=70 Runoff=0.95 cfs 0.067 af
Link 1S: EX. CB (RTE 20)	Inflow=3.44 cfs 0.297 af Primary=3.44 cfs 0.297 af
Link 2S: WETLANDS	Inflow=0.95 cfs 0.067 af Primary=0.95 cfs 0.067 af
Total Runoff Area = 2.405 ac Runoff 100.00% P	Volume = 0.364 af Average Runoff Depth = 1.82" ervious = 2.405 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment 1: EX WOODS-EAST

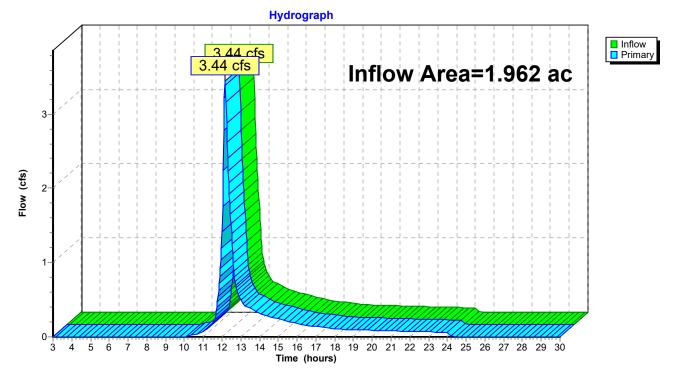
3.44 cfs @ 12.16 hrs, Volume= Runoff = Routed to Link 1S : EX. CB (RTE 20)

0.297 af, Depth= 1.82"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

Summary for Subcatchment 2: EX WOODS-WEST

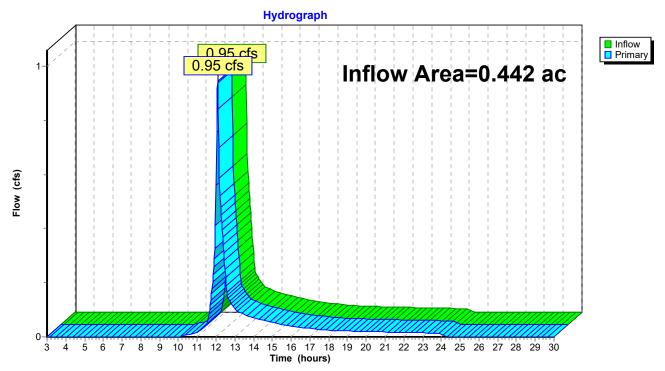
Runoff = 0.95 cfs @ 12.08 hrs, Volume= Routed to Link 2S : WETLANDS 0.067 af, Depth= 1.82"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

Summary for Link 1S: EX. CB (RTE 20)

Inflow Area	a =	1.962 ac,	0.00% Impervious, Inflow D	Depth = 1.82" for 10-Year Storm event
Inflow	=	3.44 cfs @	12.16 hrs, Volume=	0.297 af
Primary	=	3.44 cfs @	12.16 hrs, Volume=	0.297 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs

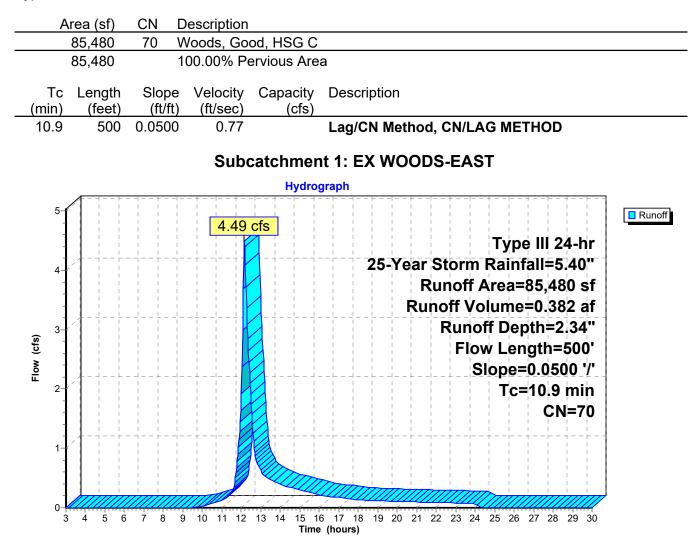


Link 1S: EX. CB (RTE 20)

Summary for Link 2S: WETLANDS

Inflow Area =	0.442 ac,	0.00% Impervious, Inflow D	Depth = 1.82" for 10-Year Storm event
Inflow =	0.95 cfs @	12.08 hrs, Volume=	0.067 af
Primary =	0.95 cfs @	12.08 hrs, Volume=	0.067 af, Atten= 0%, Lag= 0.0 min

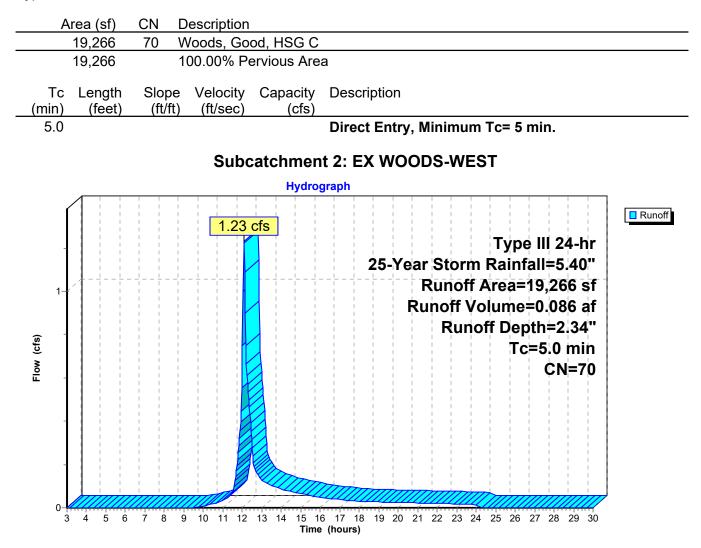
Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs


Link 2S: WETLANDS

2022-035-PRE_DEV-1-DF Prepared by {enter your company name here} <u>HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Softwar</u>	Type III 24-hr 25-Year Storm Rainfall=5.40" Printed 10/11/2022 re Solutions LLC Page 17
Time span=3.00-30.00 hrs, c Runoff by SCS TR-20 method, Reach routing by Stor-Ind+Trans method	UH=SCS, Weighted-CN
	ea=85,480 sf 0.00% Impervious Runoff Depth=2.34")0 '/' Tc=10.9 min CN=70 Runoff=4.49 cfs 0.382 af
Subcatchment2: EX WOODS-WEST Runoff Are	ea=19,266 sf 0.00% Impervious Runoff Depth=2.34" Tc=5.0 min CN=70 Runoff=1.23 cfs 0.086 af
Link 1S: EX. CB (RTE 20)	Inflow=4.49 cfs 0.382 af Primary=4.49 cfs 0.382 af
Link 2S: WETLANDS	Inflow=1.23 cfs 0.086 af Primary=1.23 cfs 0.086 af
Total Runoff Area = 2.405 ac Runoff \ 100.00% Pe	/olume = 0.468 af Average Runoff Depth = 2.34" rvious = 2.405 ac 0.00% Impervious = 0.000 ac

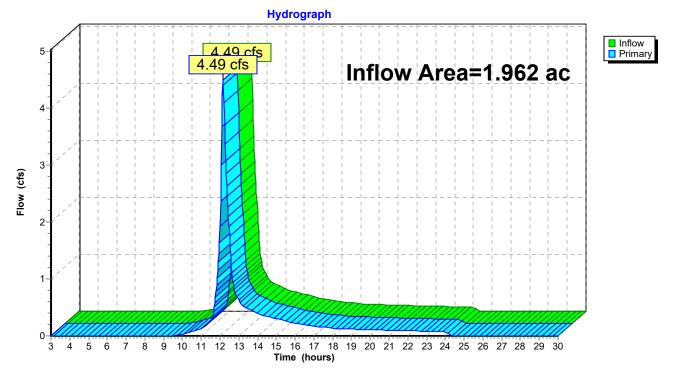
Summary for Subcatchment 1: EX WOODS-EAST

Runoff = 4.49 cfs @ 12.16 hrs, Volume= Routed to Link 1S : EX. CB (RTE 20) 0.382 af, Depth= 2.34"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Storm Rainfall=5.40"

Summary for Subcatchment 2: EX WOODS-WEST

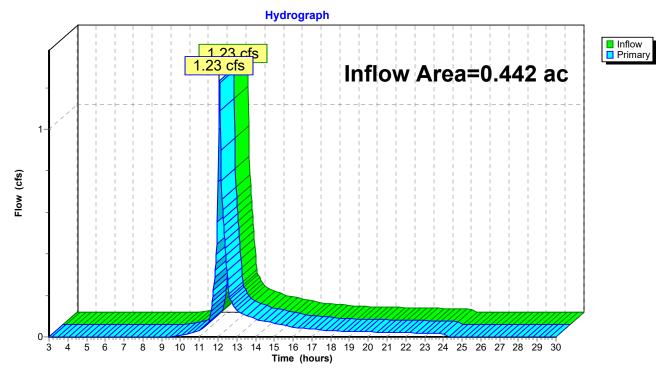
Runoff = 1.23 cfs @ 12.08 hrs, Volume= Routed to Link 2S : WETLANDS 0.086 af, Depth= 2.34"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Storm Rainfall=5.40"

Summary for Link 1S: EX. CB (RTE 20)

Inflow Area	a =	1.962 ac,	0.00% Impervious, Inflow D	epth = 2.34"	for 25-Year Storm event
Inflow	=	4.49 cfs @	12.16 hrs, Volume=	0.382 af	
Primary	=	4.49 cfs @	12.16 hrs, Volume=	0.382 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs

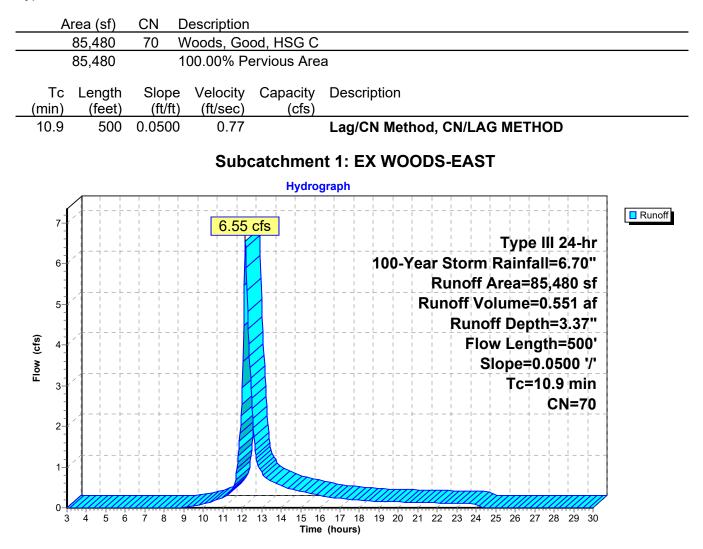


Link 1S: EX. CB (RTE 20)

Summary for Link 2S: WETLANDS

Inflow Area =	0.442 ac,	0.00% Impervious, Inflow D	epth = 2.34"	for 25-Year Storm event
Inflow =	1.23 cfs @	12.08 hrs, Volume=	0.086 af	
Primary =	1.23 cfs @	12.08 hrs, Volume=	0.086 af, Att	en= 0%, Lag= 0.0 min

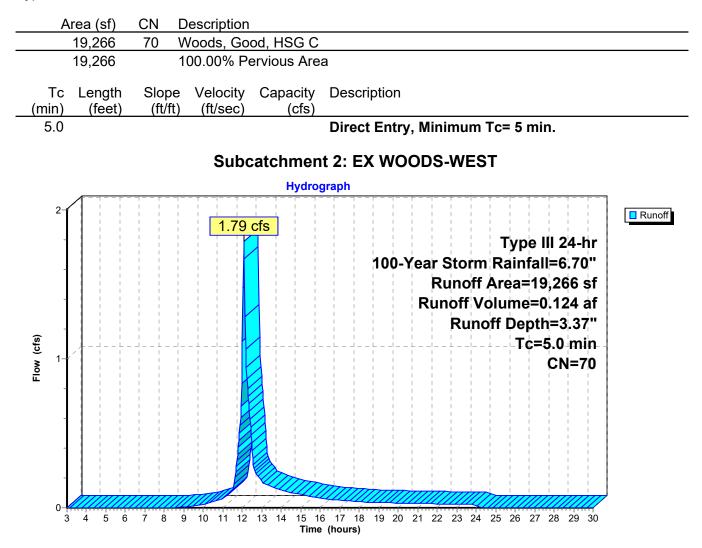
Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs


Link 2S: WETLANDS

2022-035-PRE_DEV-1-DF Prepared by {enter your company name he HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCA	
Runoff by SCS TR-20	00 hrs, dt=0.03 hrs, 901 points method, UH=SCS, Weighted-CN method - Pond routing by Stor-Ind method
Subcatchment1: EX WOODS-EAST Flow Length=500' S	Runoff Area=85,480 sf 0.00% Impervious Runoff Depth=3.37" pe=0.0500 '/' Tc=10.9 min CN=70 Runoff=6.55 cfs 0.551 af
Subcatchment2: EX WOODS-WEST	Runoff Area=19,266 sf 0.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=70 Runoff=1.79 cfs 0.124 af
Link 1S: EX. CB (RTE 20)	Inflow=6.55 cfs 0.551 af Primary=6.55 cfs 0.551 af
Link 2S: WETLANDS	Inflow=1.79 cfs 0.124 af Primary=1.79 cfs 0.124 af
Total Runoff Area = 2.405 ac 10	Runoff Volume = 0.675 af Average Runoff Depth = 3.37" 00% Pervious = 2.405 ac 0.00% Impervious = 0.000 ac

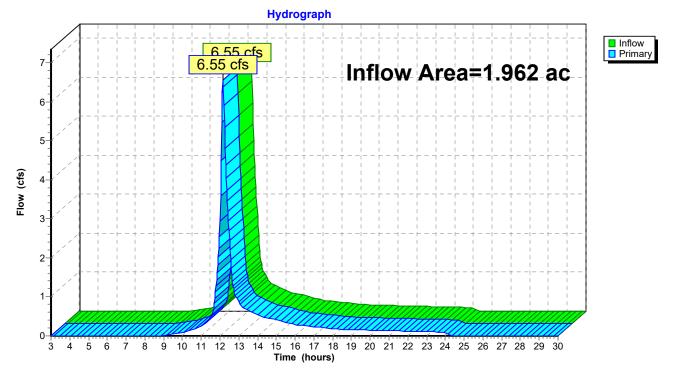
Summary for Subcatchment 1: EX WOODS-EAST

Runoff = 6.55 cfs @ 12.15 hrs, Volume= Routed to Link 1S : EX. CB (RTE 20) 0.551 af, Depth= 3.37"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 100-Year Storm Rainfall=6.70"

Summary for Subcatchment 2: EX WOODS-WEST

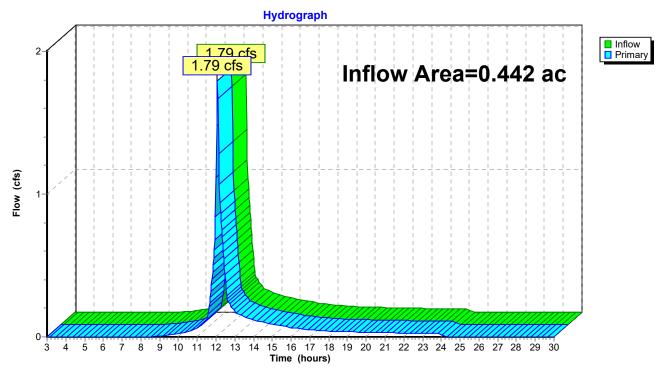
Runoff = 1.79 cfs @ 12.08 hrs, Volume= Routed to Link 2S : WETLANDS 0.124 af, Depth= 3.37"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs Type III 24-hr 100-Year Storm Rainfall=6.70"

Summary for Link 1S: EX. CB (RTE 20)

Inflow Area	a =	1.962 ac,	0.00% Impervious, Inflow D	epth = 3.37" for 100-Year Storm event
Inflow	=	6.55 cfs @	12.15 hrs, Volume=	0.551 af
Primary	=	6.55 cfs @	12.15 hrs, Volume=	0.551 af, Atten= 0%, Lag= 0.0 min

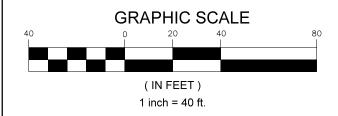
Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs

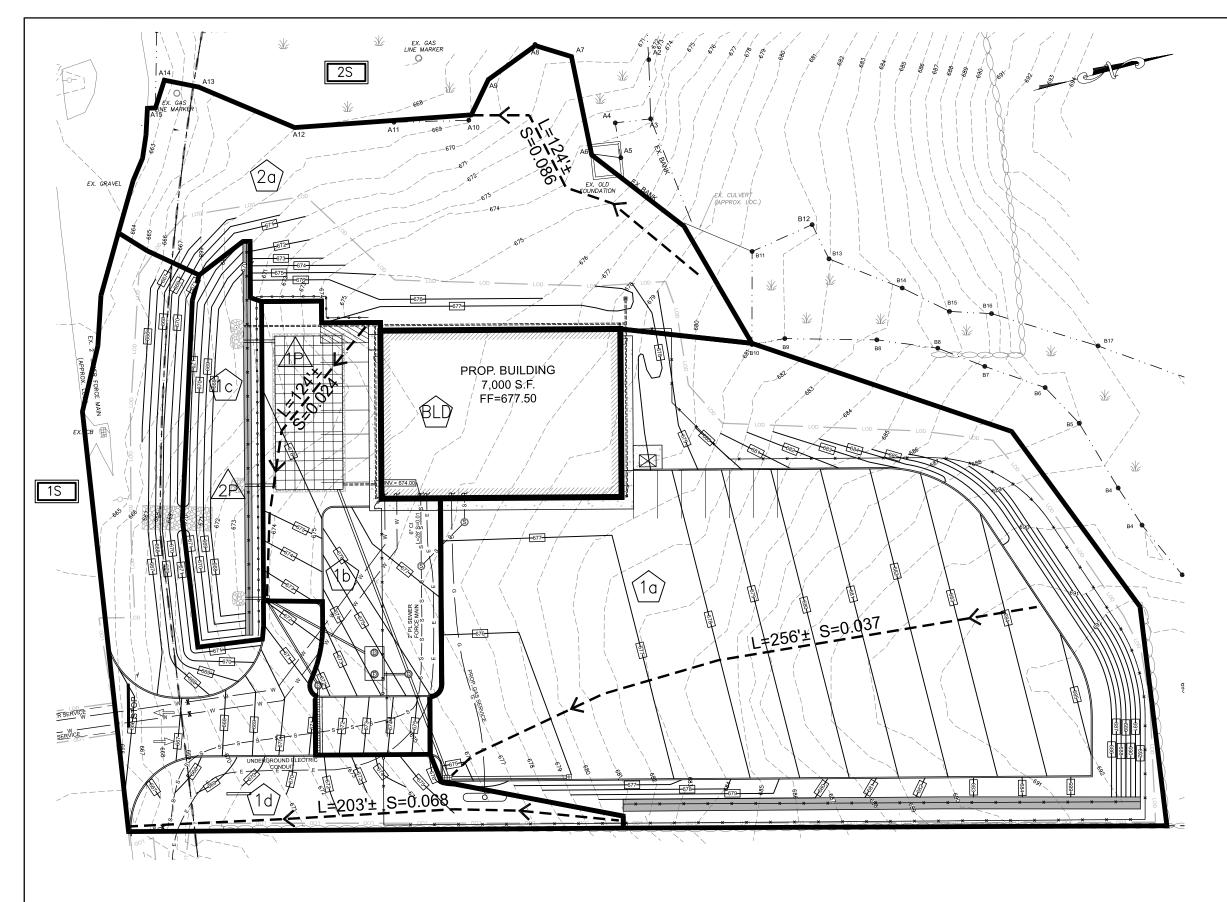


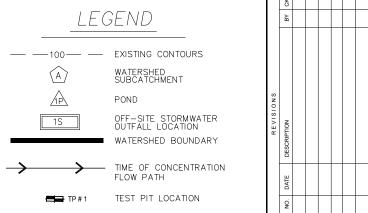
Link 1S: EX. CB (RTE 20)

Summary for Link 2S: WETLANDS

Inflow Area	a =	0.442 ac,	0.00% Impervious, Inflow D	epth = 3.37" for 100-Year Storm event
Inflow	=	1.79 cfs @	12.08 hrs, Volume=	0.124 af
Primary	=	1.79 cfs @	12.08 hrs, Volume=	0.124 af, Atten= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 3.00-30.00 hrs, dt= 0.03 hrs



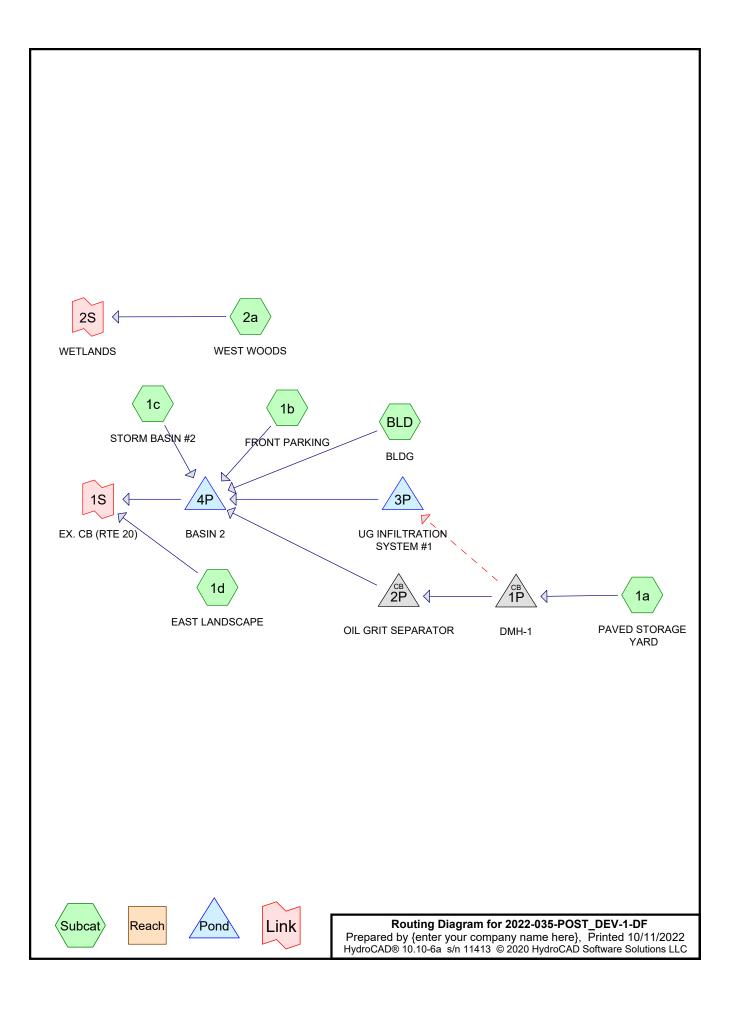

Link 2S: WETLANDS

Appendix E

Post-Development Drainage Calculations

PROPOSED "INTERSTATE TOWING" FACILITY #698 MAIN STREET STURBRIDGE, MA 01518

WRECKER, LLC. 1660 WESTOVER ROAD CHICOPEE, MA 01020


ENGINEERING SERVICES ENVIRONMENTAL SERVICES 67 Hall Road Sturbridge, MA 01560 Phone: 774-241-0901 fax: 774-241-0906

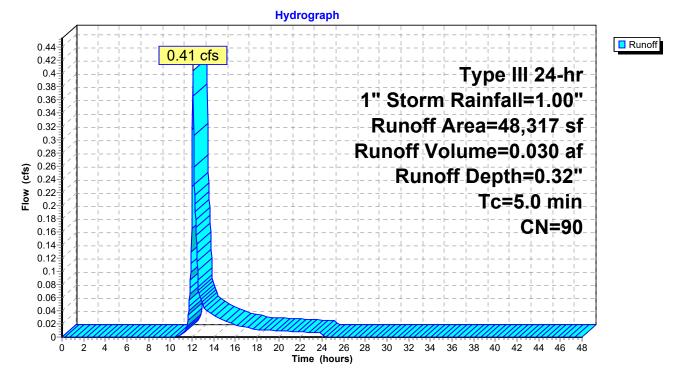
UE DATE: 10/11/2022

POST-DEVELOPMENT DRAINAGE MAP

D - 2.0

DRAWN BY: RL CHECK SCALE: 1* = 40' PROJECT NO.: 2022-035 SHEET NAME:

2022-035-POST_DEV-1-DF Prepared by {enter your company name I HydroCAD® 10.10-6a_s/n 11413_© 2020 Hydro	
Runoff by SCS TR-	48.00 hrs, dt=0.03 hrs, 1601 points 20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment1a: PAVED STORAGE YAR	DRunoff Area=48,317 sf 67.82% Impervious Runoff Depth=0.32" Tc=5.0 min CN=90 Runoff=0.41 cfs 0.030 af
Subcatchment1b: FRONT PARKING	Runoff Area=10,206 sf 61.55% Impervious Runoff Depth=0.28" Tc=5.0 min CN=89 Runoff=0.07 cfs 0.006 af
Subcatchment1c: STORM BASIN #2	Runoff Area=4,828 sf 0.00% Impervious Runoff Depth=0.02" Tc=5.0 min CN=74 Runoff=0.00 cfs 0.000 af
Subcatchment1d: EAST LANDSCAPE	Runoff Area=15,711 sf 22.57% Impervious Runoff Depth=0.04" Tc=5.0 min CN=76 Runoff=0.00 cfs 0.001 af
Subcatchment2a: WEST WOODS Flow Length=320'	Runoff Area=18,684 sf 0.00% Impervious Runoff Depth=0.00" Slope=0.0340 '/' Tc=9.2 min CN=70 Runoff=0.00 cfs 0.000 af
Subcatchment BLD: BLDG	Runoff Area=7,000 sf 100.00% Impervious Runoff Depth=0.79" Tc=5.0 min CN=98 Runoff=0.15 cfs 0.011 af
Pond 1P: DMH-1 Primary=0.41 cfs(Peak Elev=672.38' Inflow=0.41 cfs 0.030 af 0.030 af Secondary=0.00 cfs 0.000 af Outflow=0.41 cfs 0.030 af
Pond 2P: OIL GRIT SEPARATOR 8.0" Round	Peak Elev=672.12' Inflow=0.41 cfs 0.030 af Culvert n=0.013 L=30.0' S=0.0100 '/' Outflow=0.41 cfs 0.030 af
Pond 3P: UG INFILTRATION SYSTEM #1 Discarded=0.00 cf	Peak Elev=670.50' Storage=0 cf Inflow=0.00 cfs 0.000 af s 0.000 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond 4P: BASIN 2 Discarded=0.06 cf	Peak Elev=668.43' Storage=778 cf Inflow=0.62 cfs 0.046 af s 0.046 af Primary=0.00 cfs 0.000 af Outflow=0.06 cfs 0.046 af
Link 1S: EX. CB (RTE 20)	Inflow=0.00 cfs 0.001 af Primary=0.00 cfs 0.001 af
Link 2S: WETLANDS	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
	c Runoff Volume = 0.047 af Average Runoff Depth = 0.24" 52.65% Pervious = 1.266 ac 47.35% Impervious = 1.139 ac

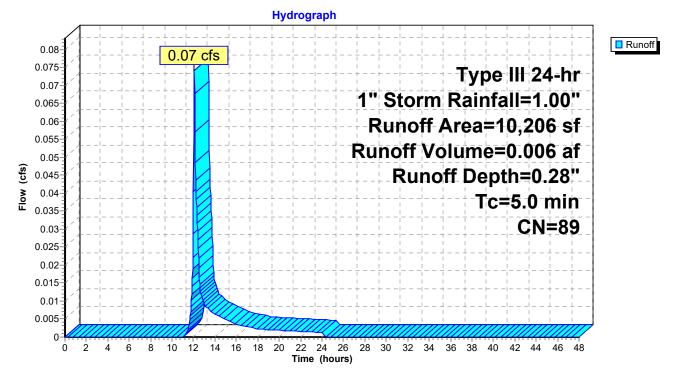

Summary for Subcatchment 1a: PAVED STORAGE YARD

Runoff = 0.41 cfs @ 12.08 hrs, Volume= Routed to Pond 1P : DMH-1 0.030 af, Depth= 0.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Ar	ea (sf)	CN I	Description		
3	32,770	98	Paved park	ing, HSG C)
1	15,547	74 :	>75% Gras	s cover, Go	bod, HSG C
2	18,317	90	Neighted A	verage	
1	15,547	4	32.18% Per	vious Area	
3	32,770	(67.82% Imp	pervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, TCmin=5 Minutes

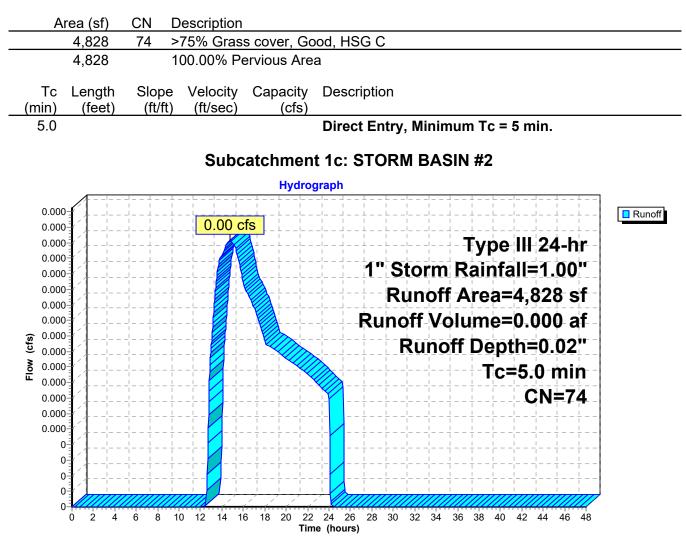
Subcatchment 1a: PAVED STORAGE YARD


Summary for Subcatchment 1b: FRONT PARKING

Runoff = 0.07 cfs @ 12.09 hrs, Volume= Routed to Pond 4P : BASIN 2 0.006 af, Depth= 0.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 1" Storm Rainfall=1.00"

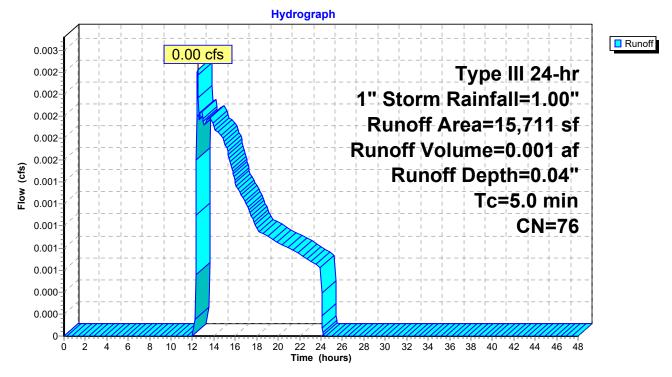
A	rea (sf)	CN	Description		
	6,282	98	Paved park	ing, HSG C)
	3,924	74 :	>75% Gras	s cover, Go	bod, HSG C
	10,206	89	Weighted A	verage	
	3,924		38.45% Per	vious Area	
	6,282	(61.55% Imp	pervious Are	ea
_				•	— • • •
Тс	Length	Slope	,	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry, TCmin=5 Minutes


Subcatchment 1b: FRONT PARKING

Summary for Subcatchment 1c: STORM BASIN #2

Runoff = 0.00 cfs @ 14.76 hrs, Volume= Routed to Pond 4P : BASIN 2 0.000 af, Depth= 0.02"

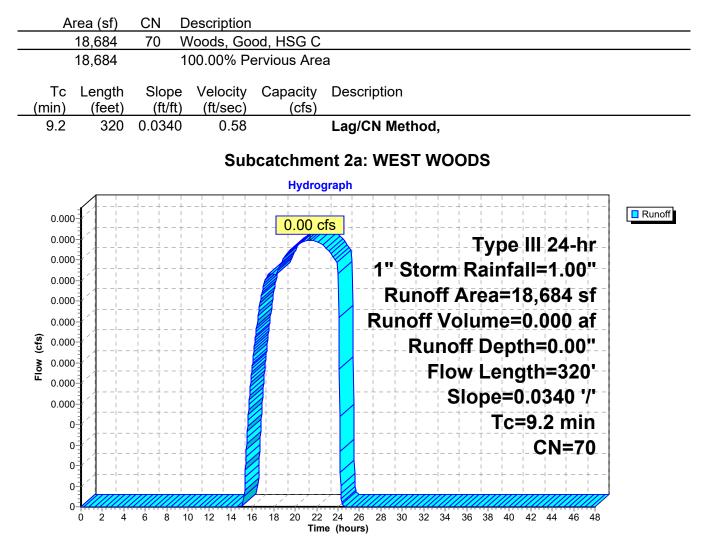
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 1" Storm Rainfall=1.00"


Summary for Subcatchment 1d: EAST LANDSCAPE

Runoff = 0.00 cfs @ 12.47 hrs, Volume= Routed to Link 1S : EX. CB (RTE 20) 0.001 af, Depth= 0.04"

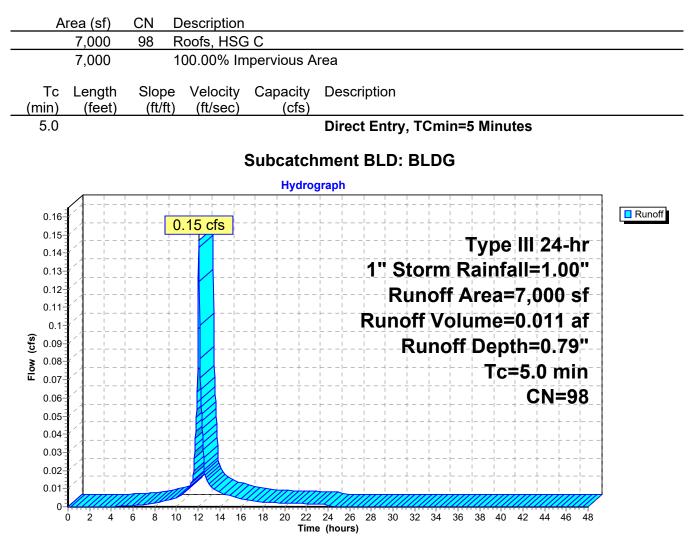
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Ar	ea (sf)	CN I	Description				
	12,165	70	Noods, Go	od, HSG C			
	3,546	98	Paved park	ing, HSG C	· · · · · · · · · · · · · · · · · · ·		
-	15,711	76	Neighted A	verage			
-	12,165	-	77.43% Pervious Area				
	3,546	:	22.57% Imp	pervious Are	ea		
-				0			
	Length	Slope		Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry, TCmin=5 Minutes		


Subcatchment 1d: EAST LANDSCAPE

Summary for Subcatchment 2a: WEST WOODS

Runoff = 0.00 cfs @ 21.37 hrs, Volume= Routed to Link 2S : WETLANDS 0.000 af, Depth= 0.00"

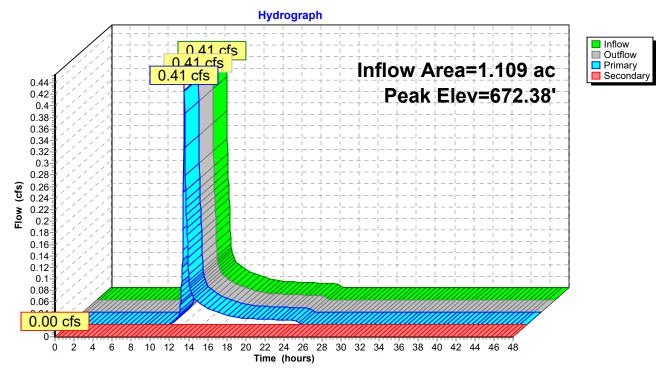

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Summary for Subcatchment BLD: BLDG

Runoff = 0.15 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : BASIN 2 0.011 af, Depth= 0.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Summary for Pond 1P: DMH-1


Inflow Area = 1.109 ac, 67.82% Impervious, Inflow Depth = 0.32" for 1" Storm event Inflow = 0.41 cfs @ 12.08 hrs, Volume= 0.030 af 0.41 cfs @ 12.08 hrs, Volume= Outflow = 0.030 af, Atten= 0%, Lag= 0.0 min 0.41 cfs @ 12.08 hrs, Volume= 0.030 af Primary = Routed to Pond 2P : OIL GRIT SEPARATOR 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Secondary = Routed to Pond 3P : UG INFILTRATION SYSTEM #1

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 672.38' @ 12.08 hrs Flood Elev= 675.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	671.95'	8.0" Round Culvert
	-		L= 6.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 671.95' / 671.85' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
#2	Secondary	672.45'	12.0" Round Culvert
			L= 40.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 672.45' / 672.00' S= 0.0113 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.40 cfs @ 12.08 hrs HW=672.37' (Free Discharge) -1=Culvert (Barrel Controls 0.40 cfs @ 2.44 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=671.95' (Free Discharge) 2=Culvert (Controls 0.00 cfs) Pond 1P: DMH-1

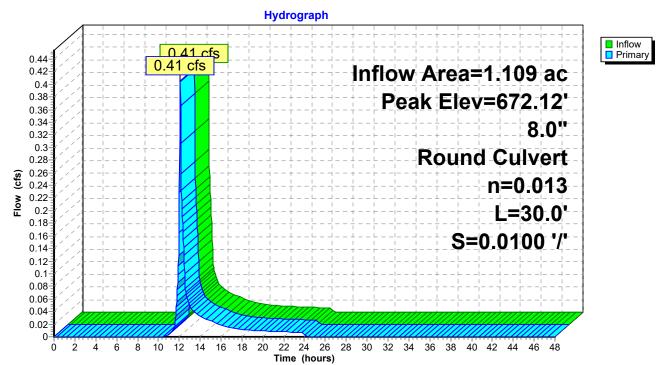
Summary for Pond 2P: OIL GRIT SEPARATOR

[79] Warning: Submerged Pond 1P Primary device # 1 INLET by 0.17'

 Inflow Area =
 1.109 ac, 67.82% Impervious, Inflow Depth =
 0.32" for 1" Storm event

 Inflow =
 0.41 cfs @
 12.08 hrs, Volume=
 0.030 af

 Outflow =
 0.41 cfs @
 12.08 hrs, Volume=
 0.030 af, Atten= 0%, Lag= 0.0 min

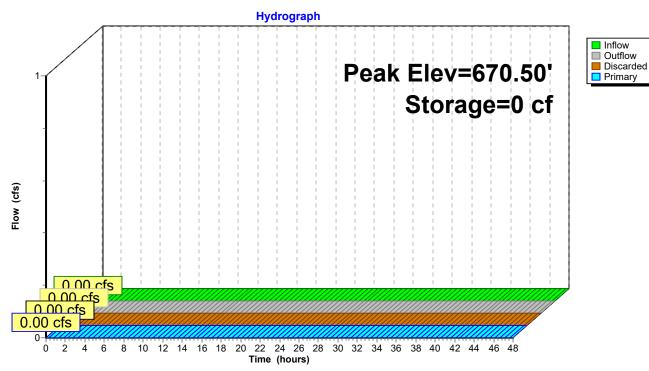

 Primary =
 0.41 cfs @
 12.08 hrs, Volume=
 0.030 af

 Routed to Pond 4P : BASIN 2
 0.030 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 672.12' @ 12.08 hrs Flood Elev= 675.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	671.70'	8.0" Round Culvert
			L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 671.70' / 671.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.40 cfs @ 12.08 hrs HW=672.12' (Free Discharge) —1=Culvert (Inlet Controls 0.40 cfs @ 1.74 fps)


Pond 2P: OIL GRIT SEPARATOR

Summary for Pond 3P: UG INFILTRATION SYSTEM #1

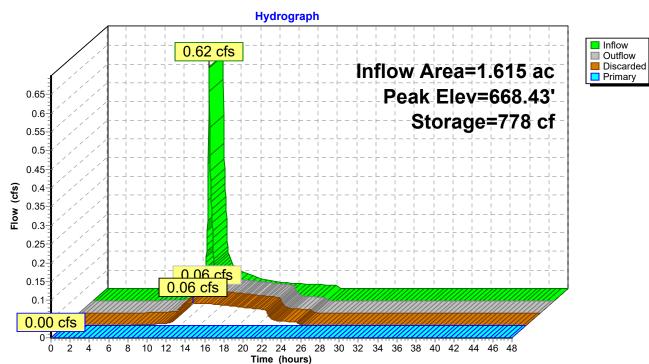
Inflow Outflow Discarde Primary Route	ed = =	0.00 cfs @ 0.00 cfs @	0.00 h 0.00 h	rs, Volume= rs, Volume=	0.000 af 0.000 af, Atten= 0%, Lag= 0.0 min 0.000 af 0.000 af				
	Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 670.50' @ 0.00 hrs Surf.Area= 1,980 sf Storage= 0 cf								
	Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)								
Volume	Inve	rt Avail.Sto	rage	Storage Description					
#1	670.5	0' 1,2	65 cf	30.00'W x 66.00'L x	4.00'H Prismatoid				
					757 cf Embedded = 3,163 cf x 40.0% Voids				
#2	671.0	0' 3,4	16 cf		amber 4x4x3 x 112 Inside #1				
					.0"H => 8.72 sf x 3.50'L = 30.5 cf				
				112 Chambers in 7 F	36.0"H => 10.62 sf x 4.00'L = 42.5 cf				
		1.6	91 of	-					
		4,0		Total Available Stora	age				
Device	Routing	Invert	Outl	et Devices					
#1	Discarde	d 670.50'	1.02	0 in/hr Exfiltration o	ver Wetted area				
			Con	ductivity to Groundwa	ter Elevation = 666.00'				
#2	Primary	672.50'		Round Culvert X 2.					
					, no headwall, Ke= 0.900				
					60'/671.00' S= 0.0750 '/' Cc= 0.900				
			n= 0	Corrugated PE,	smooth interior, Flow Area= 0.35 sf				
Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=670.50' (Free Discharge)									

1=Exfiltration (Passes 0.00 cfs of 0.05 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=670.50' (Free Discharge) ←2=Culvert (Controls 0.00 cfs) Pond 3P: UG INFILTRATION SYSTEM #1

Summary for Pond 4P: BASIN 2

Inflow Area = 1.615 ac, 65.46% Impervious, Inflow Depth = 0.34" for 1" Storm event Inflow = 0.62 cfs @ 12.08 hrs, Volume= 0.046 af 0.06 cfs @ 13.33 hrs, Volume= Outflow = 0.046 af, Atten= 90%, Lag= 75.2 min 0.06 cfs @ 13.33 hrs, Volume= Discarded = 0.046 af 0.00 cfs @ 0.00 hrs, Volume= Primary = 0.000 af Routed to Link 1S : EX. CB (RTE 20)


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 668.43' @ 13.33 hrs Surf.Area= 1,914 sf Storage= 778 cf Flood Elev= 671.00' Surf.Area= 3,280 sf Storage= 7,102 cf

Plug-Flow detention time= 136.4 min calculated for 0.046 af (100% of inflow) Center-of-Mass det. time= 136.3 min (982.7 - 846.4)

Volume	Invert	Avail	.Storage	Storage Descriptior	ı				
#1	668.00'		7,102 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)			
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
668.0	00	1,711	299.2	0	0	1,711			
669.0	00	2,200	318.0	1,950	1,950	2,685			
670.0	00	2,423	337.0	2,311	4,261	3,728			
671.0	00	3,280	356.0	2,841	7,102	4,831			
Device	Routing	Inv	vert Outle	et Devices					
#1	Discarded	668.	00' 1.02	1.020 in/hr Exfiltration - Sandy Loam over Wetted area					
			Cond	Conductivity to Groundwater Elevation = 666.00'					
#2	Primary	670.50'		10.0' long x 5.0' breadth Broad-Crested Rectangular Weir					
						20 1.40 1.60 1.80 2.00			
				3.00 3.50 4.00 4.					
						2.66 2.65 2.65 2.65			
			2.65	2.67 2.66 2.68 2.	70 2.74 2.79 2.88	3			

Discarded OutFlow Max=0.06 cfs @ 13.33 hrs HW=668.43' (Free Discharge) **1=Exfiltration - Sandy Loam** (Controls 0.06 cfs)

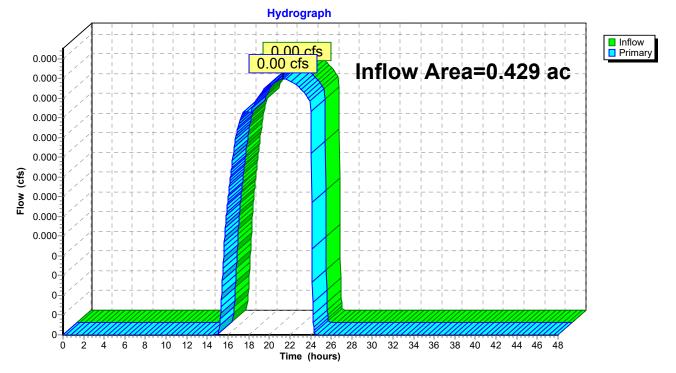
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=668.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 4P: BASIN 2

Summary for Link 1S: EX. CB (RTE 20)

Inflow Area =	=	1.976 ac, 5	7.63% Imp	ervious,	Inflow De	pth =	0.01"	for 1"	Storm event
Inflow =	:	0.00 cfs @	12.47 hrs,	Volume	=	0.001 a	af		
Primary =		0.00 cfs @	12.47 hrs,	Volume	=	0.001 a	af, Atte	en= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs



Link 1S: EX. CB (RTE 20)

Summary for Link 2S: WETLANDS

Inflow Area	a =	0.429 ac,	0.00% Impervious,	Inflow Depth = 0.00'	for 1" Storm event
Inflow	=	0.00 cfs @	21.37 hrs, Volume=	= 0.000 af	
Primary	=	0.00 cfs @	21.37 hrs, Volume=	= 0.000 af, A	tten= 0%, Lag= 0.0 min

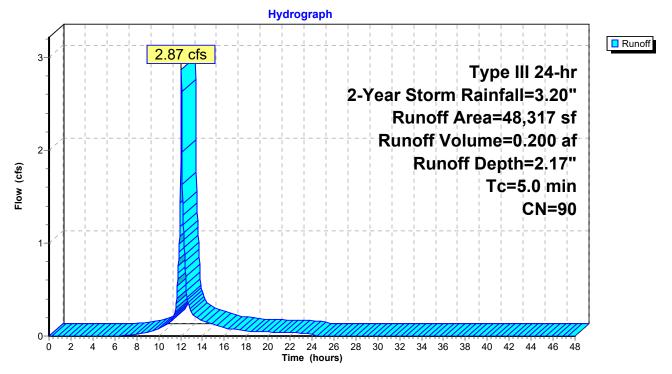
Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs

Link 2S: WETLANDS

2022-035-POST_DEV-1-DF Prepared by {enter your company name her HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCA	
Runoff by SCS TR-20	00 hrs, dt=0.03 hrs, 1601 points) method, UH=SCS, Weighted-CN s method - Pond routing by Stor-Ind method
Subcatchment1a: PAVED STORAGE YARDR	Runoff Area=48,317 sf 67.82% Impervious Runoff Depth=2.17" Tc=5.0 min CN=90 Runoff=2.87 cfs 0.200 af
Subcatchment1b: FRONT PARKING	Runoff Area=10,206 sf 61.55% Impervious Runoff Depth=2.08" Tc=5.0 min CN=89 Runoff=0.58 cfs 0.041 af
Subcatchment1c: STORM BASIN #2	Runoff Area=4,828 sf 0.00% Impervious Runoff Depth=1.04" Tc=5.0 min CN=74 Runoff=0.13 cfs 0.010 af
Subcatchment1d: EAST LANDSCAPE	Runoff Area=15,711 sf 22.57% Impervious Runoff Depth=1.15" Tc=5.0 min CN=76 Runoff=0.48 cfs 0.035 af
	Runoff Area=18,684 sf 0.00% Impervious Runoff Depth=0.83" Slope=0.0340 '/' Tc=9.2 min CN=70 Runoff=0.33 cfs 0.030 af
Subcatchment BLD: BLDG	Runoff Area=7,000 sf 100.00% Impervious Runoff Depth=2.97" Tc=5.0 min CN=98 Runoff=0.51 cfs 0.040 af
Pond 1P: DMH-1 Primary=1.30 cfs 0.1	Peak Elev=673.24' Inflow=2.87 cfs 0.200 af 73 af Secondary=1.58 cfs 0.027 af Outflow=2.87 cfs 0.200 af
Pond 2P: OIL GRIT SEPARATOR 8.0" Round Cu	Peak Elev=672.99' Inflow=1.30 cfs 0.173 af ulvert n=0.013 L=30.0' S=0.0100 '/' Outflow=1.30 cfs 0.173 af
Pond 3P: UG INFILTRATION SYSTEM #1 Discarded=0.06 cfs (Peak Elev=671.43' Storage=1,067 cf Inflow=1.58 cfs 0.027 af 0.027 af Primary=0.00 cfs 0.000 af Outflow=0.06 cfs 0.027 af
Pond 4P: BASIN 2 Discarded=0.18 cfs (Peak Elev=670.53' Storage=5,671 cf Inflow=2.52 cfs 0.263 af 0.249 af Primary=0.16 cfs 0.014 af Outflow=0.34 cfs 0.263 af
Link 1S: EX. CB (RTE 20)	Inflow=0.48 cfs 0.049 af Primary=0.48 cfs 0.049 af
Link 2S: WETLANDS	Inflow=0.33 cfs 0.030 af Primary=0.33 cfs 0.030 af
Total Runoff Area = 2.405 ac	Runoff Volume = 0.355 af Average Runoff Depth = 1.77"

52.65% Pervious = 1.266 ac 47.35% Impervious = 1.139 ac

Summary for Subcatchment 1a: PAVED STORAGE YARD

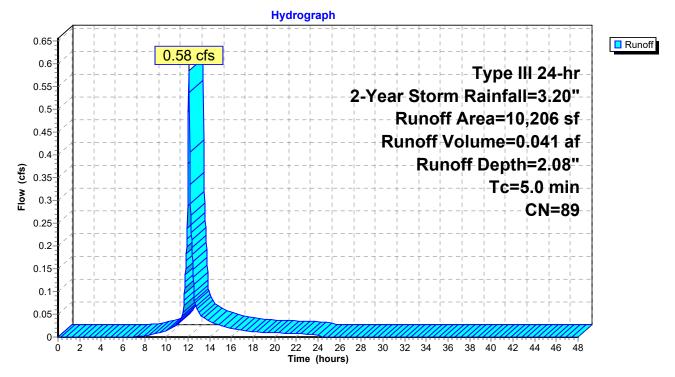

Runoff	=	2.87 cfs @	12.07 hrs,	Volume=
Routed	to Po	ond 1P : DMH-1		

0.200 af, Depth= 2.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

A	rea (sf)	CN	Description		
	32,770	98	Paved park	ing, HSG C	;
	15,547	74 :	>75% Gras	s cover, Go	ood, HSG C
	48,317		Neighted A		
	15,547		32.18% Per	vious Area	
	32,770	(67.82% Imp	pervious Are	ea
_				•	–
Tc	Length	Slope	,	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry, TCmin=5 Minutes
					•

Subcatchment 1a: PAVED STORAGE YARD

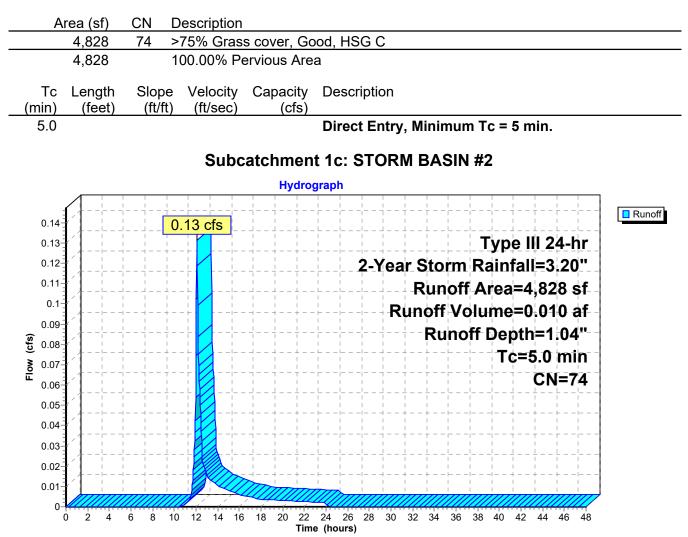

Summary for Subcatchment 1b: FRONT PARKING

Runoff = 0.58 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : BASIN 2 0.041 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

A	rea (sf)	CN	Description					
	6,282	98	Paved park	ing, HSG C)			
	3,924	74 :	>75% Gras	s cover, Go	bod, HSG C			
	10,206	89	Weighted Average					
	3,924		38.45% Pervious Area					
	6,282	(61.55% Impervious Area					
_				•	— • • •			
Тс	Length	Slope	,	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.0					Direct Entry, TCmin=5 Minutes			

Subcatchment 1b: FRONT PARKING

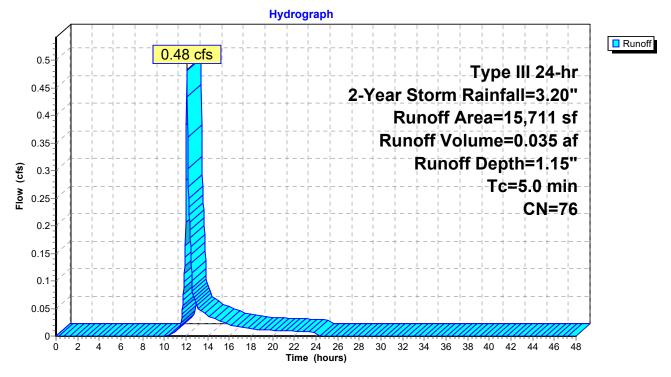


Summary for Subcatchment 1c: STORM BASIN #2

0.13 cfs @ 12.08 hrs, Volume= Runoff Routed to Pond 4P : BASIN 2

0.010 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"


Summary for Subcatchment 1d: EAST LANDSCAPE

Runoff = 0.48 cfs @ 12.08 hrs, Volume= Routed to Link 1S : EX. CB (RTE 20) 0.035 af, Depth= 1.15"

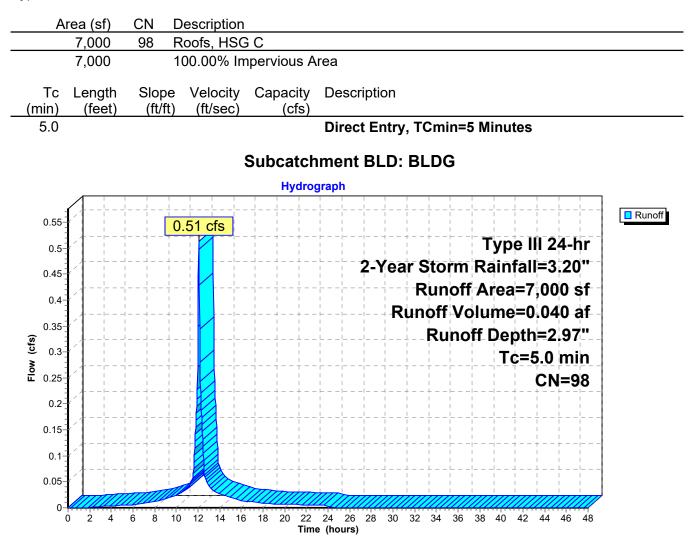
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

A	rea (sf)	CN	Description					
	12,165	70	Woods, Go	od, HSG C				
	3,546	98	Paved park	ing, HSG C	;			
	15,711	76	Weighted Average					
	12,165		77.43% Pervious Area					
	3,546		22.57% Imp	ervious Are	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)		(cfs)				
5.0					Direct Entry, TCmin=5 Minutes			

Subcatchment 1d: EAST LANDSCAPE

Summary for Subcatchment 2a: WEST WOODS

Runoff = 0.33 cfs @ 12.15 hrs, Volume= Routed to Link 2S : WETLANDS 0.030 af, Depth= 0.83"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

A	<u>rea (sf)</u> 18,684		<u>)escription</u> Voods, Go			
	18,684		00.00% P		а	
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
9.2	320	0.0340	0.58		Lag/CN Method	d,
			Sub	ocatchm	nt 2a: WEST W	WOODS
				Hydro	graph	
0.36 0.34 0.32 0.28 0.26 0.24 0.22 0.22 0.22 0.22 0.22 0.22 0.22					Ru Rune	Type III 24-hr Storm Rainfall=3.20" unoff Area=18,684 sf off Volume=0.030 af Runoff Depth=0.83" Flow Length=320' Slope=0.0340 '/' Tc=9.2 min
0.12- 0.1-	【, / ⊢ - ·	+-		+ + -		
0.08-	Į_/ ⊢					· · · · · · - · · · · ·
0.06-						
0.04-						
0.02						
0-	0 2 4	6 8 10) 12 14 16		24 26 28 30 32 e (hours)	34 36 38 40 42 44 46 48

Summary for Subcatchment BLD: BLDG

Runoff = 0.51 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : BASIN 2 0.040 af, Depth= 2.97"

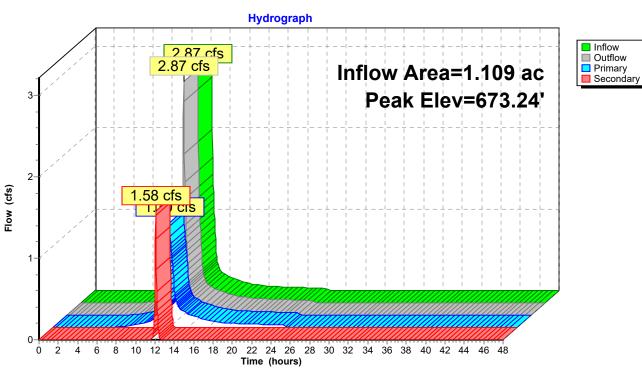
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

2022-035-POST_DEV-1-DF Type III 24-Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 1P: DMH-1

Inflow Area = 1.109 ac, 67.82% Impervious, Inflow Depth = 2.17" for 2-Year Storm event Inflow = 2.87 cfs @ 12.07 hrs, Volume= 0.200 af 2.87 cfs @ 12.07 hrs, Volume= Outflow = 0.200 af, Atten= 0%, Lag= 0.0 min 1.30 cfs @ 12.07 hrs, Volume= Primary = 0.173 af Routed to Pond 2P : OIL GRIT SEPARATOR 1.58 cfs @ 12.07 hrs, Volume= 0.027 af Secondary = Routed to Pond 3P : UG INFILTRATION SYSTEM #1

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 673.24' @ 12.07 hrs Flood Elev= 675.50'


Device	Routing	Invert	Outlet Devices
#1	Primary	671.95'	8.0" Round Culvert
			L= 6.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 671.95' / 671.85' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
#2	Secondary	672.45'	12.0" Round Culvert
			L= 40.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 672.45' / 672.00' S= 0.0113 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.29 cfs @ 12.07 hrs HW=673.22' (Free Discharge) -1=Culvert (Inlet Controls 1.29 cfs @ 3.68 fps)

Secondary OutFlow Max=1.53 cfs @ 12.07 hrs HW=673.22' (Free Discharge) 2=Culvert (Inlet Controls 1.53 cfs @ 2.36 fps)

2022-035-POST_DEV-1-DF

Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC

Pond 1P: DMH-1

Summary for Pond 2P: OIL GRIT SEPARATOR

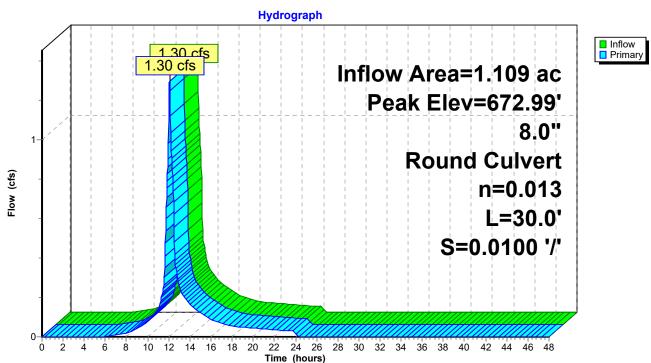
[79] Warning: Submerged Pond 1P Primary device # 1 INLET by 1.02'

 Inflow Area =
 1.109 ac, 67.82% Impervious, Inflow Depth =
 1.87" for 2-Year Storm event

 Inflow =
 1.30 cfs @
 12.07 hrs, Volume=
 0.173 af

 Outflow =
 1.30 cfs @
 12.07 hrs, Volume=
 0.173 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.30 cfs @
 12.07 hrs, Volume=
 0.173 af, Atten= 0%, Lag= 0.0 min

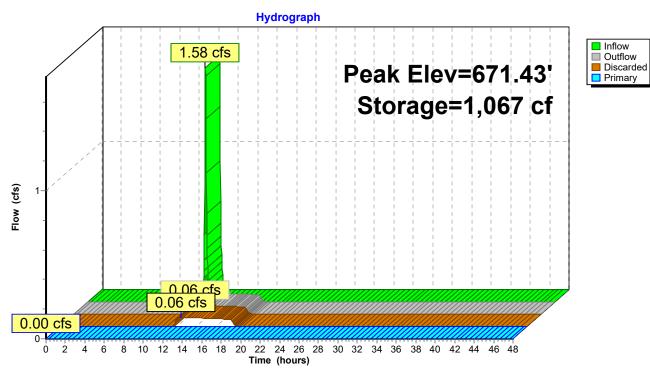

 Primary =
 1.30 cfs @
 12.07 hrs, Volume=
 0.173 af

 Routed to Pond 4P : BASIN 2
 12.07 hrs, Volume=
 0.173 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 672.99' @ 12.07 hrs Flood Elev= 675.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	671.70'	8.0" Round Culvert
			L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 671.70' / 671.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=1.29 cfs @ 12.07 hrs HW=672.97' (Free Discharge) —1=Culvert (Inlet Controls 1.29 cfs @ 3.68 fps)


Pond 2P: OIL GRIT SEPARATOR

Summary for Pond 3P: UG INFILTRATION SYSTEM #1

Inflow Outflow Discarde Primary Route	= (ed = (1.58 cfs @ 12.07 0.06 cfs @ 12.42 0.06 cfs @ 12.42 0.00 cfs @ 0.00 1P : BASIN 2	hrs, Volume= 0.027 af, Atten= 96%, Lag= 21.1 min hrs, Volume= 0.027 af			
			n= 0.00-48.00 hrs, dt= 0.03 hrs Area= 1,980 sf Storage= 1,067 cf			
Plug-Flow detention time= 159.1 min calculated for 0.027 af (100% of inflow) Center-of-Mass det. time= 159.1 min(884.9 - 725.8)						
Volume	Invert	Avail.Storage	Storage Description			
#1	670.50					
			7,920 cf Overall - 4,757 cf Embedded = 3,163 cf x 40.0% Voids			
#2	671.00	3,416 cf				
			Inside= 41.0"W x 30.0"H => 8.72 sf x 3.50'L = 30.5 cf			
			Outside= 47.0"W x 36.0"H => 10.62 sf x 4.00'L = 42.5 cf 112 Chambers in 7 Rows			
		1 691 of				
		4,001 0	Total Available Storage			
Device	Routing	Invert Ou	tlet Devices			
#1	Discarded	670.50' 1.0	20 in/hr Exfiltration over Wetted area			
		Co	nductivity to Groundwater Elevation = 666.00'			
#2	Primary	672.50' 8.0	" Round Culvert X 2.00			
			20.0' CPP, projecting, no headwall, Ke= 0.900			
			et / Outlet Invert= 672.50' / 671.00' S= 0.0750 '/' Cc= 0.900			
		n=	0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf			
Discarded OutFlow Max=0.06 cfs @ 12.42 hrs HW=671.43' (Free Discharge)						

1=Exfiltration (Controls 0.06 cfs)

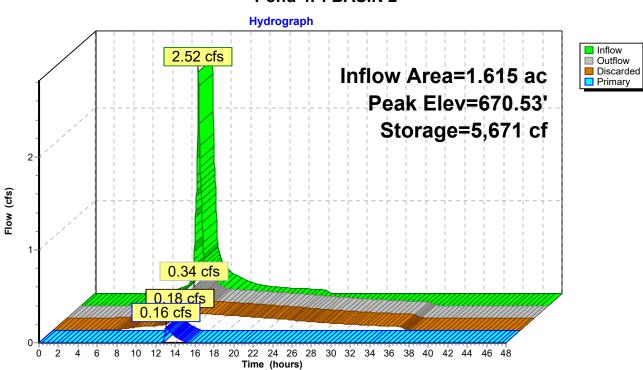
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=670.50' (Free Discharge) ←2=Culvert (Controls 0.00 cfs) Pond 3P: UG INFILTRATION SYSTEM #1

Summary for Pond 4P: BASIN 2

Inflow Area = 1.615 ac, 65.46% Impervious, Inflow Depth = 1.95" for 2-Year Storm event Inflow = 2.52 cfs @ 12.07 hrs, Volume= 0.263 af 0.34 cfs @ 13.07 hrs, Volume= Outflow = 0.263 af, Atten= 87%, Lag= 59.8 min 0.18 cfs @ 13.07 hrs, Volume= Discarded = 0.249 af 0.16 cfs @ 13.07 hrs, Volume= Primary = 0.014 af Routed to Link 1S : EX. CB (RTE 20)

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 670.53' @ 13.07 hrs Surf.Area= 2,865 sf Storage= 5,671 cf Flood Elev= 671.00' Surf.Area= 3,280 sf Storage= 7,102 cf

Plug-Flow detention time= 389.0 min calculated for 0.263 af (100% of inflow) Center-of-Mass det. time= 389.2 min (1,198.6 - 809.3)

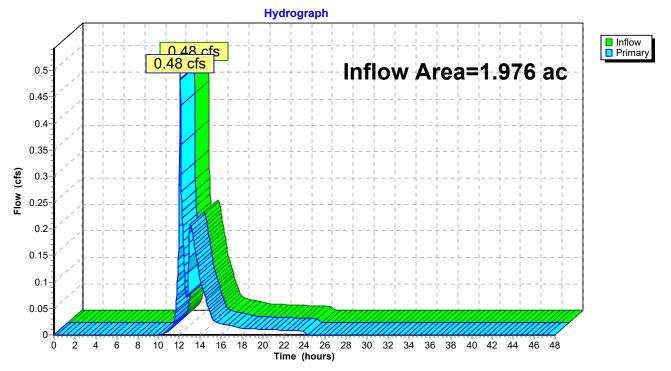

Volume	Invert	Avail	.Storage	e Storage Description				
#1	668.00'		7,102 cf	cf Custom Stage Data (Irregular)Listed below (Recalc)				
Elevatio (feet		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
668.0	0	1,711	299.2	0	0	1,711		
669.0	0	2,200	318.0	1,950	1,950	2,685		
670.0	0	2,423	337.0	2,311	4,261	3,728		
671.0	0	3,280	356.0	2,841	7,102	4,831		
Device #1 #2	Routing Discarded Primary	Inv 668. 670.	.00' 1.02 Cond .50' 10.0 Head 2.50 Coel	Outlet Devices 1.020 in/hr Exfiltration - Sandy Loam over Wetted area Conductivity to Groundwater Elevation = 666.00' 10.0' long x 5.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.34 2.50 2.70 2.68 2.66 2.65 2.65				
#2	Primary	670.	50' 10.0 Head 2.50 Coef	'long x 5.0' breadth d (feet) 0.20 0.40 0 3.00 3.50 4.00 4.5	n Broad-Crested F .60 0.80 1.00 1.2 50 5.00 5.50 0 2.70 2.68 2.68	Rectangular Weir 20 1.40 1.60 1.80 2.66 2.65 2.65	0 2.	

Discarded OutFlow Max=0.18 cfs @ 13.07 hrs HW=670.53' (Free Discharge) **1=Exfiltration - Sandy Loam** (Controls 0.18 cfs)

Primary OutFlow Max=0.15 cfs @ 13.07 hrs HW=670.53' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.15 cfs @ 0.43 fps)

2022-035-POST_DEV-1-DF

Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC


Pond 4P: BASIN 2

Summary for Link 1S: EX. CB (RTE 20)

Page 32

Inflow Area	=	1.976 ac, 57.63% Impervious, Inflow Depth = 0.30" for 2-Year Storm event
Inflow	=	0.48 cfs @ 12.08 hrs, Volume= 0.049 af
Primary	=	0.48 cfs $\hat{@}$ 12.08 hrs, Volume= 0.049 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs

Link 1S: EX. CB (RTE 20)

Inflow Area =	0.429 ac,	0.00% Impervious, Inflow D	epth = 0.83"	for 2-Year Storm event
Inflow =	0.33 cfs @	12.15 hrs, Volume=	0.030 af	
Primary =	0.33 cfs @	12.15 hrs, Volume=	0.030 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs

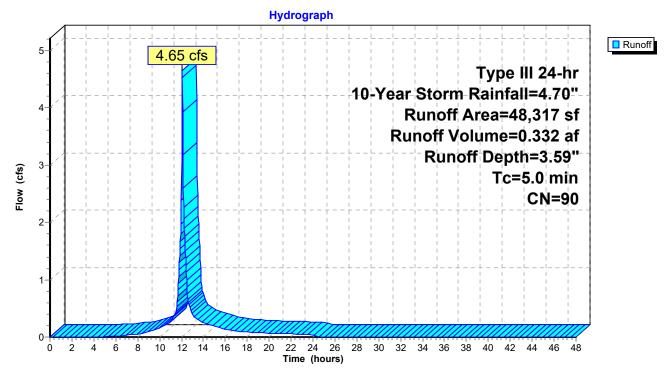
Hydrograph Inflow Primary 0.33 cfs 0.33 cfs 0.36 Inflow Area=0.429 ac 0.34 0.32 0.3 0.28 0.26 0.24 0.22 Flow (cfs) 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 22 24 26 28 30 32 34 36 38 40 42 44 46 48 2 8 10 12 14 16 18 20 Ó 4 6 Time (hours)

Link 2S: WETLANDS

2022-035-POST_DEV-1-DF Prepared by {enter your company name HydroCAD® 10.10-6a_s/n 11413_© 2020 Hydro	
Runoff by SCS TR	48.00 hrs, dt=0.03 hrs, 1601 points -20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment1a: PAVED STORAGE YAR	DRunoff Area=48,317 sf 67.82% Impervious Runoff Depth=3.59" Tc=5.0 min CN=90 Runoff=4.65 cfs 0.332 af
Subcatchment1b: FRONT PARKING	Runoff Area=10,206 sf 61.55% Impervious Runoff Depth=3.49" Tc=5.0 min CN=89 Runoff=0.96 cfs 0.068 af
Subcatchment1c: STORM BASIN #2	Runoff Area=4,828 sf 0.00% Impervious Runoff Depth=2.13" Tc=5.0 min CN=74 Runoff=0.28 cfs 0.020 af
Subcatchment1d: EAST LANDSCAPE	Runoff Area=15,711 sf 22.57% Impervious Runoff Depth=2.29" Tc=5.0 min CN=76 Runoff=0.99 cfs 0.069 af
Subcatchment2a: WEST WOODS Flow Length=320	Runoff Area=18,684 sf 0.00% Impervious Runoff Depth=1.82" Slope=0.0340 '/' Tc=9.2 min CN=70 Runoff=0.79 cfs 0.065 af
Subcatchment BLD: BLDG	Runoff Area=7,000 sf 100.00% Impervious Runoff Depth=4.46" Tc=5.0 min CN=98 Runoff=0.76 cfs 0.060 af
Pond 1P: DMH-1 Primary=1.70 cfs	Peak Elev=673.92' Inflow=4.65 cfs 0.332 af 0.265 af Secondary=2.95 cfs 0.067 af Outflow=4.65 cfs 0.332 af
Pond 2P: OIL GRIT SEPARATOR 8.0" Round	Peak Elev=673.67' Inflow=1.70 cfs 0.265 af Culvert n=0.013 L=30.0' S=0.0100 '/' Outflow=1.70 cfs 0.265 af
Pond 3P: UG INFILTRATION SYSTEM #1 Discarded=0.08 ct	Peak Elev=672.51' Storage=2,705 cf Inflow=2.95 cfs 0.067 af fs 0.067 af Primary=0.00 cfs 0.000 af Outflow=0.08 cfs 0.067 af
Pond 4P: BASIN 2 Discarded=0.19 ct	Peak Elev=670.69' Storage=6,141 cf Inflow=3.70 cfs 0.412 af is 0.288 af Primary=2.00 cfs 0.124 af Outflow=2.19 cfs 0.412 af
Link 1S: EX. CB (RTE 20)	Inflow=2.56 cfs 0.193 af Primary=2.56 cfs 0.193 af
Link 2S: WETLANDS	Inflow=0.79 cfs 0.065 af Primary=0.79 cfs 0.065 af
	c Runoff Volume = 0.613 af Average Runoff Depth = 3.06" 52.65% Pervious = 1.266 ac 47.35% Impervious = 1.139 ac

Summary for Subcatchment 1a: PAVED STORAGE YARD

4.65 cfs @ 12.07 hrs, Volume= Runoff = Routed to Pond 1P : DMH-1

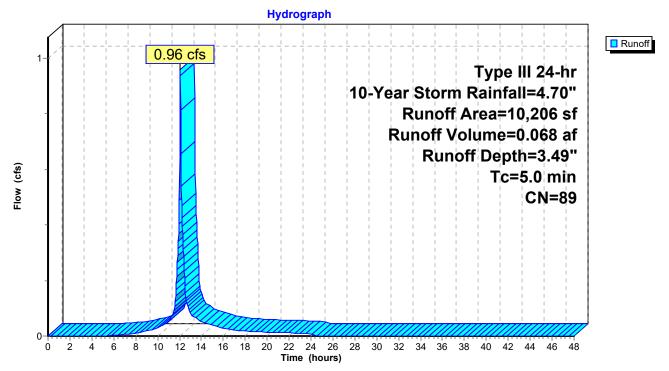

0.332 af, Depth= 3.59"

Page 35

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

A	rea (sf)	CN [Description					
	32,770	98 F	Paved park	ing, HSG C	;			
	15,547	74 >	75% Gras	s cover, Go	ood, HSG C			
	48,317	90 V	Weighted Average					
	15,547	3	32.18% Pervious Area					
	32,770	6	7.82% Imp	ervious Ar	ea			
-		01		• •				
Tc	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.0					Direct Entry, TCmin=5 Minutes			

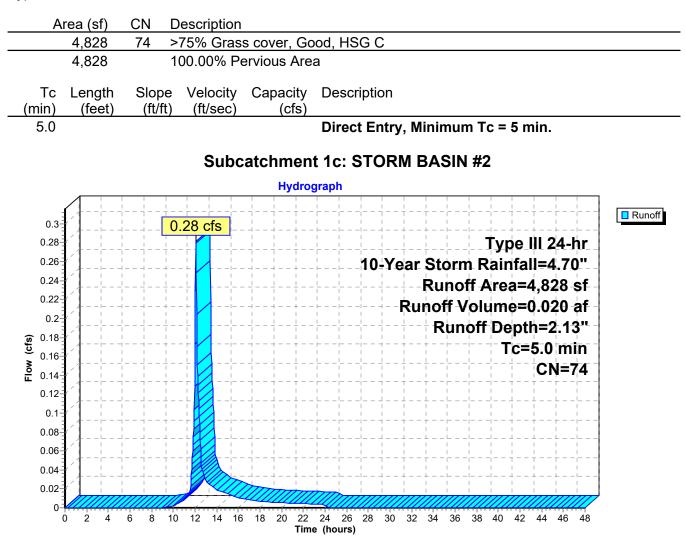
Subcatchment 1a: PAVED STORAGE YARD


Summary for Subcatchment 1b: FRONT PARKING

Runoff = 0.96 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : BASIN 2 0.068 af, Depth= 3.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

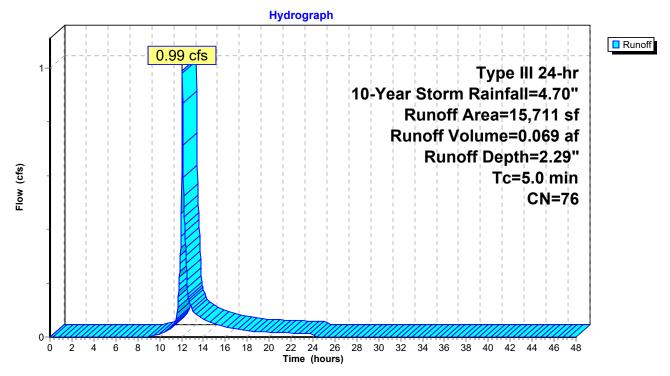
A	rea (sf)	CN I	Description					
	6,282	98	Paved park	ing, HSG C	;			
	3,924	74 :	>75% Gras	s cover, Go	ood, HSG C			
	10,206	89	Neighted A	verage				
	3,924	4	38.45% Per	vious Area				
	6,282	(61.55% Impervious Area					
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.0					Direct Entry, TCmin=5 Minutes			


Subcatchment 1b: FRONT PARKING

Summary for Subcatchment 1c: STORM BASIN #2

Runoff = 0.28 cfs @ 12.08 hrs, Volume= Routed to Pond 4P : BASIN 2 0.020 af, Depth= 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"


Summary for Subcatchment 1d: EAST LANDSCAPE

Runoff = 0.99 cfs @ 12.08 hrs, Volume= Routed to Link 1S : EX. CB (RTE 20) 0.069 af, Depth= 2.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

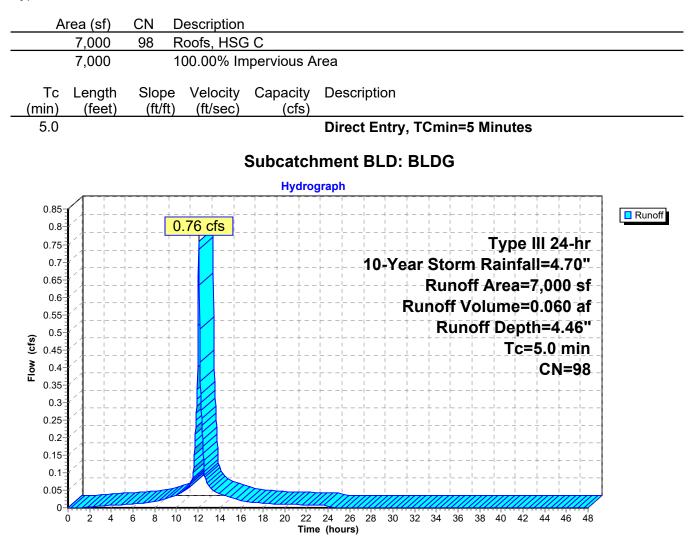
(sf) CN	N Description			
65 70	Woods, Good, HSG C			
546 <u>98</u>	Paved parking, HSG C			
' 11 76	76 Weighted Average			
65	77.43% Pervious Area			
546	22.57% Impervious Area			
anth Clau		Consitu	Description	
v .	,		Description	
eet) (ft/	ft) (ft/sec)	(cfs)		
			Direct Entry, TCmin=5 Minutes	
	65 70 546 98 711 76 65 546 ngth Slop	165 70 Woods, God 546 98 Paved park 711 76 Weighted A 165 77.43% Per 546 22.57% Imp ngth Slope Velocity	6570Woods, Good, HSG C54698Paved parking, HSG C71176Weighted Average16577.43% Pervious Area54622.57% Impervious ArngthSlopeVelocity	

Subcatchment 1d: EAST LANDSCAPE

Summary for Subcatchment 2a: WEST WOODS

Runoff = 0.79 cfs @ 12.14 hrs, Volume= Routed to Link 2S : WETLANDS 0.065 af, Depth= 1.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"


A	<u>rea (sf)</u> 18,684	<u>CN</u> 70	Desc Wood			HSG (2													
	18,684	10				ous Ar														
Tc min)	Length (feet)	Slop (ft/f		locity t/sec)	Ca	pacity (cfs)		escr	iptio	on										
9.2	320	0.034	10	0.58			L	ag/C	N I	Net	hoc	d,								
				Su	bcat	chm	ent	2a:	W	ES	тν	vo	OD	S						
						Hydr	ograj	bh												
0.85										 	- 	- 	 	-! 	_!		- - -			Run
0.85	//¦		0.79	cfs -		$\frac{1}{1}$ $\frac{1}{1}$ -		-¦			+ 1	+ 					+ 111 /		 Id	
0.75						+ + - 		- _	 		+ +					pe				
0.7			1 1			1 I 4 + -	 	 _	10	-Ye	+	+	L			nfa	+	+	-	
0.65							 L _	 _	 _	 	⊥_ R	lun	off	A	rea	=18	8,6	84	sf	
0.6											Ru	not	ff V	/oli	um	e=(0.0	65.	af	
0.55			++							 	 					əpt				
0.5	/		· · · ·			i i ++-		- i	-	. – –	; +	+	1			17				
0.5 0.45 0.4	/ I I / I	 	1 I +			 + + -	I	 -	 		 +	 +	1	1		'ng				
0.4	/											 	Ļ	SIC)=0				
0.35	(/								<u> </u> <u> </u>			-¦-]	「c=	9.2	m	in _	
0.3	(++	/		$\frac{1}{T} = -\frac{1}{T} =$	[-¦	-¦		 	$\frac{1}{T} = -$			-¦		+C-I	N=7	70 -	
0.25	() 		++			++-		-	-		+	+		-	-!	+	+	+	-	
0.2			++			++-		-	-		+	+	 	- ·	-	+	+	+	-	
0.15							L _	-	.		· 			 	_				_ !	
0.1-	[$\frac{1}{1} = -\frac{1}{1}$		1	$\frac{1}{1} \frac{1}{1}$	<u> </u>	-	-		<u> </u>	$\frac{1}{1} = -$		<u> </u>	-!	$\frac{1}{1}$	$\frac{1}{1}$	<u> </u>	-	
0.05				<u> </u>	μų			111	-	-	-	-	-	-	-		-	-	-	I
0-	0 2 4	6 8	10 12	14 1	6 18	20 22	2 24	26	28	30	32	34	36	38	40	42	44	46	48	

Time (hours)

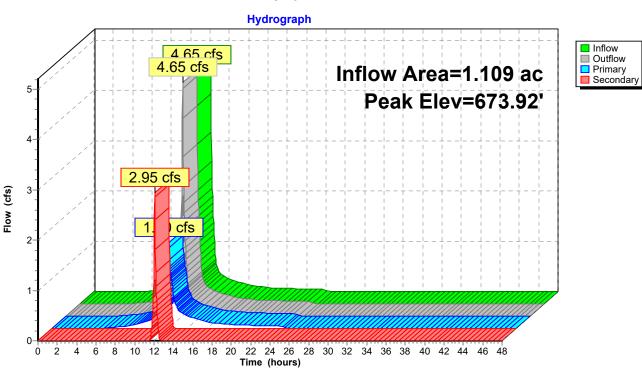
Summary for Subcatchment BLD: BLDG

Runoff = 0.76 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : BASIN 2 0.060 af, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

2022-035-POST_DEV-1-DF Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 1P: DMH-1


Inflow Area = 1.109 ac, 67.82% Impervious, Inflow Depth = 3.59" for 10-Year Storm event Inflow = 4.65 cfs @ 12.07 hrs, Volume= 0.332 af 4.65 cfs @ 12.07 hrs, Volume= Outflow = 0.332 af, Atten= 0%, Lag= 0.0 min 1.70 cfs @ 12.07 hrs, Volume= 0.265 af Primary = Routed to Pond 2P : OIL GRIT SEPARATOR 2.95 cfs @ 12.07 hrs, Volume= 0.067 af Secondary = Routed to Pond 3P : UG INFILTRATION SYSTEM #1

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 673.92' @ 12.07 hrs Flood Elev= 675.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	671.95'	8.0" Round Culvert
	-		L= 6.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 671.95' / 671.85' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
#2	Secondary	672.45'	12.0" Round Culvert
			L= 40.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 672.45' / 672.00' S= 0.0113 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.68 cfs @ 12.07 hrs HW=673.89' (Free Discharge) -1=Culvert (Inlet Controls 1.68 cfs @ 4.81 fps)

Secondary OutFlow Max=2.89 cfs @ 12.07 hrs HW=673.89' (Free Discharge) 2=Culvert (Inlet Controls 2.89 cfs @ 3.68 fps) Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC

Pond 1P: DMH-1

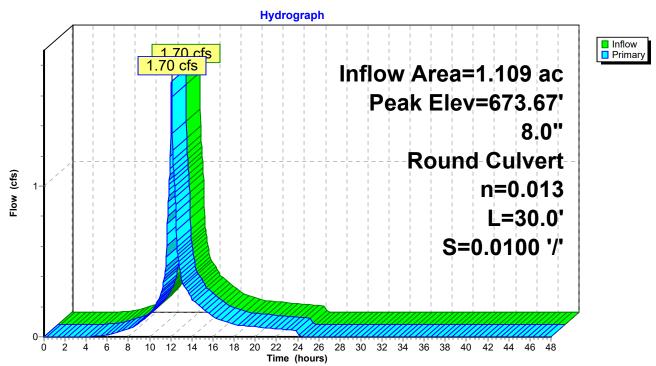
Summary for Pond 2P: OIL GRIT SEPARATOR

[79] Warning: Submerged Pond 1P Primary device # 1 INLET by 1.70'

 Inflow Area =
 1.109 ac, 67.82% Impervious, Inflow Depth =
 2.87" for 10-Year Storm event

 Inflow =
 1.70 cfs @
 12.07 hrs, Volume=
 0.265 af

 Outflow =
 1.70 cfs @
 12.07 hrs, Volume=
 0.265 af, Atten= 0%, Lag= 0.0 min


 Primary =
 1.70 cfs @
 12.07 hrs, Volume=
 0.265 af

 Routed to Pond 4P : BASIN 2
 0.265 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 673.67' @ 12.07 hrs Flood Elev= 675.50'

Device Routing Invert Outlet Devices	
#1 Primary 671.70' 8.0" Round Culvert L= 30.0' CPP, projecting, no headwall, Ke= 0.90 Inlet / Outlet Invert= 671.70' / 671.40' S= 0.0100 n= 0.013 Corrugated PE, smooth interior, Flow A	'/' Cc= 0.900

Primary OutFlow Max=1.68 cfs @ 12.07 hrs HW=673.64' (Free Discharge) —1=Culvert (Inlet Controls 1.68 cfs @ 4.81 fps)

Pond 2P: OIL GRIT SEPARATOR

Summary for Pond 3P: UG INFILTRATION SYSTEM #1

[81] Warning: Exceeded Pond 1P by 0.04' @ 12.84 hrs

Inflow	=	2.95 cfs @	12.07 hrs,	Volume=	0.067 af			
Outflow	=	0.08 cfs @	12.52 hrs,	Volume=	0.067 af,	Atten= 97%, Lag= 26.9 min		
Discarded	=	0.08 cfs @	12.52 hrs,	Volume=	0.067 af	-		
Primary	=	0.00 cfs @	12.52 hrs,	Volume=	0.000 af			
Routed to Pond 4P : BASIN 2								

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 672.51' @ 12.52 hrs Surf.Area= 1,980 sf Storage= 2,705 cf

Plug-Flow detention time= 333.9 min calculated for 0.067 af (100% of inflow) Center-of-Mass det. time= 334.1 min (1,059.6 - 725.5)

Volume	Invert	Avail.Storage	Storage Description
#1	670.50'	1,265 cf	30.00'W x 66.00'L x 4.00'H Prismatoid
			7,920 cf Overall - 4,757 cf Embedded = 3,163 cf x 40.0% Voids
#2	671.00'	3,416 cf	Shea Leaching Chamber 4x4x3 x 112 Inside #1
			Inside= 41.0"W x 30.0"H => 8.72 sf x 3.50'L = 30.5 cf
			Outside= 47.0"W x 36.0"H => 10.62 sf x 4.00'L = 42.5 cf
			112 Chambers in 7 Rows
		4,681 cf	Total Available Storage
			<u> </u>

)0'
0.900
750 '/' Cc= 0.900
w Area= 0.35 sf
C 7

Discarded OutFlow Max=0.08 cfs @ 12.52 hrs HW=672.51' (Free Discharge) **1=Exfiltration** (Controls 0.08 cfs)

Primary OutFlow Max=0.00 cfs @ 12.52 hrs HW=672.51' (Free Discharge) ←2=Culvert (Inlet Controls 0.00 cfs @ 0.22 fps)

Hydrograph InflowOutflow 2.95 cfs Discarded Peak Elev=672.51' Primary Storage=2,705 cf 3 2 Flow (cfs) 1 0.08 cfs 0.08 cfs 0.00 cfs 0-2 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Ó 4 6 8 Time (hours)

Pond 3P: UG INFILTRATION SYSTEM #1

Summary for Pond 4P: BASIN 2

Inflow Area = 1.615 ac, 65.46% Impervious, Inflow Depth = 3.06" for 10-Year Storm event Inflow 3.70 cfs @ 12.07 hrs, Volume= 0.412 af = 2.19 cfs @ 12.21 hrs, Volume= Outflow = 0.412 af, Atten= 41%, Lag= 8.3 min 0.19 cfs @ 12.21 hrs, Volume= Discarded = 0.288 af Primary = 2.00 cfs @ 12.21 hrs, Volume= 0.124 af Routed to Link 1S : EX. CB (RTE 20)

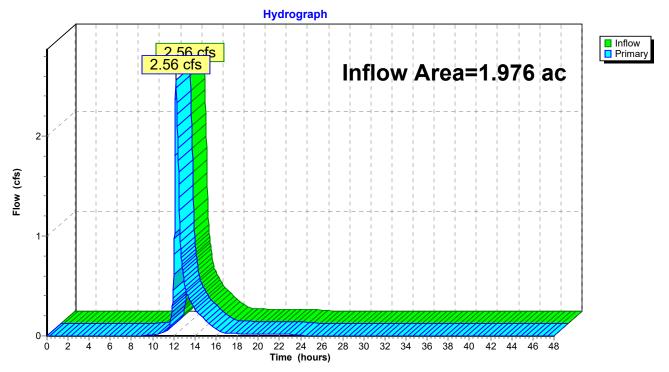
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 670.69' @ 12.21 hrs Surf.Area= 3,004 sf Storage= 6,141 cf Flood Elev= 671.00' Surf.Area= 3,280 sf Storage= 7,102 cf

Plug-Flow detention time= 295.4 min calculated for 0.412 af (100% of inflow) Center-of-Mass det. time= 295.8 min (1,095.0 - 799.2)

Volume	Invert	Avail	.Storage	Storage Description					
#1	#1 668.00' 7,102 cf		Custom Stage Data (Irregular)Listed below (Recalc)						
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
668.0	0	1,711	299.2	0	0	1,711			
669.0	00	2,200	318.0	1,950	1,950	2,685			
670.0	0	2,423	337.0	2,311	4,261	3,728			
671.0	00	3,280	356.0	2,841	7,102	4,831			
Device	Routing			et Devices	O an da La arra avec				
#1	#1 Discarded 668.00'		-	1.020 in/hr Exfiltration - Sandy Loam over Wetted area Conductivity to Groundwater Elevation = 666.00'					
#2	Primary	670.	50' 10.0 Head 2.50 Coef	' long x 5.0' breadtl d (feet) 0.20 0.40 0 3.00 3.50 4.00 4.5	h Broad-Crested F .60 0.80 1.00 1.2 50 5.00 5.50 0 2.70 2.68 2.68	Rectangular Weir 20 1.40 1.60 1.80 2.00 2.66 2.65 2.65 2.65			

Discarded OutFlow Max=0.19 cfs @ 12.21 hrs HW=670.69' (Free Discharge) **1=Exfiltration - Sandy Loam** (Controls 0.19 cfs)

Primary OutFlow Max=2.00 cfs @ 12.21 hrs HW=670.69' (Free Discharge) -2=Broad-Crested Rectangular Weir (Weir Controls 2.00 cfs @ 1.03 fps)


Hydrograph InflowOutflow 3.70 cfs Discarded Inflow Area=1.615 ac Primary 4 Peak Elev=670.69' Storage=6,141 cf 3-2.19 cfs Flow (cfs) 2.00 cfs 2 1 0 cfs 0-2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Ó Time (hours)

Pond 4P: BASIN 2

Summary for Link 1S: EX. CB (RTE 20)

Inflow Area	a =	1.976 ac, 57.63% Impervious, Inflow Depth = 1.17" for 10-Year Storm event
Inflow	=	2.56 cfs @ 12.19 hrs, Volume= 0.193 af
Primary	=	2.56 cfs @ 12.19 hrs, Volume= 0.193 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs

Link 1S: EX. CB (RTE 20)

Summary for Link 2S: WETLANDS

Inflow Area	a =	0.429 ac,	0.00% Impervious, Inflow D	epth = 1.82" for 10-Year Storm event
Inflow	=	0.79 cfs @	12.14 hrs, Volume=	0.065 af
Primary	=	0.79 cfs @	12.14 hrs, Volume=	0.065 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs

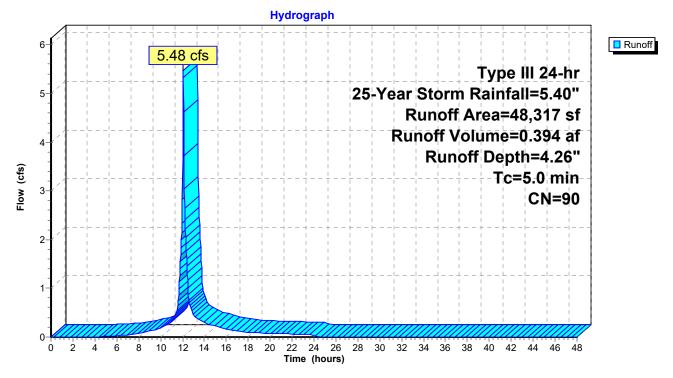
Hydrograph Inflow Primary 0.79 cfs 0.79 cfs 0.85 Inflow Area=0.429 ac 0.8 0.75 0.7 0.65 0.6 0.55 0.5 Flow (cfs) 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 22 24 26 28 30 32 34 36 38 40 42 44 46 48 2 4 8 10 12 14 16 18 20 Ó 6 Time (hours)

Link 2S: WETLANDS

2022-035-POST_DEV-1-DF Prepared by {enter your company name I HydroCAD® 10.10-6a s/n 11413 © 2020 Hydro	
Runoff by SCS TR-	18.00 hrs, dt=0.03 hrs, 1601 points 20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment1a: PAVED STORAGE YAR	DRunoff Area=48,317 sf 67.82% Impervious Runoff Depth=4.26" Tc=5.0 min CN=90 Runoff=5.48 cfs 0.394 af
Subcatchment1b: FRONT PARKING	Runoff Area=10,206 sf 61.55% Impervious Runoff Depth=4.16" Tc=5.0 min CN=89 Runoff=1.14 cfs 0.081 af
Subcatchment1c: STORM BASIN #2	Runoff Area=4,828 sf 0.00% Impervious Runoff Depth=2.69" Tc=5.0 min CN=74 Runoff=0.36 cfs 0.025 af
Subcatchment1d: EAST LANDSCAPE	Runoff Area=15,711 sf 22.57% Impervious Runoff Depth=2.87" Tc=5.0 min CN=76 Runoff=1.25 cfs 0.086 af
Subcatchment2a: WEST WOODS Flow Length=320'	Runoff Area=18,684 sf 0.00% Impervious Runoff Depth=2.34" Slope=0.0340 '/' Tc=9.2 min CN=70 Runoff=1.04 cfs 0.084 af
Subcatchment BLD: BLDG	Runoff Area=7,000 sf 100.00% Impervious Runoff Depth=5.16" Tc=5.0 min CN=98 Runoff=0.87 cfs 0.069 af
Pond 1P: DMH-1 Primary=1.92 cfs(Peak Elev=674.37' Inflow=5.48 cfs 0.394 af 0.307 af Secondary=3.56 cfs 0.087 af Outflow=5.48 cfs 0.394 af
Pond 2P: OIL GRIT SEPARATOR 8.0" Round	Peak Elev=674.12' Inflow=1.92 cfs 0.307 af Culvert n=0.013 L=30.0' S=0.0100 '/' Outflow=1.92 cfs 0.307 af
Pond 3P: UG INFILTRATION SYSTEM #1 Discarded=0.08 cf	Peak Elev=672.82' Storage=3,180 cf Inflow=3.56 cfs 0.087 af s 0.072 af Primary=0.51 cfs 0.015 af Outflow=0.59 cfs 0.087 af
Pond 4P: BASIN 2 Discarded=0.20 cf	Peak Elev=670.77' Storage=6,375 cf Inflow=4.29 cfs 0.498 af s 0.304 af Primary=3.38 cfs 0.194 af Outflow=3.58 cfs 0.498 af
Link 1S: EX. CB (RTE 20)	Inflow=4.44 cfs 0.280 af Primary=4.44 cfs 0.280 af
Link 2S: WETLANDS	Inflow=1.04 cfs 0.084 af Primary=1.04 cfs 0.084 af
	c Runoff Volume = 0.739 af Average Runoff Depth = 3.69" i2.65% Pervious = 1.266 ac 47.35% Impervious = 1.139 ac

Summary for Subcatchment 1a: PAVED STORAGE YARD

5.48 cfs @ 12.07 hrs, Volume= Runoff = Routed to Pond 1P : DMH-1

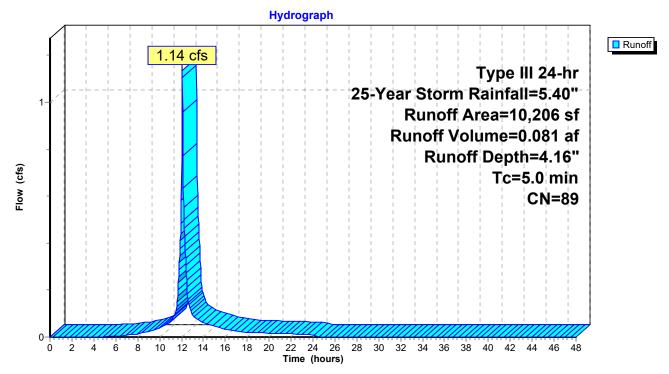

0.394 af, Depth= 4.26"

Page 51

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Storm Rainfall=5.40"

A	rea (sf)	CN I	Description				
	32,770	98 I	Paved park	ing, HSG C	;		
	15,547	74 :	>75% Gras	s cover, Go	ood, HSG C		
	48,317	90	Neighted A	verage			
	15,547	;	32.18% Pervious Area				
	32,770	6	67.82% Imp	ervious Ar	ea		
_		~		•	— • • • •		
Tc	Length	Slope		Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry, TCmin=5 Minutes		
					-		

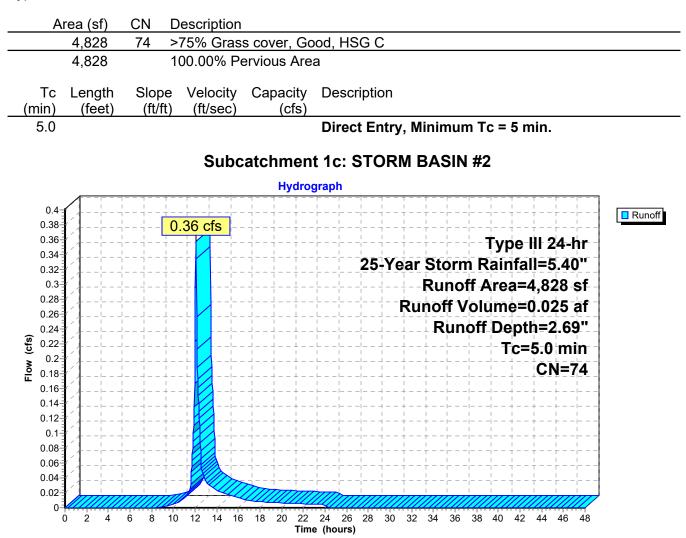
Subcatchment 1a: PAVED STORAGE YARD


Summary for Subcatchment 1b: FRONT PARKING

Runoff = 1.14 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : BASIN 2 0.081 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Storm Rainfall=5.40"

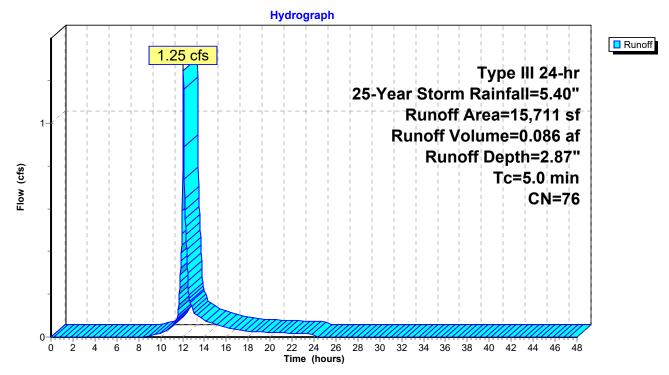
Area (s	f) CN	Description				
6,28	98 98	Paved park	ing, HSG C)		
3,92	24 74	>75% Gras	s cover, Go	bod, HSG C		
10,20	6 89	Weighted A	verage			
3,92	24	38.45% Pervious Area				
6,28	32	61.55% Imp	pervious Ar	ea		
Tc Lenç (min) (fe	, ,	,	Capacity (cfs)	Description		
5.0				Direct Entry, TCmin=5 Minutes		


Subcatchment 1b: FRONT PARKING

Summary for Subcatchment 1c: STORM BASIN #2

Runoff = 0.36 cfs @ 12.08 hrs, Volume= Routed to Pond 4P : BASIN 2 0.025 af, Depth= 2.69"

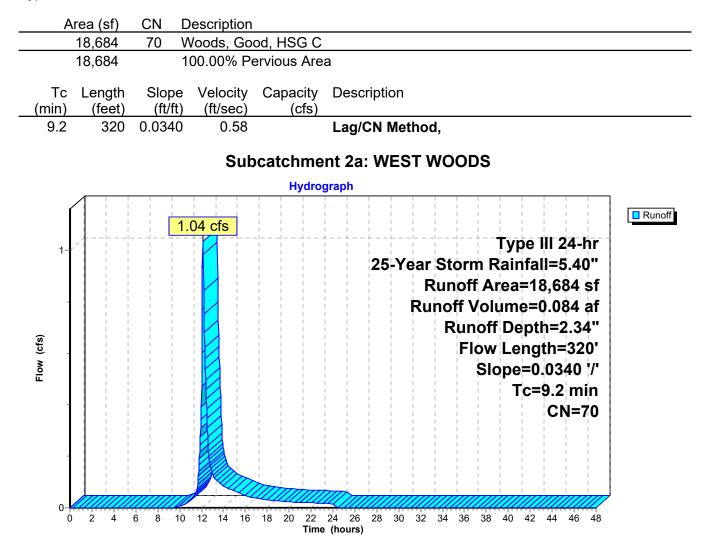
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Storm Rainfall=5.40"


Summary for Subcatchment 1d: EAST LANDSCAPE

Runoff = 1.25 cfs @ 12.08 hrs, Volume= Routed to Link 1S : EX. CB (RTE 20) 0.086 af, Depth= 2.87"

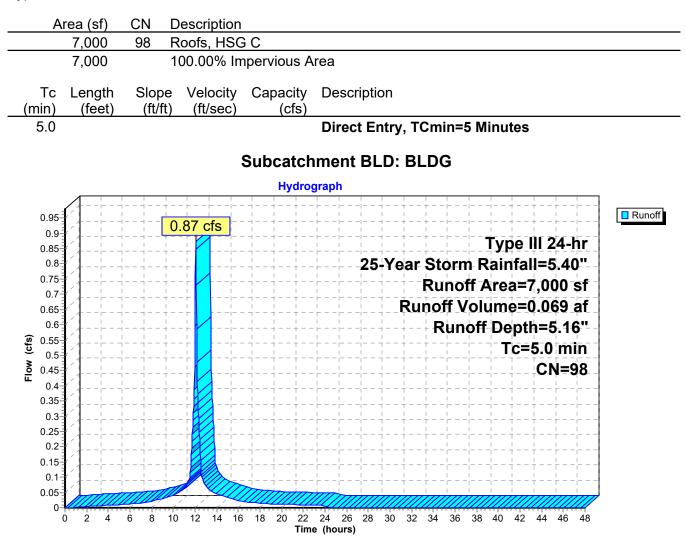
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Storm Rainfall=5.40"

A	rea (sf)	CN	Description					
	12,165	70	Woods, Go	od, HSG C				
	3,546	98	Paved park	ing, HSG C	;			
	15,711	76	Weighted Average					
	12,165		77.43% Per	vious Area				
	3,546		22.57% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
5.0					Direct Entry, TCmin=5 Minutes			


Subcatchment 1d: EAST LANDSCAPE

Summary for Subcatchment 2a: WEST WOODS

Runoff = 1.04 cfs @ 12.13 hrs, Volume= Routed to Link 2S : WETLANDS 0.084 af, Depth= 2.34"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Storm Rainfall=5.40"

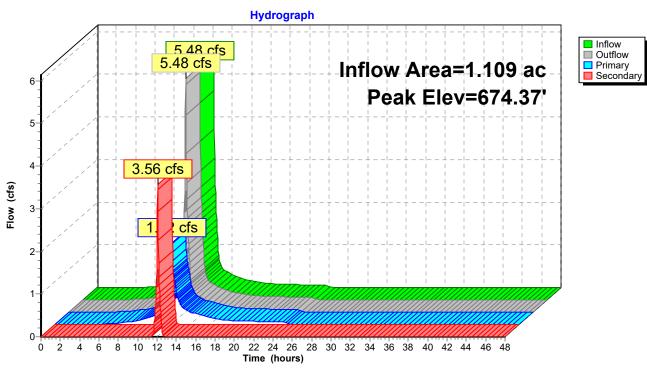
Summary for Subcatchment BLD: BLDG

Runoff = 0.87 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : BASIN 2 0.069 af, Depth= 5.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Storm Rainfall=5.40"

2022-035-POST_DEV-1-DF Type III 24-hr 2 Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 1P: DMH-1


Inflow Area = 1.109 ac, 67.82% Impervious, Inflow Depth = 4.26" for 25-Year Storm event Inflow = 5.48 cfs @ 12.07 hrs, Volume= 0.394 af 5.48 cfs @ 12.07 hrs, Volume= Outflow = 0.394 af, Atten= 0%, Lag= 0.0 min 1.92 cfs @ 12.07 hrs, Volume= 0.307 af Primary = Routed to Pond 2P : OIL GRIT SEPARATOR 3.56 cfs @ 12.07 hrs, Volume= 0.087 af Secondary = Routed to Pond 3P : UG INFILTRATION SYSTEM #1

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 674.37' @ 12.07 hrs Flood Elev= 675.50'

Routing	Invert	Outlet Devices
Primary	671.95'	8.0" Round Culvert
		L= 6.0' CMP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 671.95' / 671.85' S= 0.0167 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
Secondary	672.45'	12.0" Round Culvert
-		L= 40.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 672.45' / 672.00' S= 0.0113 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
	Primary	Primary 671.95'

Primary OutFlow Max=1.89 cfs @ 12.07 hrs HW=674.32' (Free Discharge) -1=Culvert (Inlet Controls 1.89 cfs @ 5.42 fps)

Secondary OutFlow Max=3.49 cfs @ 12.07 hrs HW=674.32' (Free Discharge) 2=Culvert (Inlet Controls 3.49 cfs @ 4.44 fps) Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC

Pond 1P: DMH-1

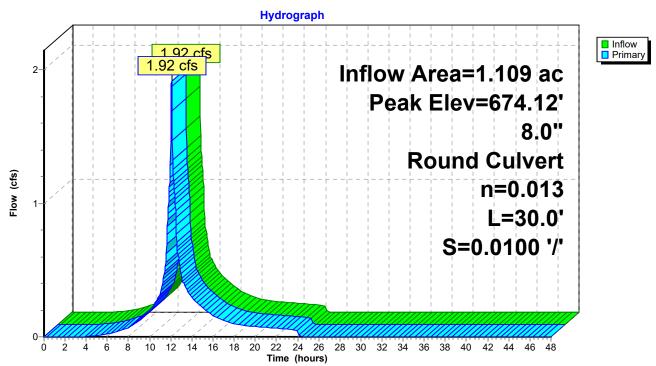
Summary for Pond 2P: OIL GRIT SEPARATOR

[79] Warning: Submerged Pond 1P Primary device # 1 INLET by 2.14'

 Inflow Area =
 1.109 ac, 67.82% Impervious, Inflow Depth =
 3.32" for 25-Year Storm event

 Inflow =
 1.92 cfs @
 12.07 hrs, Volume=
 0.307 af

 Outflow =
 1.92 cfs @
 12.07 hrs, Volume=
 0.307 af, Atten= 0%, Lag= 0.0 min


 Primary =
 1.92 cfs @
 12.07 hrs, Volume=
 0.307 af

 Routed to Pond 4P : BASIN 2
 12.07 hrs, Volume=
 0.307 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 674.12' @ 12.07 hrs Flood Elev= 675.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	671.70'	8.0" Round Culvert
			L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 671.70' / 671.40' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=1.89 cfs @ 12.07 hrs HW=674.07' (Free Discharge) -1=Culvert (Inlet Controls 1.89 cfs @ 5.42 fps)

Pond 2P: OIL GRIT SEPARATOR

Summary for Pond 3P: UG INFILTRATION SYSTEM #1

[81] Warning: Exceeded Pond 1P by 0.17' @ 12.60 hrs

Inflow	=	3.56 cfs @	12.07 hrs,	Volume=	0.087 af	
Outflow	=	0.59 cfs @	12.39 hrs,	Volume=	0.087 af,	Atten= 83%, Lag= 19.0 min
Discarded	=	0.08 cfs @	12.39 hrs,	Volume=	0.072 af	-
Primary	=	0.51 cfs @	12.39 hrs,	Volume=	0.015 af	
Routed t	to Pond	4P : BASIN	2			

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 672.82' @ 12.39 hrs Surf.Area= 1,980 sf Storage= 3,180 cf

Plug-Flow detention time= 292.0 min calculated for 0.087 af (100% of inflow) Center-of-Mass det. time= 292.3 min (1,017.7 - 725.5)

Volume	Invert	Avail.Storage	Storage Description
#1	670.50'	1,265 cf	30.00'W x 66.00'L x 4.00'H Prismatoid
			7,920 cf Overall - 4,757 cf Embedded = 3,163 cf x 40.0% Voids
#2	671.00'	3,416 cf	Shea Leaching Chamber 4x4x3 x 112 Inside #1
			Inside= 41.0"W x 30.0"H => 8.72 sf x 3.50'L = 30.5 cf
			Outside= 47.0"W x 36.0"H => 10.62 sf x 4.00'L = 42.5 cf
			112 Chambers in 7 Rows
		4,681 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	670.50'	1.020 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 666.00'
#2	Primary	672.50'	8.0" Round Culvert X 2.00
	-		L= 20.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 672.50' / 671.00' S= 0.0750 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Discarded OutFlow Max=0.08 cfs @ 12.39 hrs HW=672.82' (Free Discharge) **1=Exfiltration** (Controls 0.08 cfs)

Primary OutFlow Max=0.51 cfs @ 12.39 hrs HW=672.82' (Free Discharge) ←2=Culvert (Inlet Controls 0.51 cfs @ 1.52 fps)

Hydrograph InflowOutflow 3.56 cfs Discarded Peak Elev=672.82' Primary Storage=3,180 cf 3-Flow (cfs) 2 0.59 cfs 1 0.51 cfs 0. cfs 0-2 4 Ó 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

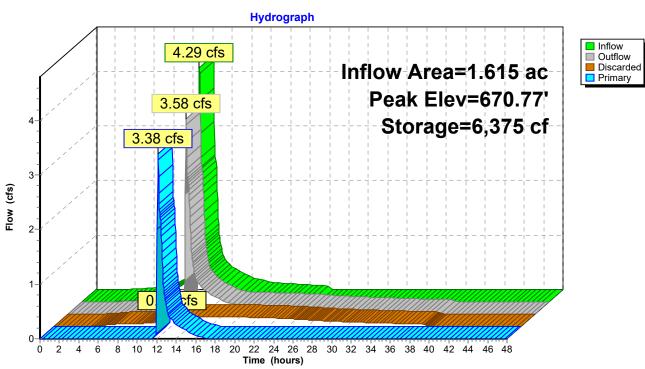
Pond 3P: UG INFILTRATION SYSTEM #1

Summary for Pond 4P: BASIN 2

Inflow Area = 1.615 ac, 65.46% Impervious, Inflow Depth = 3.70" for 25-Year Storm event Inflow 4.29 cfs @ 12.07 hrs, Volume= 0.498 af = 3.58 cfs @ 12.13 hrs, Volume= Outflow = 0.498 af, Atten= 16%, Lag= 3.5 min 0.20 cfs @ 12.13 hrs, Volume= Discarded = 0.304 af Primary = 3.38 cfs @ 12.13 hrs, Volume= 0.194 af Routed to Link 1S : EX. CB (RTE 20)

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 670.77' @ 12.13 hrs Surf.Area= 3,072 sf Storage= 6,375 cf Flood Elev= 671.00' Surf.Area= 3,280 sf Storage= 7,102 cf

Plug-Flow detention time= 261.1 min calculated for 0.498 af (100% of inflow) Center-of-Mass det. time= 260.9 min (1,054.8 - 793.9)

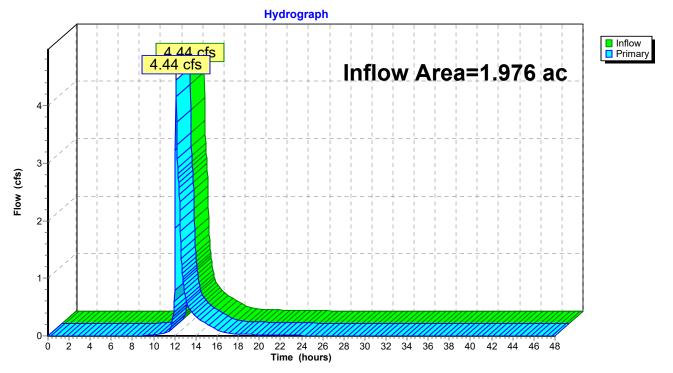

Volume	Invert	Avail.	.Storage	e Storage Description			
#1	668.00'		7,102 cf	Custom Stage Data	a (Irregular)Listed	below (Recalc)	
Elevatio (fee		ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
668.0	0	1,711	299.2	0	0	1,711	
669.0	0	2,200	318.0	1,950	1,950	2,685	
670.0	0	2,423	337.0	2,311	4,261	3,728	
671.0	0	3,280	356.0	2,841	7,102	4,831	
Device	Routing	Inv	_	et Devices			
#1	Discarded			0 in/hr Exfiltration - ductivity to Groundwa			
#2	Primary	670.	Head 2.50 Coef	3.00 3.50 4.00 4.5	60 0.80 1.00 1.2 0 5.00 5.50 0 2.70 2.68 2.68	0 1.40 1.60 1.80 2.00 2.66 2.65 2.65 2.65	

Discarded OutFlow Max=0.20 cfs @ 12.13 hrs HW=670.77' (Free Discharge) **1=Exfiltration - Sandy Loam** (Controls 0.20 cfs)

Primary OutFlow Max=3.33 cfs @ 12.13 hrs HW=670.77' (Free Discharge) —2=Broad-Crested Rectangular Weir (Weir Controls 3.33 cfs @ 1.24 fps)

2022-035-POST_DEV-1-DF

Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC

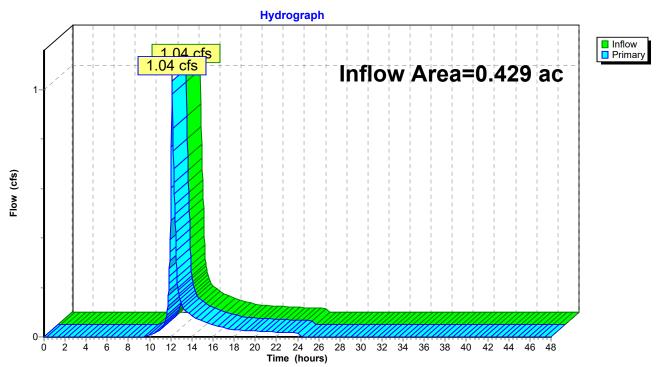


Pond 4P: BASIN 2

Summary for Link 1S: EX. CB (RTE 20)

Inflow Are	a =	1.976 ac, 57.63% Impervious, Inflow Depth = 1.70" for 25-Year Storm event
Inflow	=	4.44 cfs @ 12.12 hrs, Volume= 0.280 af
Primary	=	4.44 cfs @ 12.12 hrs, Volume= 0.280 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs



Link 1S: EX. CB (RTE 20)

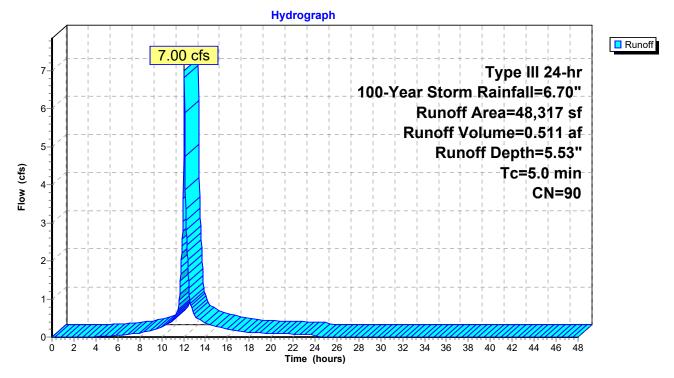
Summary for Link 2S: WETLANDS

Inflow Area =	0.429 ac,	0.00% Impervious, Inflow De	epth = 2.34"	for 25-Year Storm event
Inflow =	1.04 cfs @	12.13 hrs, Volume=	0.084 af	
Primary =	1.04 cfs @	12.13 hrs, Volume=	0.084 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs

Link 2S: WETLANDS

2022-035-POST_DEV-1-DF Prepared by {enter your company name HydroCAD® 10.10-6a s/n 11413 © 2020 Hydro	
Runoff by SCS TR	48.00 hrs, dt=0.03 hrs, 1601 points -20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment1a: PAVED STORAGE YAR	DRunoff Area=48,317 sf 67.82% Impervious Runoff Depth=5.53" Tc=5.0 min CN=90 Runoff=7.00 cfs 0.511 af
Subcatchment1b: FRONT PARKING	Runoff Area=10,206 sf 61.55% Impervious Runoff Depth=5.42" Tc=5.0 min CN=89 Runoff=1.46 cfs 0.106 af
Subcatchment1c: STORM BASIN #2	Runoff Area=4,828 sf 0.00% Impervious Runoff Depth=3.78" Tc=5.0 min CN=74 Runoff=0.50 cfs 0.035 af
Subcatchment1d: EAST LANDSCAPE	Runoff Area=15,711 sf 22.57% Impervious Runoff Depth=3.99" Tc=5.0 min CN=76 Runoff=1.74 cfs 0.120 af
Subcatchment2a: WEST WOODS Flow Length=320	Runoff Area=18,684 sf 0.00% Impervious Runoff Depth=3.37" Slope=0.0340 '/' Tc=9.2 min CN=70 Runoff=1.51 cfs 0.120 af
Subcatchment BLD: BLDG	Runoff Area=7,000 sf 100.00% Impervious Runoff Depth=6.46" Tc=5.0 min CN=98 Runoff=1.09 cfs 0.087 af
Pond 1P: DMH-1 Primary=2.34 cfs	Peak Elev=675.38' Inflow=7.00 cfs 0.511 af 0.385 af Secondary=4.66 cfs 0.126 af Outflow=7.00 cfs 0.511 af
Pond 2P: OIL GRIT SEPARATOR 8.0" Round	Peak Elev=675.13' Inflow=2.34 cfs 0.385 af Culvert n=0.013 L=30.0' S=0.0100 '/' Outflow=2.34 cfs 0.385 af
Pond 3P: UG INFILTRATION SYSTEM #1 Discarded=0.09 ct	Peak Elev=673.17' Storage=3,698 cf Inflow=4.66 cfs 0.126 af fs 0.073 af Primary=1.53 cfs 0.053 af Outflow=1.62 cfs 0.126 af
Pond 4P: BASIN 2 Discarded=0.20 ct	Peak Elev=670.84' Storage=6,587 cf Inflow=5.39 cfs 0.665 af fs 0.329 af Primary=4.85 cfs 0.335 af Outflow=5.06 cfs 0.665 af
Link 1S: EX. CB (RTE 20)	Inflow=6.43 cfs 0.455 af Primary=6.43 cfs 0.455 af
Link 2S: WETLANDS	Inflow=1.51 cfs 0.120 af Primary=1.51 cfs 0.120 af
	c Runoff Volume = 0.979 af Average Runoff Depth = 4.88" 52.65% Pervious = 1.266 ac 47.35% Impervious = 1.139 ac

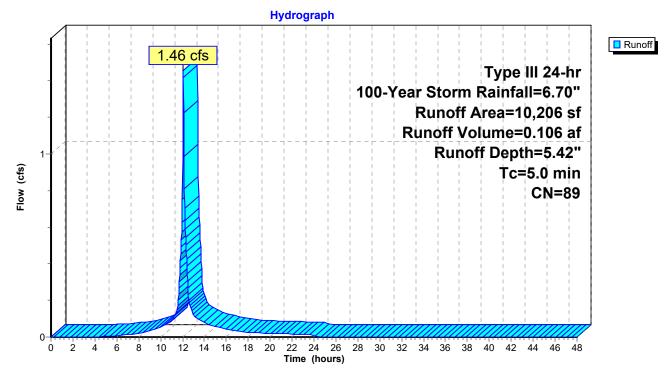

Summary for Subcatchment 1a: PAVED STORAGE YARD

Runoff = 7.00 cfs @ 12.07 hrs, Volume= Routed to Pond 1P : DMH-1 0.511 af, Depth= 5.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 100-Year Storm Rainfall=6.70"

A	vrea (sf)	CN [Description				
	32,770	98 F	Paved park	ing, HSG C			
	15,547	74 >	>75% Gras	s cover, Go	bod, HSG C		
	48,317	90 \	Neighted A	verage			
	15,547	3	32.18% Per	vious Area			
	32,770	6	67.82% Imp	ervious Ar	ea		
-		<u>.</u>		• ••			
Tc	5	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry, TCmin=5 Minutes		
					-		

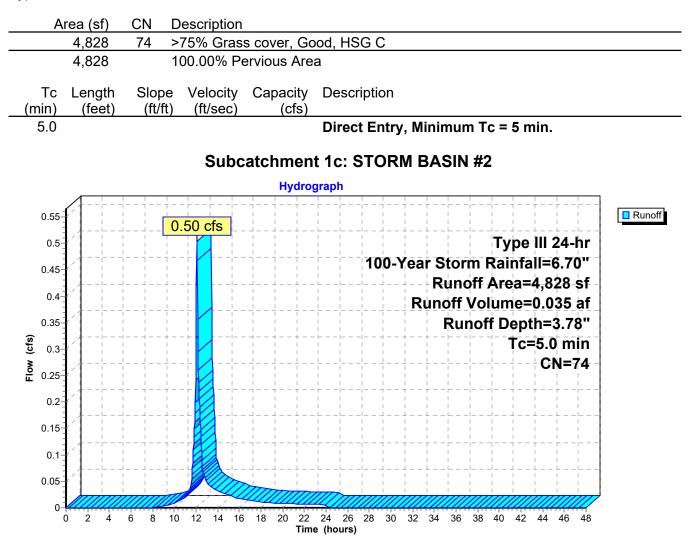
Subcatchment 1a: PAVED STORAGE YARD


Summary for Subcatchment 1b: FRONT PARKING

Runoff = 1.46 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : BASIN 2 0.106 af, Depth= 5.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 100-Year Storm Rainfall=6.70"

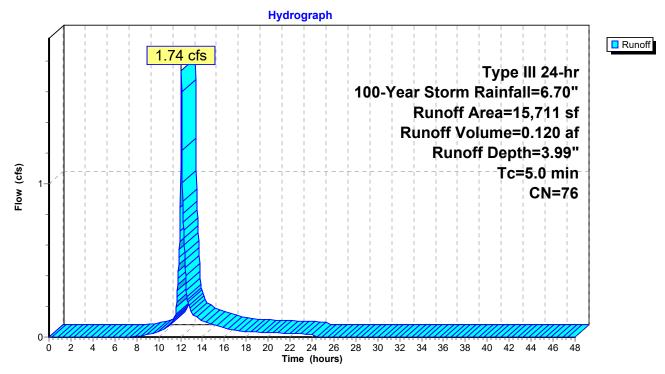
A	rea (sf)	CN I	Description				
	6,282	98	Paved park	ing, HSG C	;		
	3,924	74 :	>75% Gras	s cover, Go	ood, HSG C		
	10,206	89	Neighted A	verage			
	3,924	4	38.45% Per	vious Area			
	6,282	(61.55% Impervious Area				
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry, TCmin=5 Minutes		


Subcatchment 1b: FRONT PARKING

Summary for Subcatchment 1c: STORM BASIN #2

Runoff = 0.50 cfs @ 12.08 hrs, Volume= Routed to Pond 4P : BASIN 2 0.035 af, Depth= 3.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 100-Year Storm Rainfall=6.70"

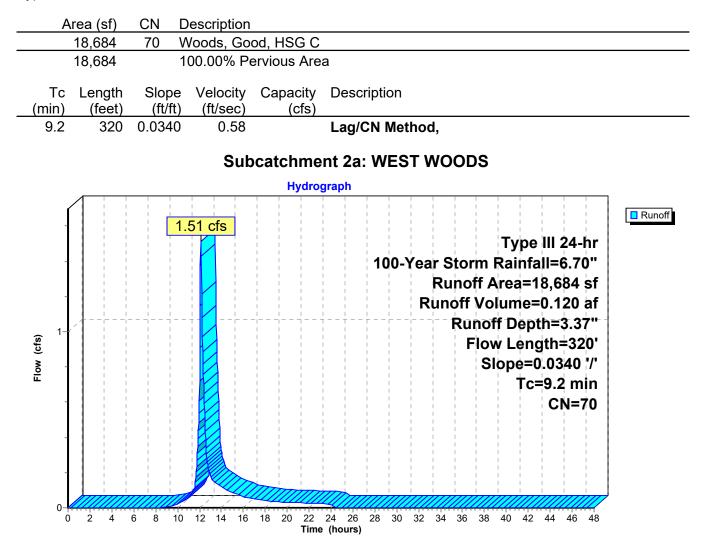

Summary for Subcatchment 1d: EAST LANDSCAPE

Runoff = 1.74 cfs @ 12.07 hrs, Volume= Routed to Link 1S : EX. CB (RTE 20) 0.120 af, Depth= 3.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 100-Year Storm Rainfall=6.70"

(sf) CN	N Description				
65 70	Woods, Good, HSG C				
546 <u>98</u>	Paved parking, HSG C				
' 11 76	76 Weighted Average				
65	77.43% Pervious Area				
546	22.57% Impervious Area				
anth Clau		Consitu	Description		
v .	,		Description		
eet) (ft/	ft) (ft/sec)	(cfs)			
			Direct Entry, TCmin=5 Minutes		
	65 70 546 98 711 76 65 546 ngth Slop	165 70 Woods, God 546 98 Paved park 711 76 Weighted A 165 77.43% Per 546 22.57% Imp ngth Slope Velocity	6570Woods, Good, HSG C54698Paved parking, HSG C71176Weighted Average16577.43% Pervious Area54622.57% Impervious ArngthSlopeVelocity		

Subcatchment 1d: EAST LANDSCAPE

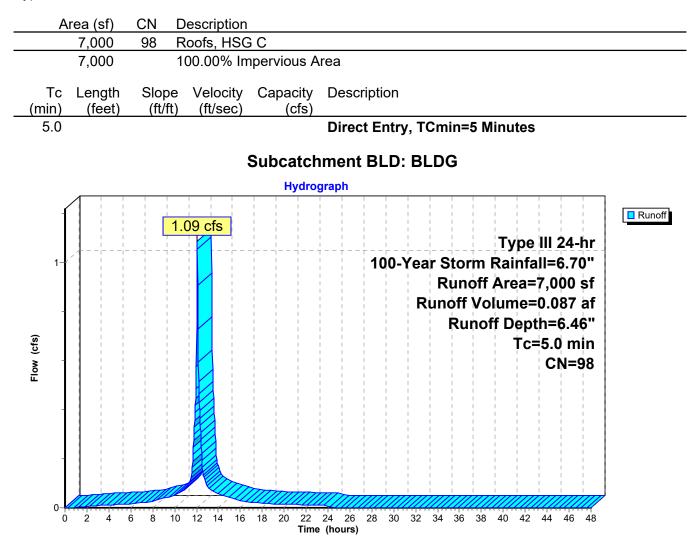


Summary for Subcatchment 2a: WEST WOODS

Runoff 1.51 cfs @ 12.13 hrs, Volume= = Routed to Link 2S : WETLANDS

0.120 af, Depth= 3.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 100-Year Storm Rainfall=6.70"



Printed 10/11/2022

Summary for Subcatchment BLD: BLDG

Runoff = 1.09 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : BASIN 2 0.087 af, Depth= 6.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Type III 24-hr 100-Year Storm Rainfall=6.70"

2022-035-POST_DEV-1-DFType III 24-hr100-Year Storm Rainfall=6.70"Prepared by {enter your company name here}Printed 10/11/2022HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLCPage 73

Summary for Pond 1P: DMH-1

Inflow Area = 1.109 ac, 67.82% Impervious, Inflow Depth = 5.53" for 100-Year Storm event Inflow = 7.00 cfs @ 12.07 hrs, Volume= 0.511 af 7.00 cfs @ 12.07 hrs, Volume= Outflow = 0.511 af, Atten= 0%, Lag= 0.0 min 2.34 cfs @ 12.07 hrs, Volume= Primary = 0.385 af Routed to Pond 2P : OIL GRIT SEPARATOR 4.66 cfs @ 12.07 hrs, Volume= 0.126 af Secondary = Routed to Pond 3P : UG INFILTRATION SYSTEM #1

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 675.38' @ 12.07 hrs Flood Elev= 675.50'

Routing	Invert	Outlet Devices
Primary	671.95'	8.0" Round Culvert
		L= 6.0' CMP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 671.95' / 671.85' S= 0.0167 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf
Secondary	672.45'	12.0" Round Culvert
		L= 40.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 672.45' / 672.00' S= 0.0113 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
	Primary	Primary 671.95'

Primary OutFlow Max=2.30 cfs @ 12.07 hrs HW=675.30' (Free Discharge) ←1=Culvert (Inlet Controls 2.30 cfs @ 6.60 fps)

Secondary OutFlow Max=4.58 cfs @ 12.07 hrs HW=675.30' (Free Discharge) 2=Culvert (Inlet Controls 4.58 cfs @ 5.83 fps)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 7 00 cfs 7.00 cfs Inflow Area=1.109 ac Peak Elev=675.38' 7 6-4.66 cfs 5-Flow (cfs) 4 2 cfs 3-2 1 0-4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 ż Ó

Time (hours)

Pond 1P: DMH-1

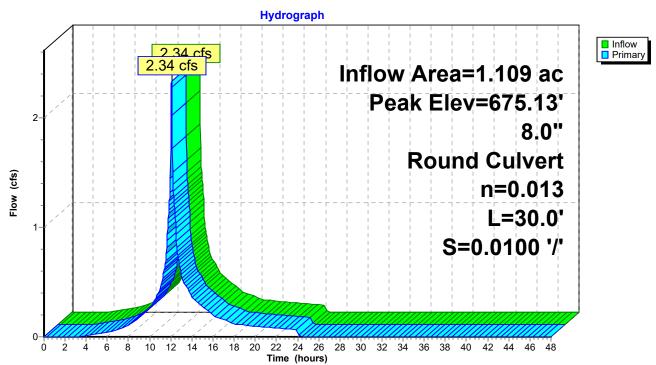
Summary for Pond 2P: OIL GRIT SEPARATOR

[79] Warning: Submerged Pond 1P Primary device # 1 INLET by 3.13'

 Inflow Area =
 1.109 ac, 67.82% Impervious, Inflow Depth =
 4.16" for 100-Year Storm event

 Inflow =
 2.34 cfs @
 12.07 hrs, Volume=
 0.385 af

 Outflow =
 2.34 cfs @
 12.07 hrs, Volume=
 0.385 af, Atten= 0%, Lag= 0.0 min


 Primary =
 2.34 cfs @
 12.07 hrs, Volume=
 0.385 af

 Routed to Pond 4P : BASIN 2
 0.385 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 675.13' @ 12.07 hrs Flood Elev= 675.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	671.70'	8.0" Round Culvert
			L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 671.70' / 671.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=2.30 cfs @ 12.07 hrs HW=675.05' (Free Discharge) ←1=Culvert (Inlet Controls 2.30 cfs @ 6.60 fps)

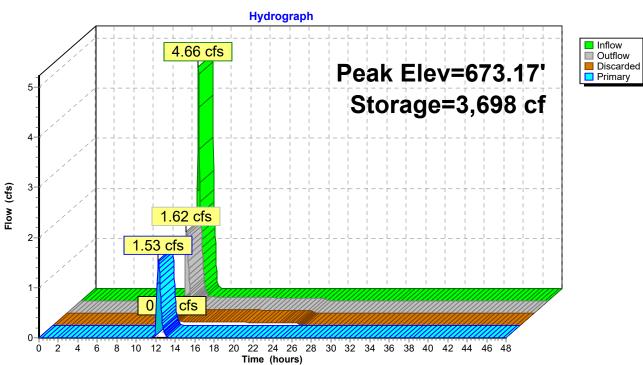
Pond 2P: OIL GRIT SEPARATOR

Summary for Pond 3P: UG INFILTRATION SYSTEM #1

[81] Warning: Exceeded Pond 1P by 0.18' @ 12.57 hrs

Inflow =	=	4.66 cfs @	12.07 hrs,	Volume=	0.126 af
Outflow =	=	1.62 cfs @	12.26 hrs,	Volume=	0.126 af, Atten= 65%, Lag= 11.1 min
Discarded =	=	0.09 cfs @	12.26 hrs,	Volume=	0.073 af
Primary =	=	1.53 cfs @	12.26 hrs,	Volume=	0.053 af
Routed to	o Pond	4P : BASIN	2		

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 673.17' @ 12.26 hrs Surf.Area= 1,980 sf Storage= 3,698 cf


Plug-Flow detention time= 210.3 min calculated for 0.126 af (100% of inflow) Center-of-Mass det. time= 210.2 min (935.7 - 725.4)

Volume	Invert	Avail.Storage	Storage Description
#1	670.50'	1,265 cf	30.00'W x 66.00'L x 4.00'H Prismatoid
			7,920 cf Overall - 4,757 cf Embedded = 3,163 cf x 40.0% Voids
#2	671.00'	3,416 cf	Shea Leaching Chamber 4x4x3 x 112 Inside #1
			Inside= 41.0"W x 30.0"H => 8.72 sf x 3.50'L = 30.5 cf
			Outside= 47.0"W x 36.0"H => 10.62 sf x 4.00'L = 42.5 cf
			112 Chambers in 7 Rows
		4,681 cf	Total Available Storage
			<u> </u>

Device	Routing	Invert	Outlet Devices
#1	Discarded	670.50'	1.020 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 666.00'
#2	Primary	672.50'	8.0" Round Culvert X 2.00
			L= 20.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 672.50' / 671.00' S= 0.0750 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

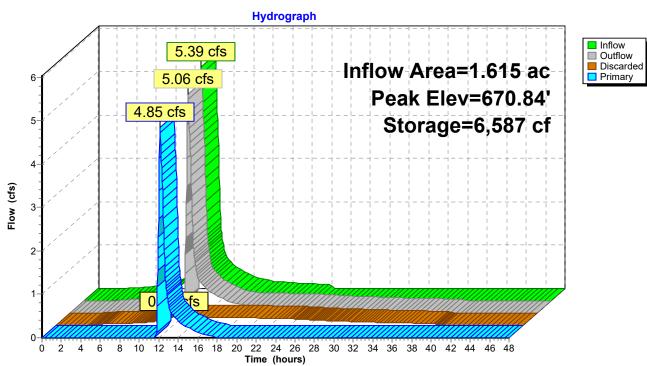
Discarded OutFlow Max=0.09 cfs @ 12.26 hrs HW=673.16' (Free Discharge) **1=Exfiltration** (Controls 0.09 cfs)

Primary OutFlow Max=1.53 cfs @ 12.26 hrs HW=673.16' (Free Discharge) ←2=Culvert (Inlet Controls 1.53 cfs @ 2.19 fps)

Pond 3P: UG INFILTRATION SYSTEM #1

Summary for Pond 4P: BASIN 2

Inflow Area = 1.615 ac, 65.46% Impervious, Inflow Depth = 4.94" for 100-Year Storm event Inflow 5.39 cfs @ 12.07 hrs, Volume= 0.665 af = 5.06 cfs @ 12.13 hrs, Volume= Outflow = 0.665 af, Atten= 6%, Lag= 3.5 min 0.20 cfs @ 12.13 hrs, Volume= Discarded = 0.329 af Primary = 4.85 cfs @ 12.13 hrs, Volume= 0.335 af Routed to Link 1S : EX. CB (RTE 20)

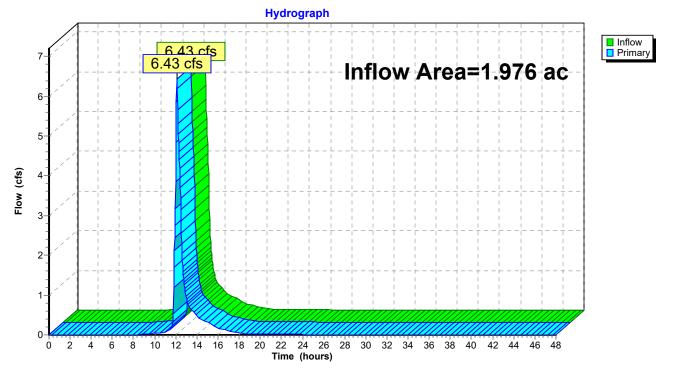

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs Peak Elev= 670.84' @ 12.13 hrs Surf.Area= 3,134 sf Storage= 6,587 cf Flood Elev= 671.00' Surf.Area= 3,280 sf Storage= 7,102 cf

Plug-Flow detention time= 215.3 min calculated for 0.665 af (100% of inflow) Center-of-Mass det. time= 215.2 min (1,000.8 - 785.6)

Volume	Invert	Avail	.Storage	Storage Description						
#1	668.00'		7,102 cf	Custom Stage Data	a (Irregular)Listed	below (Recalc)				
Elevatio (fee		ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
668.0	00	1,711	299.2	0	0	1,711				
669.0	00	2,200	318.0	1,950	1,950	2,685				
670.0	00	2,423	337.0	2,311	4,261	3,728				
671.0	671.00 3,280		356.0	2,841	7,102	4,831				
Device	Routing		-	rt Outlet Devices						
#1	Discarded	668.	-	0 in/hr Exfiltration - ductivity to Groundwa						
#2	Primary	670.	Head 2.50 Coef	0.0' long x 5.0' breadth Broad-Crested Rectangular Weir ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 50 3.00 3.50 4.00 4.50 5.00 5.50 pef. (English) 2.34 2.50 2.70 2.68 2.66 2.65 2.65 65 2.67 2.66 2.68 2.70 2.74 2.79 2.88						

Discarded OutFlow Max=0.20 cfs @ 12.13 hrs HW=670.84' (Free Discharge) **1=Exfiltration - Sandy Loam** (Controls 0.20 cfs)

Primary OutFlow Max=4.83 cfs @ 12.13 hrs HW=670.84' (Free Discharge) **1**–2=Broad-Crested Rectangular Weir (Weir Controls 4.83 cfs @ 1.43 fps)

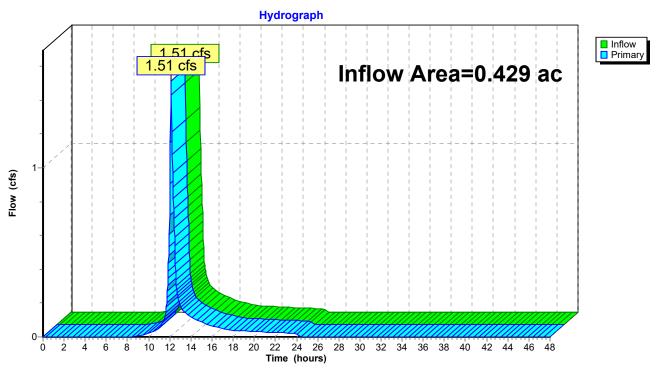


Pond 4P: BASIN 2

Summary for Link 1S: EX. CB (RTE 20)

Inflow Area	a =	1.976 ac, 57.63% Impervious, Inflow Depth = 2.77" for 100-Year Storm event
Inflow	=	6.43 cfs @ 12.10 hrs, Volume= 0.455 af
Primary	=	6.43 cfs @ 12.10 hrs, Volume= 0.455 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs



Link 1S: EX. CB (RTE 20)

Summary for Link 2S: WETLANDS

Inflow Area	a =	0.429 ac,	0.00% Impervious, Inflow D	Depth = 3.37" for 100-Year Storm event
Inflow	=	1.51 cfs @	12.13 hrs, Volume=	0.120 af
Primary	=	1.51 cfs @	12.13 hrs, Volume=	0.120 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.03 hrs

Link 2S: WETLANDS

Appendix F

Additional Stormwater Design Drainage Calculations

TABLE NO. 3 STORMWATER MANAGEMENT CALCULATIONS PROPOSED INTERSTATE TOWING FACILITY #698 MAIN STREET STURBRIDGE, MA

STANDARD 3 - RECHARGE REQUIRED RECHARGE VOLUME <u>RECHARGE VOLUME (Rv)</u>				
Existing Impervious Area = Proposed Impervious Area =	0 49,598	s.f. s.f.		
Impervious Area (s.f.)	Rv (cf)	Soil Type - Ty	/pe C = 0.25 inches	
Impervious Area s.f. x (0.25") x (1'/12"	1,033	c.f.		
Proposed Underground Infiltration Chan Storage Volume =	nbers (Pond 3P) 2,694	c.f.	(Elev. 672.50 = 2-8" Diam. Outlet	: Pipes)
Proposed Stormwater Infiltration Basin Storage Volume =	Pond 4P) 5,574	c.f.	(Elev. 670.50 = Broad-Crested W	/eir Outlet)
STANDARD 4 - WATER QUALITY				
Impervious Area (s.f.)	WQv (cf)	LUHPPL = 1	" Runoff	
Impervious Area s.f. x (1") x (1'/12")	4,133			
Proposed Storage in Drywell & Basin =	8,268	c.f.		
SUBCATCHMENT 1A - Paved Storage Area	a (LUHPPL)			
TSS Removal Calculation		TSS Removal	i i i i i i i i i i i i i i i i i i i	g
1. Water Quality Unit 1 & 2	90%			
2. Oil Water Separator	25%			
3. Stormwater Infiltration Basin & Drywell	80%			0.00 . 000/ *
			TSS Removal Efficiency = calculations account for 81% of	$0.99 < 80\%^*$
SUBCATCHMENT 1B - Front Parking Are	0	· 155 removal	calculations account for 81% of	i she impervious area
TSS Removal Calculation	a	TSS Removal	TSS Remaining	a
1. Water Quality Unit	80%			5
2. Stormwater Infiltration Basin	80%			
			TSS Removal Efficiency =	0.998 <80%**
			calculations account for 11% o	f site impervious area
Total Site TSS Removal Calculation	mpervious Area (s.f.)	TSS Removal		
Subcatchment 1a	32,770		6	
Subcatchment 1b	6,282	99%	⁄o	
Subcatchment 1d	3,546		_	
Total Site	42,598	91%	6	
Proposed Underground Infiltration Chan	nbers (Pond 3P)			
Drawdown (Td) = Rv / k A	5.48	hours	< 72 Hours OK	
Recharge Volume (Rv) =	1,033	c.f.		
Permeability (k) =		in/hr		
Bottom Area (A) =	2,220	s.f.		
Proposed Stormwater Basin (Pond 4P)				
Drawdown (Td) = $Rv / k A$	7.87	hours	< 72 Hours OK	
Recharge Volume (Rv) =	1,033			
Permeability (k) =	1.02	in/hr		
Bottom Area (A) =	1,544	s.f.		

Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 3P: UG INFILTRATION SYSTEM #1

Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
670.50	1,980	0	673.15	2,489	3,675
670.55	1,990	40	673.20	2,498	3,751
670.60	1,999	79	673.25	2,508	3,826
670.65	2,009	119	673.30	2,518	3,901
670.70	2,000	158	673.35	2,527	3,976
670.75	2,018	198	673.40	2,537	4,051
670.80	2,038	238	673.45	2,546	4,126
670.85	2,047	277	673.50	2,556	4,201
670.90	2,057	317	673.55	2,566	4,209
670.95	2,066	356	673.60	2,575	4,218
671.00	2,076	396	673.65	2,585	4,226
671.05	2,086	473	673.70	2,594	4,235
671.10	2,095	551	673.75	2,604	4,243
671.15	2,105	628	673.80	2,614	4,252
671.20	2,114	705	673.85	2,623	4,260
671.25	2,124	782	673.90	2,633	4,269
671.30	2,134	859	673.95	2,642	4,277
671.35	2,143	936	674.00	2,652	4,285
671.40	2,153	1,013	674.05	2,662	4,325
671.45	2,162	1,090	674.10	2,671	4,365
671.50	2,172	1,167	674.15	2,681	4,404
671.55	2,182	1,244	674.20	2,690	4,444
671.60	2,191	1,320	674.25	2,700	4,483
671.65	2,201	1,397	674.30	2,710	4,523
671.70	2,210	1,474	674.35	2,719	4,563
671.75	2,220	1,550	674.40	2,729	4,602
671.80	2,230	1,627	674.45	2,738	4,642
671.85	2,239	1,703	674.50	2,748	4,681
671.90	2,249	1,780	01 1100	_,	.,
671.95	2,258	1,856			
672.00	2,268	1,933			
672.05	2,278	2,009			
672.10	2,287	2,005			
672.15	2,207	2,003			
672.20	2,306	2,238			
672.25	2,300	2,230 2,314			
672.30	2,310	2,314 2,390			
		2,390 2,466			
672.35	2,335				
672.40	2,345	2,542			
672.45 2 - 8" Pipes 672.50	2,354	2,618			
. 072.30	2.364	2.694			
672.55	2,374	2,769			
672.60	2,383	2,845			
672.65	2,393	2,921			
672.70	2,402	2,997			
672.75	2,412	3,072			
672.80	2,422	3,148			
672.85	2,431	3,223			
672.90	2,441	3,299			
672.95	2,450	3,374			
673.00	2,460	3,450			
673.05	2,470	3,525			
673.10	2,479	3,600			
			l		

2022-035-POST_DEV-1-DF

Prepared by {enter your company name here} HydroCAD® 10.10-6a s/n 11413 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 4P: BASIN 2

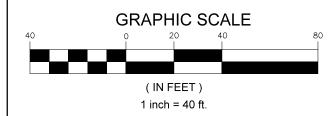
Flowetien	Cumfana	\\/attad	Chanana	
Elevation	Surface	Wetted	Storage	
(feet)	(sq-ft)	(sq-ft)	(cubic-feet)	
668.00	1,711	1,711	0	
668.10	1,757	1,806	173	
668.20	1,804	1,901	351	
668.30	1,851	1,997	534	
668.40	1,899	2,093	722	
668.50	1,948	2,190	914	
668.60	1,997	2,288	1,111	
668.70	2,047	2,386	1,313	
668.80	2,097	2,485	1,521	
668.90	2,148	2,585	1,733	
669.00	2,200	2,685	1,950	
669.10	2,222	2,786	2,171	
669.20	2,244	2,888	2,395	
669.30	2,266	2,991	2,620	
669.40	2,288	3,095	2,848	
669.50	2,310	3,199	3,078	
669.60	2,333	3,303	3,310	
669.70	2,355	3,408	3,544	
669.80	2,378	3,514	3,781	
669.90	2,400	3,621	4,020	
670.00	2,423	3,728	4,261	
670.10	2,503	3,835	4,507	
670.20	2,584	3,944	4,762	
670.30	2,667	4,052	5,024	
670.40	2,750	4,162	5,295	
670.50	2,835	4,272	5,574	Overflow Weir
670.60	2,922	4,383	5,862	
670.70	3,009	4,494	6,159	
670.80	3,098	4,606	6,464	
670.90	3,188	4,718	6,778	
671.00	3,280	4,831	7,102	
	- ,=	-,	-,	

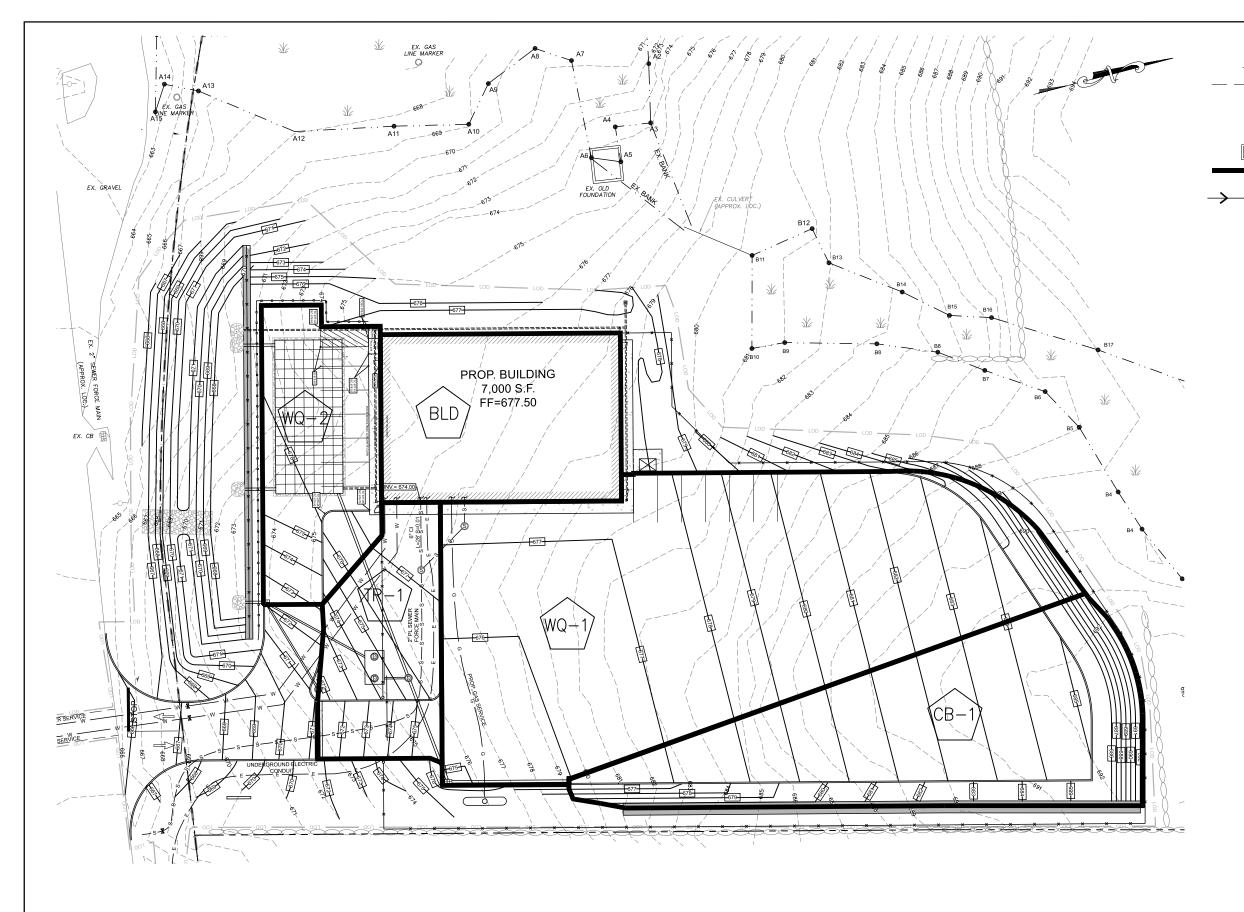
RATIONAL METHOD PIPE DESIGN WORKSHEET PROPOSED INTERSTATE TOWING FACILITY STURBRIDGE, MA

	PIPE SE	GMENT	INCREMENTAL	AREA					FLOW T	'IME (min	.) 25	-Yr	25-Yr	DESIGN CON	DITIONS				Design (25-Yr)		Inverts		Remarks
LOCATION	From	То	DESIGNATION	A (Acres)	Total A	С	C*A	Sum (C*A)	To Inlet	In Chan.	Tot. I (in	/hr)	Q (cfs)	Pipe Diam (in.)	Length (ft)	Slope (%) Q	-full (cfs)	V-Full (fps)	Depth Peak (in.)	V-Peak (fps)	Up	Down	
CB-1 to Basin																							
	CB-1	WQ-1		0.29		0.68	0.19		5		5	6.3	1.22	12	49	0.012	4.28	5.45	3.4	1.55	673.10	672.50	CB-1 Rim =676.10
	WQ-1	DMH-1		0.55		0.87	0.48	0.67	5		5	6.3	4.25	12	41	0.011	4.05	5.16	12.6	5.41	672.50	672.05	WQ-1 Rim =675.00
	DMH-1	O/G			0.84			0.67	5		5	6.3	1.91	8	10	0.045	2.78	7.98	5.5	5.47	671.95	671.50	DMH-1 Rim =675.50
	DMH-1	CHAMBERS			0.84			0.67	5		5	6.3	3.53	12	81	0.011	4.08	5.19	10.4	4.50	672.40	671.50	DMH-1 Rim =675.50
	O/G	WQ-2			0.84			0.67	5		5	6.3	1.91	8	48	0.045	2.78	7.96	5.5	5.47	671.25	669.10	O/G Rim =673.00
	CHAMBERS	BASIN			0.84			0.67	5		5	6.3	0.56	8	13	0.410	8.40	24.08	0.5	1.61	673.33	668.00	
TR-4 TO BAS	IN																						
	TR-1	DMH-2		0.107		0.41	0.04		5		5	6.3	0.28	8	5	0.010	1.31	3.76	1.7	0.79	670.50	670.45	TR-1 Rim=671.50
	DMH-2	WQ-2						0.04	5		5	6.3	0.28	8	41	0.010	1.30	3.71	1.7	0.79	669.50	669.10	DMH-2 Rim=672.50
	WQ-2	BASIN		0.129		0.83	0.11	0.82	5		5	6.3	5.19	12	10	0.100	12.23	15.58	5.1	6.62	669.00	668.00	WQ-2 Rim=672.00

Notes:

1) Runoff Coefficient C-Values used; Impervious(Pavement) C=0.90 Grass/OpenSpace C=0.20, Residential Suburban C=.25~.40, Mannings "n" HDPE n=0.012, RCP n=0.013


2) Rainfall Intensity I (in/hr) values taken from Figure 10-4 Intensity-Duration-Frequency Curve for Boston, Massachusetts, Mass Highway Design Manual.


3) Five (5) minute minimum flow time used for minimum time of concentration (Tc) to CB inlet to system

4) Massachusetts Cascade Grate Inlet Capacity = 1.26 cfs @ 100% efficiency, Standard Grate = 0.95 cfs est.

5) Blue Highlight denotes calculated peak flow (cfs) to CB Inlet

	Drainage	Contribu	ting Area	Total		Runoff Coefficient		
_	Structure	Impervious	Grass/Lawn	s.f.	Ac.	С		
_	CB-1	8,454	4,003	12,457	0.286	0.68		
	WQ-1	23,061	1,026	24,087	0.553	0.87		
	TR-1	1,394	3,265	4,659	0.107	0.41		
	WQ-2	5,016	589	5,605	0.129	0.83		

LEC	GEND		BY CKD	
- 100	EXISTING CONTOURS WATERSHED SUBCATCHMENT POND OFF-SITE STORMWATER OUTFALL LOCATION WATERSHED BOUNDARY TIME OF CONCENTRATION FLOW PATH TEST PIT LOCATION	REVISIONS	NO DATE DESCRIPTION	0044.564.
				PROFESSIONAL SEAL
			PROPOSED "INTERSTATE TOWING" FACILITY #698 MAIN STREET STURBRIDGE, MA 01518	PREPARED FOR. WRECKER, LLC. 1660 WESTOVER ROAD CHICOPEE, MA 01020
		PROJECT	ENGINEERING SERVICES ENVIRONMENTAL SERVICES	
		DR SC PR SHE	AWN BY: RL ALE: 1" = 40' OJECT ND: 2022-033 EET NAME: RATIONA DRAINA	1/2022 CHECKED BY OF AGE MAP - 3.0

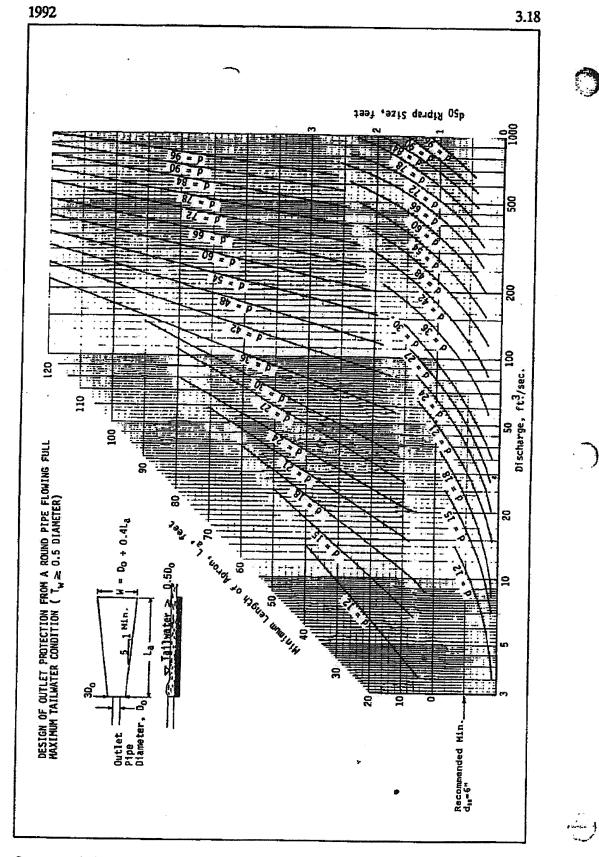
Groundwater Mounding Analysis - Hantush Method

	Project: Interstate To	owing Fac	ility	Project #: 2022-035
Perfor	med By: RL			Description: Infiltration Chambers
Che	cked By: DF			Calculated Mound Height: 1.9 feet
Input Parameters (inj	out only shaded area	<u>as):</u>		
Recharge Period	<i>t</i> =	<u>1.05</u>	days	Time to equilibrium (Dewater in 25.28 hrs)
Width of Field	W =	<u>30</u>	feet	
Length of Field	L =	<u>66</u>	feet	
Hydraulic Conductivity	K =	<u>2.04</u>	ft/day	1.02 in / hr - Rawls Rate Sandy Loam
Specific Yield	V =	<u>0.22</u>	ft ³ /ft ³	Sandy Loam = 0.22 See Specific Yield Tab
Saturated Thickness	D =	<u>18.5</u>	feet	ESHGW @ 78", Assumed bed rock depth 25'
Daily Flow	Q =	<u>8,228</u>	gpd	1,100 c.f. = Required Recharge Volume
Calculated Paramete	ers:			
1/2 width	a =	15	feet	
1/2 length	b =	33	feet	
Recharge Rate	i =	0.56	ft/day	
i concigo i caro				
	$\gamma = \frac{KD}{V} =$	171.5	ft²/day	
Dimensionless width	$\alpha = \frac{a}{\sqrt{4\gamma t}} =$	0.5588		
Dimensionless length	$\beta = \frac{b}{\sqrt{4\gamma t}} =$	1.2294		
<u>Solution:</u>				
From Table 1of Hantus	<u>sh (1967), attache</u> d:			
Function S*(a , b) =	0.7478			
Water Table + Mound	$h_m = \sqrt{h_i^2}$	$+\left[\frac{2j}{K}\lambda t\right]$	$t \cdot S * (\alpha, \beta)$	
	$h_m =$	20.4	feet	
Mound Height =	h _m - D =	1.9	feet	7
-				
Reference: Hantush, M.S. 19	67. "Growth and Decay of G	Groundwater	Mounds in Re	esponse to Uniform Percolation."
Water Resources Research, 3	, pp. 227-234.			

Groundwater Mounding Analysis - Hantush Method

	Project: Interstate To	owing Fac	ility	Project #: 2022-035
Perfor	med By: RL			Description: Stormwater Basin
Che	cked By: DF			Calculated Mound Height: 1.8 feet
Input Parameters (inp	out only shaded area	as):		
Recharge Period	<i>t</i> =	<u>1.67</u>	days	Time to equilibrium (Dewater in 40.29 hrs)
Width of Field	W =	<u>11</u>	feet	
Length of Field	L =	<u>120</u>	feet	
Hydraulic Conductivity	K =	<u>2.04</u>	ft/day	1.02 in / hr - Rawls Rate Sandy Loam
Specific Yield	V =	<u>0.22</u>	ft ³ /ft ³	Sandy Loam = 0.22 See Specific Yield Tab
Saturated Thickness	D =	<u>20.5</u>	feet	ESHGW @ 54", Assumed bed rock depth 25'
Daily Flow	Q =	<u>8,228</u>	gpd	1,100 c.f. = Required Recharge Volume
Calculated Paramete	<u>rs:</u>			
1/2 width	a =	5.5	feet	
1/2 length	b =	60	feet	
Recharge Rate	<i>j</i> =	0.83	ft/day	
		0.00		
	$\gamma = \frac{KD}{V} =$	190.1	ft²/day	
Dimensionless width	$\alpha = \frac{a}{\sqrt{4\gamma t}} =$	0.1543		
Dimensionless length	$\beta = \frac{b}{\sqrt{4\gamma t}} =$	1.6838		
<u>Solution:</u>				
From Table 1of Hantus Function S*(a , b) =	<u>h (1967), attached:</u> 0.3019			
	0.3019			
Water Table + Mound	$h_m = \sqrt{h_i^2}$	$+\left[\frac{2j}{K}\lambda t\right]$	$t \cdot S * (\alpha, \beta)$	(\tilde{r})
	$h_m =$	22.3	feet	
Mound Height =	h _m - D =	1.8	feet	7
				_
Reference: Hantush, M.S. 196	67. "Growth and Decay of C	Groundwater	Mounds in Re	esponse to Uniform Percolation."
Vater Resources Research, 3	, pp. 227-234.			

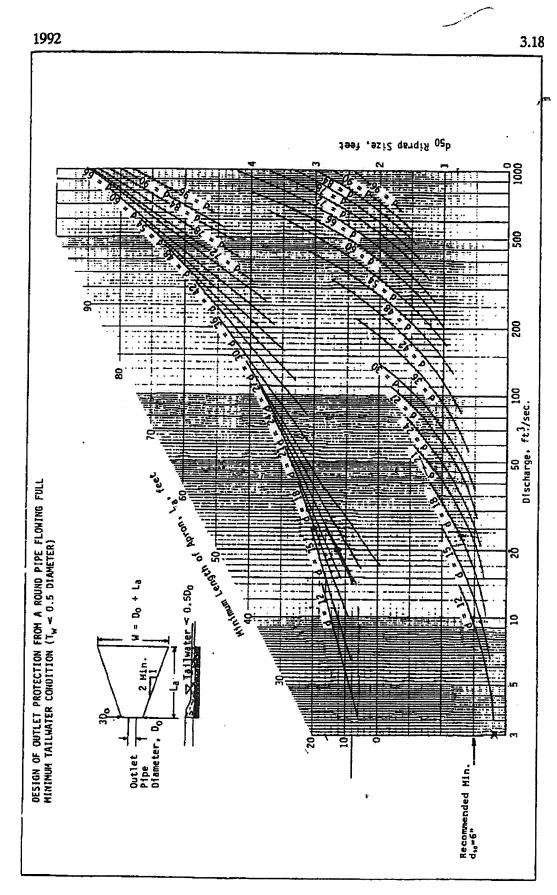
RIP RAP SIZING CALCULATIONS INTERSTATE TOWING FACILITY #698 MAIN STREET STURBRIDGE, MA


STANDARD 1 - DRAINAGE OUTFALL RIPRAP APRON SIZING

		Min. Stone Diam.	Apron	Apron Width	Apron Width
INFILTRATION BASIN #1	Flow Rate (cfs)	(in)*	Length (ft)*	(Upstream)*	(Downstream)*
INFILTRATION CHAMBERS (8" HDPE)	0.56	6	5	2	3
WATER QUALITY UNIT 6 (12" HDPE)**	5.19	6	10	3	5

*Minimum Stone Diameter, Riprap Apron Length, and Riprap Apron Width were determined by USDA-NRCS Outlet Protection Spec 3.18, dated 1992. See attached nomographs from applicable sections.

**All outlets designed for 100-year storm flow conditions. Outlets assumed to be under water during design storm flows, therefore, maximum tailwater design calculations were used.


***Outlets assumed to be discharging to grassy slope with no tailwater during design storm flows, therefore, minimum tailwater design calculations were used.

Source: USDA-SCS

III - 165

Source: USDA-SCS

ز میں ت

Appendix G

Hydrostorm Manufacturer's Design Report

Technical Design Submission

Interstate Towing Sturbridge, MA

Revised 9/6/2022

Hydroworks, LLC

Hydroworks Technical Submission for Interstate Towing

Hydroworks is pleased to make a submission regarding the stormwater treatment structure for Interstate Towing in Sturbridge, MA. We propose the use of three HD 3 hydrodynamic separators for this project. Sizing calculations were based on an annual TSS removal objective of 80% for the fine particle size distribution and treatment of the MADEP water quality flow rate.

Hydroworks HydroDome Operation

HydroDome is unique since it provides benefits for both water quality and water quantity or flow control. HydroDome comes complete and simply slides into the outlet pipe from a drainage structure and is secured to the wall with two anchor bolts. (Figure 1).



Figure 1. Hydroworks HydroDome

HydroDome consists of two main components:

- 1. A siphon with flow control
- 2. An overflow weir

At the heart of HydroDome is a siphon that regulates the water level in the structure and the flow rate leaving the structure. (Figure 2)

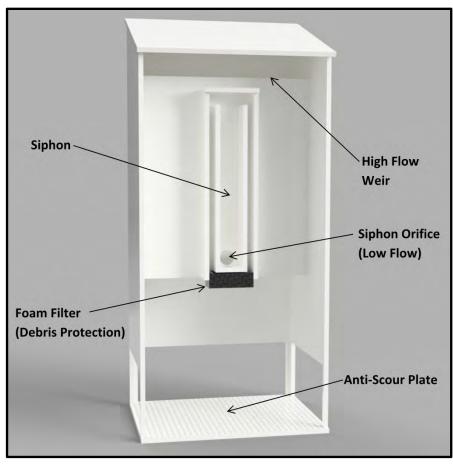


Figure 2 HydroDome Components

The siphon raises the water level to a pre-determined level without allowing water to exit the structure. The raised water level provides greater time for initial TSS removal, additional dilution to reduce effluent concentrations of any pollutants and provides a greater volume or buffer of water to prevent scour of previously settled solids.

Water flows into the device through horizontal openings at the bottom of the HydroDome. Water then must travel upwards through a siphon. A foam screen is located at the entrance to the siphon to provide secondary protection for the siphon (primary protection provided by the body of the HydroDome itself). Once the water level reaches a pre-determined height the siphon begins to engage and water flows out of the structure downstream. The siphon flow is controlled by an orifice whose size can be changed to provide the desired flow control. The water level continues to rise or begins to lower depending on the rate of flow from the orifice compared to the inflow of water to the structure.

A high flow weir above the siphon provides a high flow path to prevent the system from surcharging. A scour protection plate minimizes scour by preventing upward velocities/flow from the structure floor during periods of peak flow.

HydroDome combines the function of separator, hood, and flow control with active storage to provide a multi-purpose stormwater management solution in one structure.

HydroDome can be used as an inlet structure or as a regular drainage structure without any modification.

Construction Materials

The inner chamber and outlet baffle are made out of a copolymer plastic. The shell of the structure is pre-cast concrete. Pre-cast concrete is readily accepted by all municipalities since it has the following advantages:

- long service life
- ease of installation (less dependent on backfill (contractor proficiency) for structural integrity)
- concrete structures are designed for both anti-buoyancy and traffic loading without any field requirements (such as structural loading slabs in traffic areas and anti-buoyancy slabs to prevent groundwater uplift).
- low maintenance requirements

Hydroworks HD Separator Dimensions and Capacities

The HD separator is manufactured in a variety of sizes from 4 ft inside diameter to 12 ft inside diameter as shown in Table 1.

	Table	1. Hydrowo	rks HD Separato	or Dimensions*	
Model	Structure	Structure	Sediment/	Oil/Floating	Permanent
	Inside	Depth	Sinking Trash	Trash Volume	Pool (Wet)
	Diam. (ft)	(ft)*	Volume (ft ³)	(gal)	Volume (gal)
HD 3	3	4	11	31	210
HD 4	4	4	25	70	420
HD 5	5	5.5	47	134	805
HD 6	6	6.5	80	230	1375
HD 7	7	7.5	125	360	2155
HD 8	8	8.5	188	560	3195
HD 10	10	10.5	367	1125	6165
HD 12	12	12.5	631	1975	10575

*Dimensions vary with project requirements

The volumes provided in Table 1 for oil and sediment are to full capacity and not indicative of recommended depths/volumes for maintenance.

Headloss

Any water quality system implemented in a storm drain network will create headloss in the system. In general, depending on the configuration of the by-pass, systems designed to treat high flows or all of the flow will have a higher headloss impact on the storm drain network than systems that by-pass high flows.

The headloss created by the HD separator was measured in an independent laboratory (Alden Research Laboratory) for a full-scale HD 3 (Figures 3).

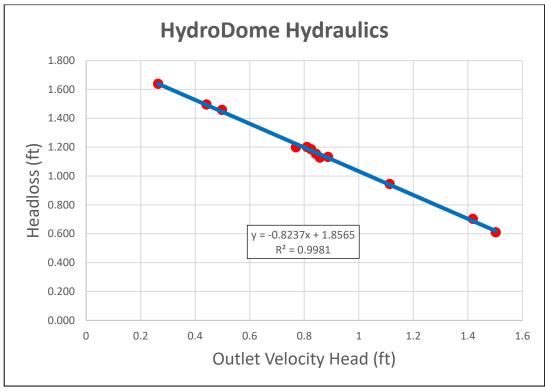


Figure 3. HydroDome Headloss

Headloss in the HydroDome decreases with velocity head due to the siphon. The water level inside the HydroDome must exceed the level of the siphon for water to flow out of the structure. This creates an initially high headloss and a discontinuity between the upstream and downstream flow depths.

The sizing program calculates upstream flow head based on either the provided downstream flow rate or full pipe flow assuming the flow is not surcharged in the outlet pipe. Please contact Hydroworks to determine headloss in designs where tailwater creates a surcharge condition to ensure the headloss created by the HydroDome is acceptable for these site-specific applications.

Site Drainage

Drainage area and imperviousness was provided by CMG. Table 2 provides the design information for the specified separators. These areas are shown on Figure 4.

	Table 2.	Interstate Towing	g Water Quality Separator Pa	arameters
Location	Area (ac)	Impervious (%)	WQF (cfs)*	Recommended Unit
WQ1	0.32	80	0.31	HD 3
WQ2	0.74	80	0.72	HD 3
WQ4	0.14	82	0.14	HD 3

*Based on 1" of runoff and 6 min time of concentration

Figure 4. Interstate Towing HydroDynamic Separator Drainage Areas

The HydroDome HD 3 water quality treatment rate based on NJDEP ratings is 0.85 cfs. Therefore, the HD 3 is the appropriate size of separator for all units on this project.

TSS Removal Calculations for the Specified System

Hydroworks sizes separators based on continuous analysis of rainfall, runoff, and TSS settling in the HydroDome based on laboratory testing.

These calculations require a user input particle size distribution. We have used a fine TSS based on the fine particle size distribution for this project.

Table 3. Interstate Towing	TSS Particle Size Distribution
Particle Size (um)	% by Mass
20	35
35	10
63	5
88	10
125	15
200	15
325	5
750	5

TSS removal calculations in the sizing program are based on the HydroDome being a completely mixed reactor vessel. The removal calculations solve a first order differential equation for the concentration of solids in the tank at any time. The first order differential equation is for continuity of mass.

 $C'V = QC_i - QC_t - r_cV$

C' = the change in concentration of solids in the tank with time

Q = flow rate through the tank

 C_i = solids concentration in the influent to the tank

 $C_t = solids$ concentration in the tank

V = tank volume

 r_c = reduction in solids in the tank (TSS Removal)

Continuous simulation requires historical rainfall data. Forty-five years of rainfall data (1957-2001) from Worcester, MA were used to analyze Interstate Towing project.

Laboratory testing (Alden, 2020) results for TSS removal for the HydroDome using the NJDEP TSS distribution is provided in Figure 5. Figure 6 shows the NJDEP TSS particle size distribution tested with the HD 3.

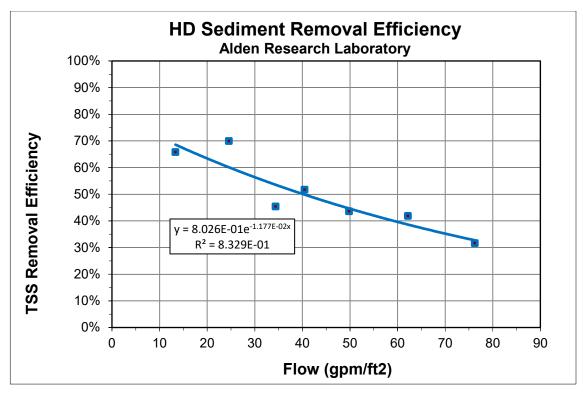


Figure 5. HydroDome TSS Removal Results (Alden, 2020)

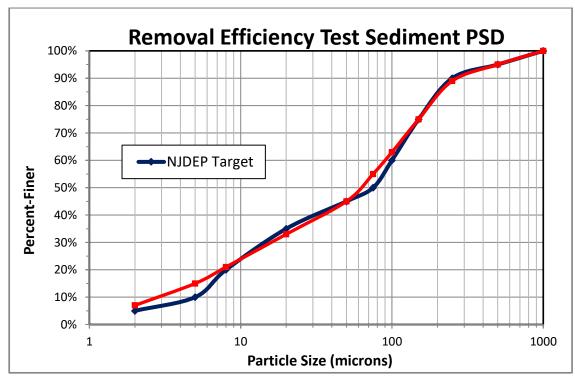


Figure 6. NJDEP TSS Particle Size Distribution (Alden, 2020)

Hydroworks uses the Peclet Number to calculate TSS removal based on the independent laboratory testing. The Peclet number has been used as a dimensionless scaling number for sediment deposition in lakes (Dhamotharan, et. Al. 1981). Others have suggested its use for scaling of TSS removal results for hydrodynamic separators (Dhanak, 2008, Gulliver, Guo and Wu, 2008).

The Peclet number is the ratio of convection (convective settling) to diffusion (turbulence keeping particles in suspension). The Peclet number (Equation 1) varies with the size of separator, particle size of TSS, and flow rate.

Pe = Vs h d /Q

Equation 1

Where Pe = Peclet number

Vs = settling velocity

h = depth of separator sump

d = separator diameter

Q = flow rate

A particle will be removed in the separator if the Peclet number is equal to, or greater than, the Peclet number calculated for removal of that particle based on the independent laboratory results. Based on the NJDEP PSD in Figure 6, the TSS removal in Figure 5, and the dimensions of the tested HD 3, critical Peclet Numbers can be calculated for each particle size in Figure 6 (critical Peclet number is the Peclet Number above which the particle is removed). A critical Peclet Number curve was then developed and input to the model (Figure 7).

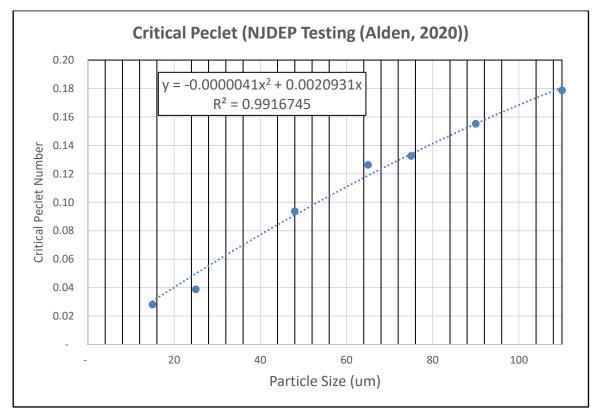


Figure 7. Critical Peclet Number Curve

At each timestep the Peclet Number is calculated for every flow and every HydroDome separator for each particle size in the design particle size distribution. The calculated Peclet Number is then compared to the Critical Peclet Number to determine if the particle is removed at that timestep or not (removed if the calculated Peclet Number is greater than the Critical Peclet Number and not removed if less than the Critical Peclet Number). These calculations are done for the entire rainfall record to determine an overall TSS removal percentage.

Hydroworks added a Peclet routine to the USEPA SWMM model to determine TSS removal based on the Peclet number calibrated to the independent laboratory testing completed by Alden Research Laboratory (Figure 7). Figure 8 shows the calibrated model results compared to the independent laboratory testing results from Alden Labs for a HydroDome HD3 based on the NJDEP particle size distribution used by Alden for testing purposes.

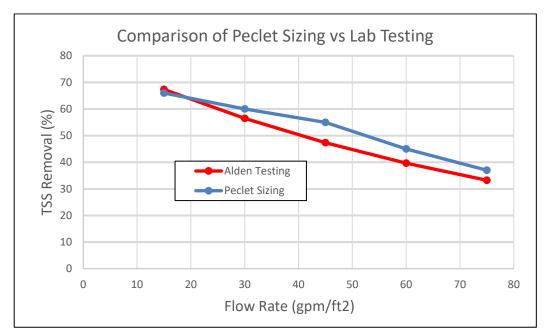


Figure 8. Independent Laboratory TSS Removal Performance versus Peclet Sizing Model

The use of the Peclet Number allows Hydroworks to size the HydroDome based on any particle size and design storm or local hydrology

Sizing Recommendations

TSS Removal

The annual TSS removal results are given in Figures 9-11. The sizing indicates the HD 3 is appropriately sized to provide 80% TSS removal for all three separators.

- Hydrow	orks Siphon Sepa	rator Sizing Pr	ogram - HydroDor	ne					?	×
File Proc	luct Units C	AD Video	Help							
🖹 🍋 🗖	🖪 🔞 🖨 🕨	ไ								
				1	1-	1		. 1		
General Din	nensions Rainfall	Site TSS	PSD TSS Loading	Quantity Storage	By-Pass Cu	stom CAD	Video (Other		
Site Parar	neters		Units	Rainfall Statio	on					
Area (ac)	.32	🗹 U.S.	Worcester W	lso Ap		Ma	assachusette	s	
Impervio	ousness (%)	80	Metric	1957 To 200	1		Rainfall 1	Fimestep = 6	60 min.	
Project Title	e Interstate Towing	WQ1			Outlet Pipe		-l. D i	Flow (ft3/s)	1.04	
(2 lines)	Sturbridge, MA				Diam. (in)		ak Design i	Flow (Ita/s)	1.64	
Lab Sizin	g Results	Γ	Post Treatment Re	echarge	Slope (%)	1				
HydroDom	e Annual Sizing Re	sults				Particle Size [Distribution			
Model #	Qlow (ft3/s)	Qtot (ft3/s)	Flow Capture (%)	TSS Removal (%)		Size (um)	%	SG		
HD 3	1.6	1.6	100 %	98 %		20	35	2.65	-	
HD 4	1.6	1.6	100 %	99 %		35	10	2.65	-	
HD 5	1.6	1.6	100 %	99 %		63	5	2.65	-	
HD 6	1.6	1.6	100 %	99 %		88	10	2.65	-	
HD 7	1.6	1.6	100 %	99 %	-	125	15	2.65	-	
HD 8	1.6	1.6	100 %	99 %	-	200	15	2.65	-	
HD 10		1.6	100 %	99 %	-	325	5	2.65	-	
HD 12		1.6	100 %	99 %	-	750	5	2.65		
11012	1.0	1.0	100 %	JJ %						
I										
Note: Re	sults vary signi	ficantly base	d on particle size d	listribution		Si	mulate]		

Figure 9. Interstate Towing Separator Sizing Results WQ1

	t Units C	AD Video	Help						
) 🗁 🛃 é	🗄 🕜 🖨 🗵	Ì							
neral Dimen	sions Rainfall	Site TSS	PSD TSS Loading	Quantity Storage	By-Pass Cu	stom CAD	Video	Other	
Site Paramete	ers		Units	Rainfall Statio	on				
Area (ac)		.74	▼ U.S.	Worcester W	so Ap		Ma	assachusetts	
Impervious	ر ۱۹۹۹ (%)	80	Metric	1957 To 2001			Rainfall [*]	Timestep = 60 r	nin
Imperviousi	1055 (%)	08	1 Metric				- Carrian		
	nterstate Towing	WQ2			Outlet Pipe				
lines)	Sturbridge, MA				Diam. (in)	12 Pe	ak Design	Flow (ft3/s)	3.82
Lab Sizing R	esults	Г	Post Treatment Re	echarge	Slope (%)	.5			
Los on Ling i			T OST TTOSTINGHT IN	conargo					
lydroDome A	nnual Sizing Re	sults			– ,	Particle Size (Distributior		
Model #	Qlow (ft3/s)	Qtot (ft3/s)	Flow Capture (%)	TSS Removal (%)		Size (um)	%	SG	
HD 3	3.8	3.8	100 %	90 %		20	35	2.65	
HD 4	3.8	3.8	100 %	96 %		35 63	10 5	2.65	
HD 5	3.8	3.8	100 %	98 %		88	10	2.65	
HD 6	3.8	3.8	100 %	99 %		125	15	2.65	
HD 7	3.8	3.8	100 %	99 %		200	15	2.65	
	3.8	3.8	100 %	99 %		325	5	2.65	
HD 8	3.8	3.8	100 %	99 %		750	5	2.65	
HD 8 HD 10	3.8	3.8	100 %	99 %		/ 30	3	2.00	
HD 10									

Figure 10. Interstate Towing Separator Sizing Results WQ2

📕 Hydroworks Siphon Separat	tor Sizing Pr	ogram - HydroDor	me					?	×
File Product Units CA	D Video	Help							
1 🖹 🍋 🖵 🚑 🕜 🖨 🕅									
General Dimensions Rainfall S	а I тес I		Quantity Storage	Pu Page L Cu	etem CAD	Video I (Other		
	ale 1551				SIGHT CAD		Juner		
Site Parameters		Units	Rainfall Statio						
Area (ac)	.14	🗹 U.S.	Worcester W	so Ap		Ma	essachusett	s	
Imperviousness (%)	82	Metric	1957 To 2001	I		Rainfall 1	Timestep = 6	60 min.	
Project Title Interstate Towing V	NQ4			Outlet Pipe				_	_
(2 lines) Sturbridge, MA				Diam. (in)	12 Pe	ak Design I	Flow (ft3/s)	.73	
Lab Sizing Results	Γ	Post Treatment Re	echarge	Slope (%)	2				
HydroDome Annual Sizing Resu	ults				Particle Size [Distribution			
Model # Qlow (ft3/s)	Qtot (ft3/s)	Flow Capture (%)	TSS Removal (%)		Size (um)	%	SG		
HD 3 .7	.7	100 %	99 %		20	35	2.65	-	
HD 4 .7	.7	100 %	99 %		35	10	2.65	-	
HD 5 .7	.7	100 %	99 %		63	5	2.65	-	
HD 6 .7	.7	100 %	99 %		88	10	2.65	-	
HD 7 .7	.7	100 %	99 %		125	15	2.65	-	
HD 8 .7	.7	100 %	99 %	-	200	15	2.65	-	
HD 10 .7	.7	100 %	99 %	-	325	5	2.65	-	
HD 12 .7	.7	100 %	99 %		750	5	2.65		
Note: Results vary signific	cantly based	l on particle size c	listribution	1	Si	mulate]		

Figure 11. Interstate Towing Separator Sizing Results WQ4

Local Production

Hydroworks units are made locally in by United Concrete in CT, CSI in Hudson, NH, and STI in Leominster, MA. Therefore, the use of HydroDome supports the local MA and New England economy.

Summary

We propose the use of three HydroDome HD 3 separators for Interstate Towing project in Sturbridge, MA. The proposed HydroDome separator will provide 80% annual TSS removal for the fine TSS particle size distribution and treat the site water quality flow rate.

APPENDIX 1

HydroDome Approvals

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION

PHILIP D. MURPHY

Governor

DIVISION OF WATERSHED PROTECTION AND RESTORATION BUREAU OF NJPDES STORMWATER PERMITTING & WATER QUALITY MANAGEMENT P.O. Box 420 Mail Code 401-02B

SHAWN M. LATOURETTE Commissioner

SHEILA Y. OLIVER Lt. Governor Trenton, New Jersey 08625-0420 609-633-7021 / Fax: 609-777-0432 www.njstormwater.org

June 30, 2021

Graham Bryant President Hydroworks, LLC 257 Cox Street Roselle, NJ 07203

Re: MTD Lab Certification HydroDome (HD) Stormwater Separator by Hydroworks, LLC On-line Installation

TSS Removal Rate 50%

Dear Mr. Bryant:

The Stormwater Management rules under N.J.A.C. 7:8-5.2(f) and 5.2(j) allow the use of manufactured treatment devices (MTDs) for compliance with the design and performance standards at N.J.A.C. 7:8-5 if the pollutant removal rates have been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and have been certified by the New Jersey Department of Environmental Protection (NJDEP). Hydroworks, LLC has requested an MTD Laboratory Certification for the HydroDome Stormwater Separator (HydroDome).

The project falls under the "Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advance Technology" dated January 25, 2013. The applicable protocol is the "New Jersey Laboratory Testing Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device" dated January 25, 2013.

NJCAT verification documents submitted to the NJDEP indicate that the requirements of the protocol have been met or exceeded. The NJCAT letter also included a recommended certification TSS removal rate and the required maintenance plan. The NJCAT Verification Report dated May 2021 with the Verification Appendix for this device is published online at http://www.njcat.org/verification-process/technology-verification-process/technology-verification-process/technology-verification-database.html.

The NJDEP certifies the use of the HydroDome by Hydroworks, LLC at a TSS removal rate of 50% when designed, operated and maintained in accordance with the information provided in the Verification Appendix and the following conditions:

New Jersey is an Equal Opportunity Employer Printed on Recycled Paper and Recyclable

- The maximum treatment flow rate (MTFR) for the manufactured treatment device (MTD) is calculated using the New Jersey Water Quality Design Storm (1.25 inches in 2 hrs) in N.J.A.C. 7:8-5.5.
- The HydroDome shall be installed using the same configuration reviewed by NJCAT and shall be sized in accordance with the criteria specified in in item 6 below.
- This HydroDome cannot be used in series with another MTD or a media filter (such as a sand filter), to achieve an enhanced removal rate for total suspended solids (TSS) removal under N.J.A.C. 7:8-5.5.
- Additional design criteria for MTDs can be found in Chapter 11.3 of the New Jersey Stormwater Best Management Practices (NJ Stormwater BMP) Manual which can be found on-line at www.nistormwater.org.
- 5. The maintenance plan for a site using this device shall incorporate, at a minimum, the maintenance requirements for the HydroDome, which is attached to this document. However, it is recommended to review the maintenance manual at <u>www.hydroworks.com\hdmaintenance.pdf</u> for any changes to the maintenance requirements.
- 6. Sizing Requirements:

The example below demonstrates the sizing procedure for the HydroDome:

Example: A 0.25-acre impervious site is to be treated to 50% TSS removal using a HydroDome. The impervious site runoff (Q) based on the New Jersey Water Quality Design Storm was determined to be 0.79 cfs.

Maximum Treatment Flow Rate (MTFR) Evaluation:

The site runoff (Q) was based on the following:

time of concentration = 10 minutes i=3.2 in/hr (page 21, Fig. 5-10 of Chapter 5 of the NJ Stormwater BMP Manual) c=0.99 (curve number for impervious) Q=ciA=0.99x3.2x0.25=0.79 cfs

Given the site runoff is 0.79 cfs and based on Table 1 below, the HydroDome Model HD 3 with a MTFR of 0.85 cfs would be the smallest model approved that could be used for this site that could remove 50% of the TSS from the impervious area without exceeding the MTFR.

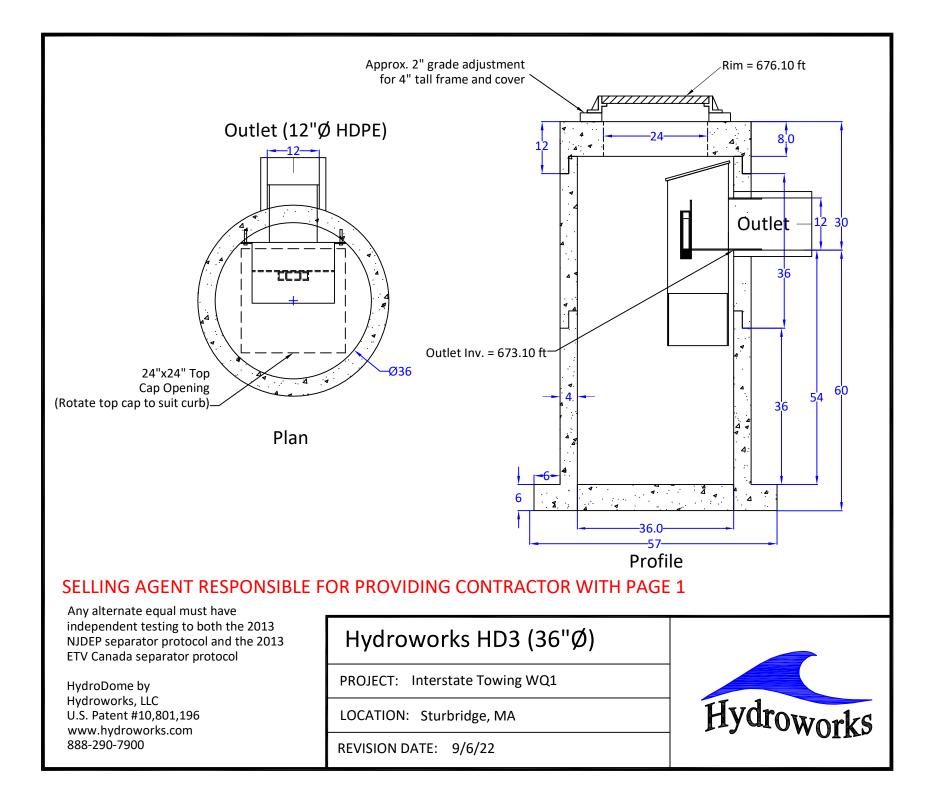
The sizing table corresponding to the available system models is noted below. Additional specifications regarding each model can be found in the Verification Appendix under Table A-1 and Table A-2.

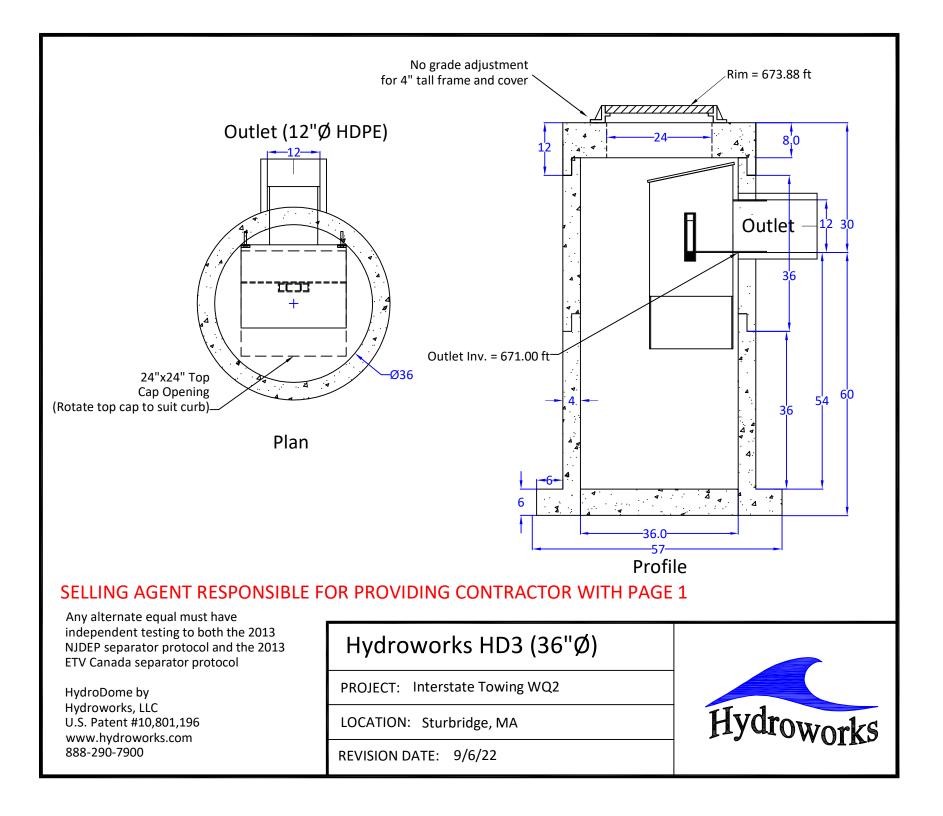
Table 1 HydroDome Models								
HydroDome Model	Manhole Diameter (ft)	Maximum Treatment Flowrate, MTFR (cfs)						
HD 3	3	0,85						
HD 4	4	1.51						
HD 5	5	2.36						
HD 6	6	3.40						
HD 7	7	4.63						
HD 8	8	6.03						
HD 10	10	9.44						
HD 12	12	13.60						

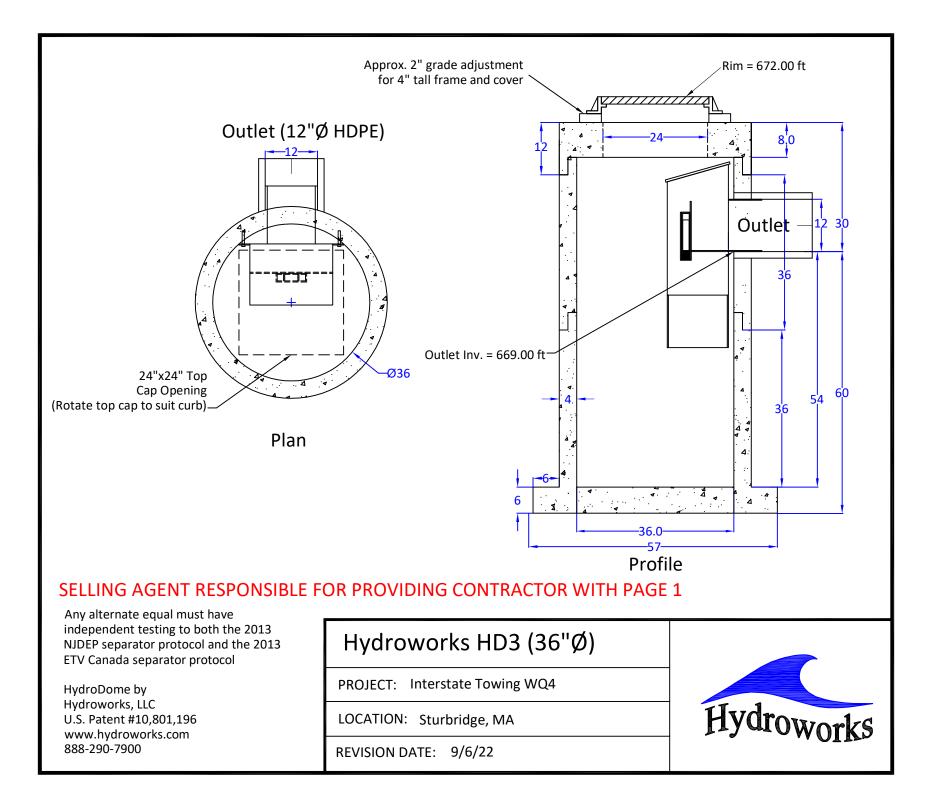
Be advised a detailed maintenance plan is mandatory for any project with a Stormwater BMP subject to the Stormwater Management Rules, N.J.A.C. 7:8. The plan must include all the items identified in the Stormwater Management Rules, N.J.A.C. 7:8-5.8. Such items include, but are not limited to, the list of inspection and maintenance equipment and tools, specific corrective and preventative maintenance tasks, indication of problems in the system, and training of maintenance personnel. Additional information can be found in Chapter 8: Maintenance and Retrofit of Stormwater Management Measures.

If you have any questions regarding the above information, please contact Lisa Schaefer of my office al lisa.schaefer@dep.nj.gov.

Sincerely,


Gabriel Mahon, Chief Bureau of NJPDES Stormwater Permitting & Water Quality Management Division of Watershed Protection and Restoration New Jersey Department of Environmental Protection


Attachment: Maintenance Plan


cc: Richard Magee, NJCAT

APPENDIX 2

CAD Drawings

APPENDIX 3

HydroDome Sizing Output

Hydroworks Sizing Summary

Interstate Towing WQ1 Sturbridge, MA

09-06-2022

Recommended Size: HydroDome HD 3i

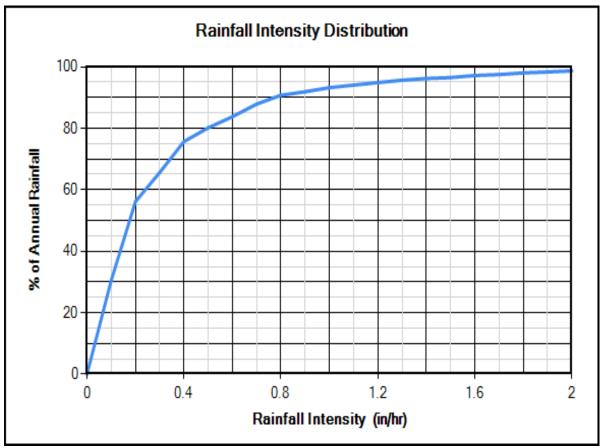
A HydroDome HD 3i is recommended to provide 80 % annual TSS removal based on a drainage area of .32 (ac) with an imperviousness of 80 % and Worcester Wso Ap, Massachusetts rainfall for the Hydroworks standard particle size distribution.

The recommended HydroDome HD 3i treats 100 % of the annual runoff and provides 98 % annual TSS removal for the Worcester Wso Ap rainfall records and Hydroworks standard particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of 1.64 (ft3/s) Is less than the full pipe flow of 3.56 (ft3/s) indicating free flow in the pipe during the peak flow assuming no tailwater condition. Partial pipe flow was assumed for the headloss calculations. The headloss was calculated to be 11 (in) above the crown of the 12 (in) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

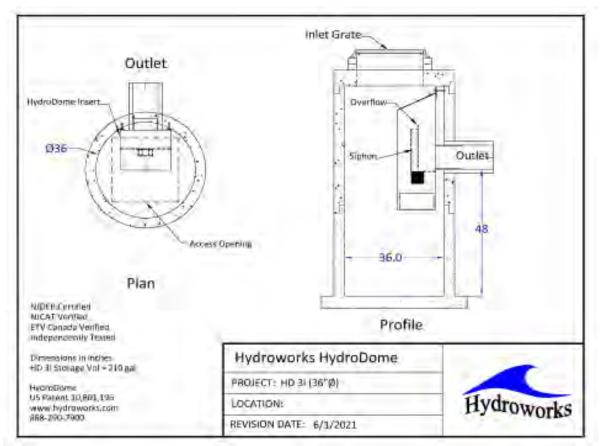

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

Hydroworks S	iphon Separat	or Sizing Prog	gram - HydroDom	e					? 🛛
File Product	Units C/	AD Video	Help						
🛅 🗁 🔒 🖨	3 🕜 😑 🗵	1							
General Dimensi	ons Rainfall	Site TSS	PSD TSS Loading	Quantity Storage	By-Pass C	ustom CAD	Video	Other	
Site Parameter			Units	Rainfall Statio			1 1		
Area (ac)	٦ ا	.32	V.S.	Worcester W			Ma	ssachusetts	
	 			1957 To 200					
Imperviousn	ess (%)	80	Metric	1957 10 200	1		Kaintali I	imestep = 60	min.
	terstate Towing	WQ1			Outlet Pip				
(2 lines)	turbridge, MA				Diam. (in)	12 F	Peak Design I	Flow (ft3/s)	64
Lab Sizing Re		Г	Post Treatment Re	echarge	Slope (%)	1			
			T UST THEBUILDENT IN	echarge					•
HydroDome An	nual Sizing Rea	sults				Particle Size	e Distribution		
Model #	Qlow (ft3/s)	Qtot (ft3/s)	Flow Capture (%)	TSS Removal (%)		Size (um)		SG	
HD 3	1.6	1.6	100 %	98 %		20	35	2.65	
HD 4	1.6	1.6	100 %	99 %		35 63	10	2.65	
HD 5	1.6	1.6	100 %	99 %		88	10	2.65	
HD 6	1.6	1.6	100 %	99 %		125	15	2.65	
HD 7	1.6	1.6	100 %	99 %		200	15	2.65	
HD 8	1.6	1.6	100 %	99 %		325	5	2.65	
HD 10	1.6	1.6	100 %	99 %		750	5	2.65	
HD 12	1.6	1.6	100 %	99 %					
ļ									
Note: Result	s vary signif	ficantly base	d on particle size o	distribution			Simulate		

TSS Particle Size Distribution

- Hydrowork	s Siphon Separator S	Sizing Program - Hydro	ome	? X
File Prod				
General Dime	Insions Rainfall Site Size Distribution (um) % 20 35 10 63 5 88 10 125 15 5 200 15 325 5 750 5 5	SG 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	ding Quantity Storage By-Pass Custon Notes: 1. To change data just click a cell and type in the new value(s) 2. To add a row just go to the bottom of the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete 4. To sort the table click on one of the column headings	TSS Distributions NJDEP Standard HDS Design Alden Laboratory OK110 Toronto Ontario Fine Calgary Forebay Kitchener User Defined Clear
 You must se	ect a particle size	distribution for TSS to sin	ulate TSS removal	Water Temp (F) 68


Site Physical Characteristics

 Hydrow 	orks Sipho	n Separato	r Sizing Pi	rogram - l	HydroDom	e						? 🛛
File Pr	oduct U	Jnits CA	D Vide	o Help								
1 🗁 🛛] 🖪 🤅) 😑 🖄										
General D	imensions	Rainfall	Site TS	S PSD 1	SS Loading	g Quantit	y Storage	By-Pass (Custom C	AD Vide	o Other	
Catchme	ent Parame	ters						M	laintenanc	e		
Width	Width (ft) 118 Imperv. Mannings n .015 Frequency (months) 12											
D	Default Width Perv Mannings n .25											
	Imp. Depress. Storage (in) .02											
Slope	(%)	2	Pe	rv. Depres	s. Storage	(in)	.2	-				
Daily Eva Jan	poration (ir Feb	1/day) Mar	Apr	Mari	Jun	Jul		Sep	Oct	Nov	Dec	
0	0	0	0.1	May 0.1	0.15	0.15	Aug 0.15	0.1	0.1	0	0	
Infiltratio	n				Ca	tch Basins						
Max. I	nfiltation Ra	ate (in/hr)		2.5	#	of Catch	basins		1	exclud	l parameters ling input	
Min. In	filtration Ra	ate (in/hr)		.4						catchr	ent width.	
Infiltra	tion Decay	Rate (1/s)		.00055			oof Runoff			Defau	It Values	
Infiltra	tion Regen	. Rate (1/s)		.01		oof Runof	f (ft3/s)		0.0	Deidd		

Dimensions And Capacities

Model	d Capacities Diam. (ft)	Depth (ft)	Float. Vol. (gal)	Sediment Vol. (ft3)	Total Vol. (gal)	
HD 3	3	4	33	17	212	
HD 4	4	4.5	70	31	423	
HD 5	5	5.5	128	61	808	
HD 6	6	6.5	212	104	1375	
HD 7	7	7.5	324	164	2159	
HD 8	8	8.5	492	239	3196	
HD 10	10	10.5	955	458	6169	
HD 12	12	12.5	1644	782	10575	
oth = Depth	from outlet invert to	inside bottom of t	ank			

Generic HD 3i CAD Drawing

TSS Buildup And Washoff

Hydroworks Siphon Separator Sizing Program - HydroDome	8
File Product Units CAD Video Help	
1 🗁 🚽 🥔 🤤 🗵	
General Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage By-Pass Custom CAD Video Other	
TSS Buildup Street Sweeping Soil Erosion Power Linear Efficiency (%) 30 Exponential Start Month May ▼ Michaelis-Menton Stop Month Sep ▼ TSS Washoff Available Fraction 30	
Power-Exponential Image: Curve (no upper limit) Rating Curve (limited to buildup) Reset to Default Values Values	
TSS Buildup Parameters TSS Washoff Parameters Limit (Ib/ac) 25 Coeff (Ib/ac) 60 Exponent 1.1 Exponent 5	

Upstream Quantity Storage

uanti	ty Control Storage		_		
Jana	Storage (ft3)	Discharge (ft3/s)		Notes:	
	0	0		1. To change data just click a	
			-	cell and type in the new value (s)	
-				2. To add a row just go to the	
				bottom of the table and start	
				typing.	
				3. To delete a row, select the row	
				by clicking on the first pointer	
				column, then press delete	
				 To sort the table click on one of the column headings 	
				of the column headings	
				Clear	

Other Parameters

Hydroworks Siphon Separator Sizing Program - HydroDome	8 3
File Product Units CAD Video Help	
1 🗁 🚽 🥔 🤤 🖄	
General Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage	By-Pass Custom CAD Video Other
Scaling Law Image: Peclet Scaling based on diameter x depth Image: Peclet Scaling based on surface area (diameter x diameter) TSS Removal Extrapolation Image: Peclet Scaling based on surface area (diameter x diameter) TSS Removal Extrapolation Image: Peclet Scaling based on surface area (diameter x diameter) TSS Removal Extrapolation Image: Peclet Scaling based on surface area (diameter x diameter) Image: Peclet Scaling based on surface area (diameter x diameter) TSS Removal Extrapolation Image: Peclet Scaling based on surface area (diameter x diameter)	HydroDome Design High Flow Weir Flow Control (parking lot storage) Must add Quantity Storage Table HD Hydraulics HD Model HD 3 Custom Insert Size
□ No TSS Removal extrapoloation for lower flows or inter-event periods □ Lab Testing □ Use NJDEP Lab Testing Results □ Use ETV Canada Lab Testing Results □ TSS Removal Results ○ Required TSS Removal ○ Required TSS Removal ○ Choose Model #	SS Removal (%)

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.7 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com

Hydroworks Sizing Summary

Interstate Towing WQ2 Sturbridge, MA

09-06-2022

Recommended Size: HydroDome HD 3i

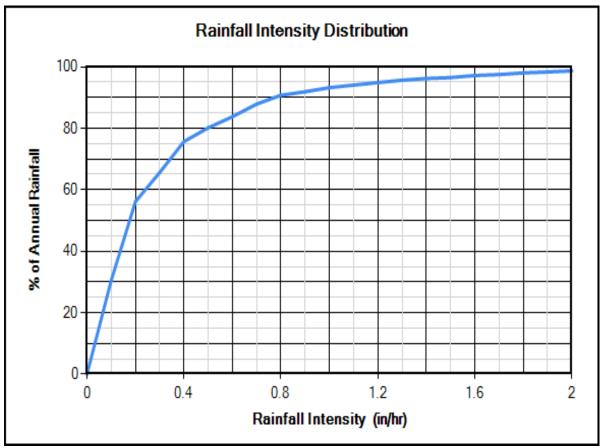
A HydroDome HD 3i is recommended to provide 80 % annual TSS removal based on a drainage area of .74 (ac) with an imperviousness of 80 % and Worcester Wso Ap, Massachusetts rainfall for the Hydroworks standard particle size distribution.

The recommended HydroDome HD 3i treats 100 % of the annual runoff and provides 90 % annual TSS removal for the Worcester Wso Ap rainfall records and Hydroworks standard particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of 3.82 (ft3/s) is greater than the full pipe flow of 2.52 (ft3/s) indicating the pipe will be surcharged during the peak flow. Full pipe flow was assumed for the headloss calculations. The pressure head in the pipe was not evaluated since this would require a hydraulic gradeline analysis. The headloss was calculated to be 13 (in) above the crown of the 12 (in) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

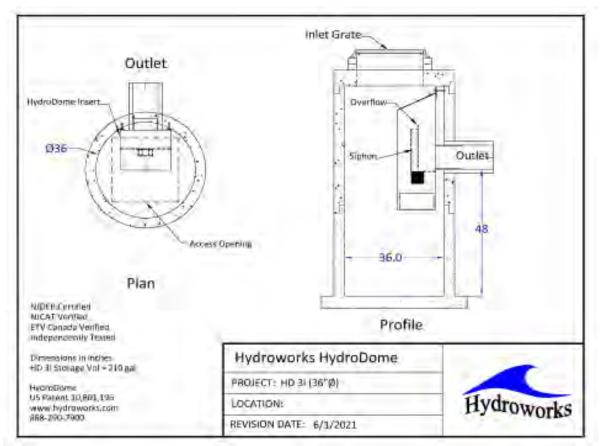

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

 Hydrowork 	s Siphon Separat	or Sizing Prog	gram - HydroDom	e					?Σ
File Produ	ict Units C	AD Video	Help						
🖒 🗁 🔒	🖪 📀 😑 🗷	Ì							
General Dime	nsions Rainfall	Site TSS	PSD TSS Loading	Quantity Storage	By-Pass C	ustom CAD	Video 0	Other	
Site Parame	ters		Units	Rainfall Statio	on .				
Area (ac)		.74	⊽ U.S.	Worcester W	so Ap		Ma	ssachusetts	
	sness (%)	80	Metric	1957 To 200	I		Rainfall T	imestep = 60) min.
Project Title	Interstate Towing	WQ2			Outlet Pip		Deels Deelers I		
(2 lines)	Sturbridge, MA				Diam. (in)		^p eak Design I	-10W (113/S)	82
Lab Sizing	Results	Γ	Post Treatment Re	echarge	Slope (%)	.5			
HydroDome	Annual Sizing Re	sults				Particle Size	e Distribution		
Model #	Qlow (ft3/s)	Qtot (ft3/s)	Flow Capture (%)	TSS Removal (%)		Size (um)	%	SG	
HD 3	3.8	3.8	100 %	90 %		20	35	2.65	
HD 4	3.8	3.8	100 %	96 %		35	10	2.65	
HD 5	3.8	3.8	100 %	98 %		63	5	2.65	
HD 6	3.8	3.8	100 %	99 %		88	10	2.65	
HD 7	3.8	3.8	100 %	99 %		125	15	2.65	
HD 8	3.8	3.8	100 %	99 %		200	15	2.65	
HD 10	3.8	3.8	100 %	99 %		325	5	2.65	
HD 12	3.8	3.8	100 %	99 %		750	5	2.65	
Note: Res	ults vary signi	ficantly base	d on particle size o	distribution			Simulate		

TSS Particle Size Distribution

	Hydr	roworks Sip	hon Se	eparator Siz	zing Prog	jram - HydroD)ome		8 2
F	ile	Product		s CAD	Video	Help			
Gi	eneral	 Dimension Dimension Size (um) 20 35 63 88 125 200 325 750 	ns Ra	ainfall Site	TSS	PSD TSS Loa SG 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	ading Qua	ntity Storage By-Pass Custor Notes: 1. To change data just click a cell and type in the new value(s) 2. To add a row just go to the bottom of the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete 4. To sort the table click on one of the column headings	m CAD Video Other TSS Distributions C NJDEP Standard HDS Design C Alden Laboratory C OK110 C Toronto C Ontario Fine C Calgary Forebay Kitchener C User Defined Clear
Y	ou mi	ustselecta	a parti	icle size di	stribution	n for TSS to sim	nulate TSS	removal \	Water Temp (F) 68


Site Physical Characteristics

- Hydrow	orks Sipho	n Separato	or Sizing Pr	rogram - ł	HydroDom	e						? 🛛
File Pr	oduct U	Jnits CA	D Vide	o Help								
1 🗁 🛛] 🖪 🤅) 😑 🖄										
General D	imensions	Rainfall	Site TS	S PSD 1	TSS Loading	g Quantity	y Storage	By-Pass C	Custom C	AD Vide	eo Other	
Catchme	ent Paramet	ters						M	laintenanc	e		
Width	Width (ft) 180 Imperv. Mannings n .015 Frequency (months) 12											
	Default Width Perv Mannings n .25											
	Imp. Depress. Storage (in) .02											
Slope	(%)	2	Pe	rv. Depres	s. Storage	(in)	.2	-				
		,					,					
	poration (in				1.1			0		_ NI		
Jan 0	Feb 0	Mar 0	Apr 0.1	May 0.1	Jun 0.15	Jul 0.15	Aug 0.15	Sep 0.1	0ct 0.1	Nov 0	Dec 0	
Infiltratio	n				Ca	tch Basins				-		
Max. Ir	nfiltation Ra	ate (in/hr)		2.5	_ #	of Catch I	basins		1	exclud	l parameters ding input	
Min. In	filtration Ra	ate (in/hr)		.4						catchm	ent width.	
Infiltra	tion Decay	Rate (1/s)		.00055		ntrolled Ro	oof Runoff	_		Defau	It Values	
Infiltra	tion Regen.	. Rate (1/s)		.01	- R	oof Runof	f (ft3/s)	(0.0	Delau	in values	

Dimensions And Capacities

Model	d Capacities Diam. (ft)	Depth (ft)	Float. Vol. (gal)	Sediment Vol. (ft3)	Total Vol. (gal)	
HD 3	3	4	33	17	212	
HD 4	4	4.5	70	31	423	
HD 5	5	5.5	128	61	808	
HD 6	6	6.5	212	104	1375	
HD 7	7	7.5	324	164	2159	
HD 8	8	8.5	492	239	3196	
HD 10	10	10.5	955	458	6169	
HD 12	12	12.5	1644	782	10575	
oth = Depth	from outlet invert to	inside bottom of t	ank			

Generic HD 3i CAD Drawing

TSS Buildup And Washoff

Hydroworks Siphon Separator Sizing Program - HydroDome	8
File Product Units CAD Video Help	
1 🗁 🚽 🥔 🤤 🗵	
General Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage By-Pass Custom CAD Video Other	
TSS Buildup Street Sweeping Soil Erosion Power Linear Efficiency (%) 30 Exponential Start Month May ▼ Michaelis-Menton Stop Month Sep ▼ TSS Washoff Available Fraction 30	
Power-Exponential Image: Curve (no upper limit) Rating Curve (limited to buildup) Reset to Default Values Values	
TSS Buildup Parameters TSS Washoff Parameters Limit (Ib/ac) 25 Coeff (Ib/ac) 60 Exponent 1.1 Exponent 5	

Upstream Quantity Storage

uanti	ty Control Storage		_		
Jana	Storage (ft3)	Discharge (ft3/s)		Notes:	
	0	0		1. To change data just click a	
			-	cell and type in the new value (s)	
-				2. To add a row just go to the	
				bottom of the table and start	
				typing.	
				3. To delete a row, select the row	
				by clicking on the first pointer	
				column, then press delete	
				 To sort the table click on one of the column headings 	
				of the column headings	
				Clear	

Other Parameters

Hydroworks Siphon Separator Sizing Program - HydroDome	S S
File Product Units CAD Video Help	
) 🔁 🕞 🥥 🤤 🗷	
General Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage	By-Pass Custom CAD Video Other
Scaling Law Peclet Scaling based on diameter x depth Peclet Scaling based on surface area (diameter x diameter) TOO D	HydroDome Design High Flow Weir Flow Control (parking lot storage) Must add Quantity Storage Table
TSS Removal Extrapolation Extrapolate TSS Removal for flows lower than tested	HD Hydraulics HD Model HD 3
No TSS Removal extrapolation for flows lower than tested	Custom Insert Size
No TSS Removal extrapoloation for lower flows or inter-event periods	HD Insert Size HD 4
Lab Testing ✓ Use NJDEP Lab Testing Results ✓ Use ETV Canada Lab Testing Results	
TSS Removal Results Required TSS Removal C Choose Model # TSS Removal (%) 80.0 Enter required TS Removal (%) 80.0 Enter required TS	SS Removal (%)

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.7 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com

Hydroworks Sizing Summary

Interstate Towing WQ4 Sturbridge, MA

09-06-2022

Recommended Size: HydroDome HD 3i

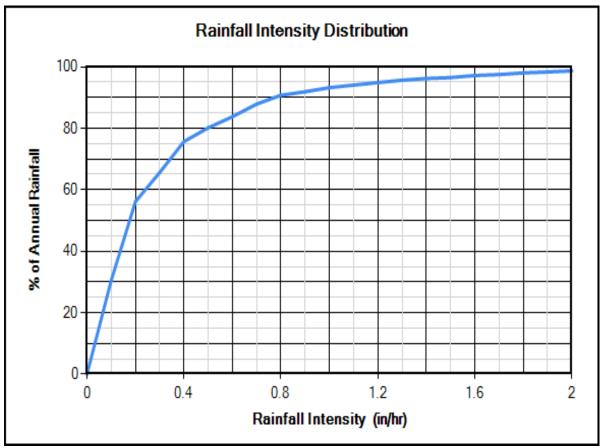
A HydroDome HD 3i is recommended to provide 80 % annual TSS removal based on a drainage area of .14 (ac) with an imperviousness of 82 % and Worcester Wso Ap, Massachusetts rainfall for the Hydroworks standard particle size distribution.

The recommended HydroDome HD 3i treats 100 % of the annual runoff and provides 99 % annual TSS removal for the Worcester Wso Ap rainfall records and Hydroworks standard particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .73 (ft3/s) Is less than the full pipe flow of 5.04 (ft3/s) indicating free flow in the pipe during the peak flow assuming no tailwater condition. Partial pipe flow was assumed for the headloss calculations. The headloss was calculated to be 9 (in) above the crown of the 12 (in) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

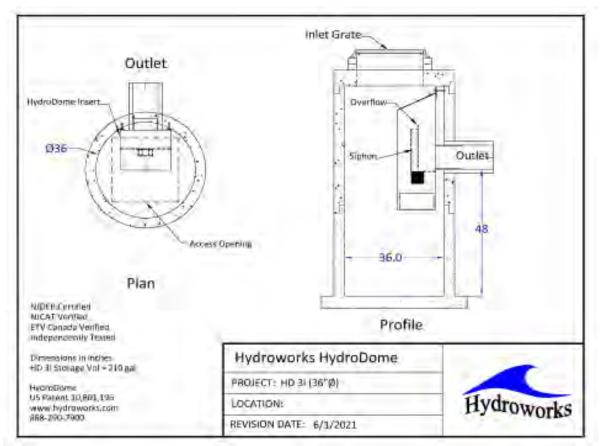

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

- Hydroworks Siphon Separator Sizing Program - HydroDome									
File Product Units CAD Video Help									
General Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage By-Pass Custom CAD Video Other									
Site Parameters									
Area (ac) .14 V.S. Worcester Wso Ap Massachusetts									
Impervious	ness (%)	82	Metric	1357 10 200			Raintali I	imestep = 60	/ min.
Project Title	Interstate Towing	WQ4			Outlet Pip				
(2 lines)	Sturbridge, MA				Diam. (in)	12 F	Peak Design I	Flow (ft3/s)	73
Lab Sizing R		Г	Post Treatment Re		Slope (%)	2			
Lab Sizing N	courto	1	Fost freatment N	echarge					
HydroDome A	nnual Sizing Re	sults				Particle Size	e Distribution		
Model #	Qlow (ft3/s)	Qtot (ft3/s)	Flow Capture (%)	TSS Removal (%)		Size (um)	%	SG	
HD 3	.7	.7	100 %	99 %		20	35	2.65	
HD 4	.7	.7	100 %	99 %		35	10	2.65	
HD 5	.7	.7	100 %	99 %		63 88	5	2.65	
HD 6	.7	.7	100 %	99 %		125	10	2.65	
HD 7	.7	.7	100 %	99 %		200	15	2.65	
HD 8	.7	.7	100 %	99 %		325	5	2.65	
HD 10	.7	.7	100 %	99 %		750	5	2.65	
HD 12	.7	.7	100 %	99 %		, 30	, J	2.00	
Note: Resu	lts vary signif	ficantly base	d on particle size o	distribution			Simulate		
								I	

TSS Particle Size Distribution

	Hydr	roworks Sip	hon Se	eparator Siz	zing Prog	jram - HydroD)ome		8 2	
F	ile	Product		s CAD	Video	Help				
Gi	eneral	 Dimension Dimension Size (um) 20 35 63 88 125 200 325 750 	ns Ra	ainfall Site	TSS	PSD TSS Loa SG 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	ading Qua	ntity Storage By-Pass Custor Notes: 1. To change data just click a cell and type in the new value(s) 2. To add a row just go to the bottom of the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete 4. To sort the table click on one of the column headings	m CAD Video Other TSS Distributions C NJDEP Standard HDS Design C Alden Laboratory C OK110 C Toronto C Ontario Fine C Calgary Forebay Kitchener C User Defined Clear	
Y	You must select a particle size distribution for TSS to simulate TSS removal Water Temp (F) 68									


Site Physical Characteristics

 Hydrow 	Hydroworks Siphon Separator Sizing Program - HydroDome											
File Pr	oduct L	Jnits CA	D Vide	o Help								
1 🗁] [] () 😑 🖄										
General C	Dimensions	Rainfall	Site TS	S PSD 1	TSS Loading	g Quantity	y Storage	By-Pass (Custom C	AD Vide	eo Other	
Catchme	Catchment Parameters Maintenance											
Width	ı (ft)	78	Im	perv. Manr	nings n		.015	F	requency	(months)	12	
с	Default Width Perv Mannings n .25											
			Im	p. Depress	s. Storage (in)	.02					
Slope	e (%)	2	Pe	rv. Depres	s. Storage	(in)	.2	-				
Daily Eva	poration (in	n/day) Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
0	0	0	0.1	0.1	0.15	0.15	0.15	0.1	0.1	0	0	
Infiltratio	n				Ca	tch Basins				Decete el	l parameters	
Max. I	nfiltation Ra	ate (in/hr)		2.5	#	of Catch I	basins		1	exclud	ding input ment width.	
Min. Ir	filtration R	ate (in/hr)		.4			of Runoff			catchin	ient width.	
Infiltra	tion Decay	Rate (1/s)		.00055						Defau	It Values	
Infiltra	tion Regen	. Rate (1/s)		.01		oof Runof	f (ft3/s)		0.0			

Dimensions And Capacities

Model	d Capacities Diam. (ft)	Depth (ft)	Float. Vol. (gal)	Sediment Vol. (ft3)	Total Vol. (gal)	
HD 3	3	4	33	17	212	
HD 4	4	4.5	70	31	423	
HD 5	5	5.5	128	61	808	
HD 6	6	6.5	212	104	1375	
HD 7	7	7.5	324	164	2159	
HD 8	8	8.5	492	239	3196	
HD 10	10	10.5	955	458	6169	
HD 12	12	12.5	1644	782	10575	
oth = Depth	from outlet invert to	inside bottom of t	ank			

Generic HD 3i CAD Drawing

TSS Buildup And Washoff

Hydroworks Siphon Separator Sizing Program - HydroDome	8
File Product Units CAD Video Help	
1 🗁 🚽 🥔 🤤 🗵	
General Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage By-Pass Custom CAD Video Other	
TSS Buildup Street Sweeping Soil Erosion Power Linear Efficiency (%) 30 Exponential Start Month May ▼ Michaelis-Menton Stop Month Sep ▼ TSS Washoff Available Fraction 30	
Power-Exponential Image: Curve (no upper limit) Rating Curve (limited to buildup) Reset to Default Values Values	
TSS Buildup Parameters TSS Washoff Parameters Limit (Ib/ac) 25 Coeff (Ib/ac) 60 Exponent 1.1 Exponent 5	

Upstream Quantity Storage

uanti	ty Control Storage		_		
Gaine	Storage (ft3)	Discharge (ft3/s)		Notes:	
	0	0		1. To change data just click a	
			-	cell and type in the new value (s)	
-				2. To add a row just go to the	
				bottom of the table and start	
				typing.	
				3. To delete a row, select the row	
				by clicking on the first pointer	
				column, then press delete	
				 To sort the table click on one of the column headings 	
				of the column headings	
				Clear	

Other Parameters

Hydroworks Siphon Separator Sizing Program - HydroDome								
File Product Units CAD Video Help								
) 🔁 🚘 🛃 🕥 🤤 🖄								
General Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage	By-Pass Custom CAD Video Other							
Scaling Law	HydroDome Design							
✓ Peclet Scaling based on diameter x depth	I High Flow Weir							
Peclet Scaling based on surface area (diameter x diameter)	Flow Control (parking lot storage)							
	Must add Quantity Storage Table							
TSS Removal Extrapolation	HD Hydraulics							
Extrapolate TSS Removal for flows lower than tested	HD Model HD 3							
No TSS Removal extrapolation for flows lower than tested	Custom Insert Size HD Insert Size							
No TSS Removal extrapoloation for lower flows or inter-event periods								
Lab Testing								
Vise NJDEP Lab Testing Results								
Use ETV Canada Lab Testing Results								
TSS Removal Results								
Choose Model # TSS Removal SS Removal (%) 80.0 Enter required TS	S Removal (%)							
Choose Model #								

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.7 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com

Appendix H

Stormwater Management System Long-Term Operation & Maintenance (O&M) Plan

STORM WATER MANAGEMENT SYSTEM LONG-TERM OPERATION & MAINTENANCE PLAN

Revised November 30, 2022

Proposed "Interstate Towing" Facility #698 Main Street (Route 20) Sturbridge, MA

Prepared For:

Wrecker, LLC. 1660 Westover Road Chicopee, MA 02451

Prepared By:

CMG Environmental, Inc. 67 Hall Road Sturbridge, MA 01566 Phone: (774) 241-0901

CMG ID 2022-035

TABLE OF CONTENTS

Responsible Party1							
Structural Storm Water BMP Maintenance 3							
Hydrostorm Water Quality Units							
Oil / Grit Separator (4,500 gal.)							
Underground Infiltration Chambers							
Rain Garden							
Rip-rap Outlet Protection							
Non-Structural Storm Water Controls	4						
Vehicle Maintenance Areas							
Landscape Maintenance							
Trash Removal							
Materials & Waste Storage							
Hazardous Waste / Oil Spill Response	5						
Snow Management Plan	5						
Inspections	6						
Public Safety Features	6						
Staff Training 6							

TABLES

Table 1	Inspection & Maintenance Schedule	2
---------	-----------------------------------	---

ATTACHMENTS

Attachment #1	O&M Compliance Statement
Attachment #2	Quarterly Inspection Form

Long Term Operation & Maintenance Plan Site Stormwater Management System #698 Main Street Proposed "Interstate Towing" Facility STURBRIDGE, MA

Operation and Maintenance (O&M) Plan

The purpose of this Storm Water Management System Operation and Maintenance Plan is to prevent erosion, sedimentation, pollution or other deterioration of the storm water management system and resource areas located on and adjacent to the site property located at **#698 Main Street in Sturbridge, MA** (the "Site"). The storm water management system shall be maintained properly to assure its continued performance.

Responsible Party:

Wrecker, LLC. 1660 Westover Road Chicopee, MA 01020 p. (413) 593-1900

Storm water Management System Owner:	(same as above)
--------------------------------------	-----------------

Site subject to Wetlands Protection Act: YES

The "Responsible Party" Shall:

- Prepare and submit an "Operation and Maintenance (O & M) Compliance Statement" (see Attachment #1) upon completion of site construction activities.
- Implement the routine and non-routine operation, maintenance, and inspection tasks in accordance with the procedures specified in this document to ensure that all storm water management systems function as designed;
- Maintain a log of all operation and maintenance (O & M) activities for the last five (5) years, including inspections, repairs, replacement and disposal (for disposal, the log shall indicate the type of material and disposal location);
- Make this log available to **Town of Sturbridge** official representatives upon request;
- Agree to notify in writing all "future property owners" of the presence of the storm water management system and the requirement for proper operation and maintenance.

"Interstate Towing." maintains a contract with the following companies:

 Landscaping & Pavement Maintenance:

 Snow Removal & Plowing:

 Storm Water System Maintenance:

Table No. 1#698 Main Street, Sturbridge, MAProposed Interstate Towing Facility

STORMWATER SYSTEM INSPECTION AND MAINTENANCE SCHEDULE			
Best Management Practice (BMP)	Inspection Frequency	Maintenance Frequency	
	STRUCTURAL B	MPs	
DEEP-SUMP HOODED CATCH BASIN	Four (4) Times/ Year At end of foliage & snow removal seasons	Remove Sediment if Sediment Depth Reaches 50% of Sump as Min 2 Times per Year (End of Foliage & Snow Removal Season)	
HYDROSTORM WATER QUALITY UNITS	Four (4) Times / Year	Per Manufacturer's Recommendations (See Attached Hydrostorm Operation and Maintenance Manual)	
OIL/ GRIT SEPARATORS 4,500 Gal. Capacity	Monthly	Bi-annual Twice per Year Or Following a Spill Event	
UNDERGROUND INFILTRATION CHAMBERS	Bi-Annual (Early Spring & Late Fall)	As needed	
INFILTRATION BASIN	Monthly	Bi-Annual (Spring and Fall) Remove/ Replace Dead Vegetation Mulch and Prune	
8" & 12" OUTLET PIPES Rip-Rap Apron	Four (4) Times / Year	Remove Sediment Four (4) Times / Year (Including End of Foliage & Snow Removal Seasons)	
NON-STRUCTURAL STORMWATER CONTROLS			
SPILL KIT	Four (4) Times / Year	Replenish Spill Kit as Needed	
Landscaping	Four (4) Times / Year	Seasonally As Needed	
Roadway / Driveway Sweeping	Two (2) Times /Year	Seasonally As Needed	
Snow Removal	Seasonally As Needed	In Accordance with M.G.L. Title XIV. Public Ways and Works; Chapter 85	

STRUCTURAL STORMWATER BMP MAINTENANCE:

Deep Sump Catch Basin(s):

- Inspect or clean catch basin(s) at least four (4) times per year, including the end of the foliage and snow removal seasons.
- Inspection shall occur by probing the structure with a rod to determine the depth of accumulated sediment.
- Sediments must be removed whenever the depth of sediment is greater than or equal to one half of the depth from the bottom of the invert of the lowest pipe in the basin. At a minimum, cleaning shall occur twice a year during the spring and fall.
- The structure will be cleaned of water and sand/debris with the use of a vacuum truck. Material removed from the structure will be disposed of legally off-site by the vendor.
- Unless there is evidence that they have been contaminated by a spill or other means, catch basin cleanings may be taken to a landfill or other facility permitted by MassDEP to accept solid waste.

Hydrostorm Water Quality Units (HS-4 & HS-6)

• Per manufacturer's recommendations, see Attachment #2: Hydroworks Hydrostorm Operation and Maintenance Manual

4,500-Gallon Oil / Grit Separators Maintenance

- Separator shall be inspected on a monthly basis for proper operation.
- Typical maintenance (removal of accumulated oil/grease, floatables, and sediment) shall be conducted twice / year or following a spill event with the use of a vacuum truck.
- Material removed from the structures will be disposed of legally off-site by the vendor.

Underground Infiltration Chambers

• Inspect inlet at least twice a year and remove any debris that may clog the system.

Stormwater Infiltration Basin

- Inspect basin inlets twice per year for signs of accumulation of sediment or debris. Any
 debris or sediment that could potentially clog the system shall be removed as necessary.
- Inspection shall also involve visual observations of failure apparent in the area surrounding the gardens perimeter and outlet structure.
- Inspect soil and repair eroded areas monthly. Re-mulch void areas as needed. Remove trash and debris from garden monthly.
- Remove and replace dead vegetation twice per year (spring and fall).

Rip-rap Apron Outlets

- Inspect regularly, especially after large rainfall events;
- Note and repair any erosion & sediment buildup at the Rip-Rap outlet protection.

NON- STRUCTURAL STORM WATER MANAGEMENT CONTROLS:

Non-Structural Control Measures & Stormwater Treatment

Vehicle Maintenance Areas:

- No outdoor vehicle maintenance is proposed for this application. Any light fleet maintenance or vehicle washing will be done indoors. Please note, floor drains connected to an oil-grit separator is proposed to handle vehicle wash water prior to being discharged into the municipal sanitary sewer system.
- **SPILL KIT** a minimum of one (1) 55-gallon overpack drum, spill response equipment, and oil absorbents need to be located on-site in an accessible location within the building.

Landscape & Pavement Maintenance:

- No debris, refuse or other materials, including but not limited to landscaping debris, leaves, shrubs and tree trimmings, logs, bricks, stone or trash shall be deposited within the vegetated wetland.
- The use of pesticides, herbicides, and fertilizers on the site shall be minimized to the extent practicable and shall be applied in accordance with manufacture recommendations by experienced and if applicable, licensed personnel.
- Pavement areas will be swept seasonally as necessary to remove accumulated winter sand and salt and fall leaves, and shall be swept as required to remove litter. Collected material will be properly disposed of off-site.

Trash Removal

Inspect on-site area for litter and trash as needed. Any accumulated trash, litter, and discarded materials in this area will be removed and will be disposed of at a suitable location on a weekly basis. Solid waste will be collected in the proposed dumpster and discarded from the site via the trash removal contractor.

Materials & Waste Storage

 Non-hazardous materials are to be stored within the limits of the secured/ fenced-in "storage yard" as shown on the enclosed Site Plans. Non-hazardous waste will be discarded in the proposed dumpster (location shown on site plans). Any combustibles are to be stored inside the proposed building in fire rated cabinets. No other hazardous materials or waste is to be stored on premise.

HAZARDOUS WASTE / OIL SPILL RESPONSE PROCEDURE

<u>Initial Notification.</u> In the event of a spill of hazardous waste or oil the facility manager or supervisor will be notified immediately by telephone.

<u>Assessment – Initial Containment.</u> The supervisor or manager will assess the incident and initiate control measures. The supervisor will first contact the **Town of Sturbridge Fire Department** and then notify the **Town of Sturbridge Police Department**. The Fire Department is ultimately responsible for matters of public health and safety and should be notified immediately.

Fire Department Telephone:	911 (Emergency); (508) 347-2525 (Non-Emergency)

Police Department Telephone: 911 (Emergency); 508-347-2525 (Non-Emergency)

<u>Further Notification.</u> Based on the assessment by the Fire Chief, additional notification to a clean up contractor may be made. The Massachusetts Department of Environmental Protection and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of clean up and notification required.

SNOW MANAGEMENT PLAN:

- No snow storage shall be located within or "deposited" within wetland resource areas on or off-site.
- No salt shall be used to treat unpaved areas during snow and ice conditions. The storage of all "de-icing" chemicals and treatment products is to be inside the building.
- Per the Town of Sturbridge Wetland Regulations § 365-3.7, no salt shall be used within the 100-foot wetland buffer.
- If Site snow storage interferes with driveway maneuvers or sight distances (i.e., blocking of travel aisles, sight distance, or parking) the snow pile will be either removed or reduced legally in a legal manner by the snow plow vendor within 24-hours.
- Pavement areas will be swept seasonally as necessary to remove accumulated winter sand and salt and fall leaves, and shall be swept as required to remove litter. Collected material will be properly disposed of off-site.

INSPECTIONS / RECORDKEEPING:

Routine Inspections:

Routine inspections and maintenance to be conducted with the frequency described in this Operation and Maintenance Plan. All repairs and maintenance activities regarding the stormwater management system should be recorded and provided to the Sturbridge Planning Board upon request. An example inspection form is provided in **Attachment #2**.

Recordkeeping

Records of all drainage system inspections and maintenance shall be kept on file for a period of at least **five (5) years.**

PUBLIC SAFETY FEATURES:

 All cast iron storm water structure grates and covers shall be kept in good condition and kept closed at all times. Any damaged or broken structures will be replaced immediately upon discovery;

STAFF TRAINING:

 Staff training shall be conducted on an annual basis regarding the long-term operation and maintenance of the proposed stormwater management system. A training log is recommended for each annual training and kept for recording purposes for a minimum of three (3) years. Attachment #1

Illicit Discharge Compliance Statement

Illicit Discharge Compliance Statement Site Storm Water Management System #698 Main Street Proposed Interstate Towing Facility STURBRIDGE, MA

Responsible Party: Wrecker, LLC. 1660 Westover Road Chicopee, MA 01020 p. (413) 593-1900

Storm Water Management System Owner: (same as above)

Site subject to Wetlands Protection Act: YES

The above listed "responsible party" is responsible for implementation of this "Long-Term Operation and Maintenance Plan" and certifies that:

- The site has been inspected for erosion and appropriate steps have been taken to permanently stabilize any eroded areas;
- All aspects of storm water BMPs have been inspected for damage, wear and malfunction, and appropriate steps have been taken to repair or replace the system or portions of the system so that the storm water at the site may be managed in accordance with:
 - MA-DEP Stormwater Management Standards, revise date January 2, 2008;
- There is no record or knowledge of illicit discharges to the on-site stormwater management system;
- All "future property owners" must be notified of their continuing legal responsibility to operate and maintain the Site Stormwater Management System.
- The "Long-Term Operation and Maintenance Plan" for the storm water BMPs is being implemented.

Signature of Responsible Party:

Wrecker, LLC.

Date

Attachment #2

Hydroworks Hydrostorm Operations & Maintenance Manual

Hydroworks® HydroDome

Operations & Maintenance Manual

Version 1.0

Please call Hydroworks at 888-290-7900 or email us at support@hydroworks.com if you have any questions regarding the Inspection Checklist. Please email a copy of the completed checklist to Hydroworks at support@hydroworks.com for our records.

Introduction

The HydroDome (Figure 1) is a state-of-the-art hydrodynamic separator. HydroDome can be used for water quality and quantity flow control if desired.

Hydrodynamic separators remove solids, debris and lighter than water (oil, trash, floating debris) pollutants from stormwater. Hydrodynamic separators and other water quality measures are mandated by regulatory agencies (Town/City, State, Federal Government) to protect storm water quality from pollution generated by urban development (traffic, people) as part of new development permitting requirements.

As storm water treatment structures fill up with pollutants they become less and less effective in removing new pollution. Therefore, it is important that storm water treatment structures be maintained on a regular basis to ensure that they are operating at optimum performance. The HydroDome is no different in this regard and this manual has been assembled to provide the owner/operator with the necessary information to inspect and coordinate maintenance of their HydroDome.

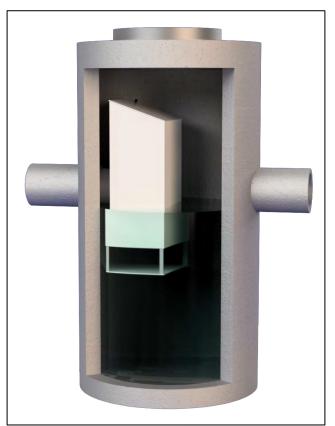


Figure 1. Hydroworks HydroDome

Figure 2 HydroDome Internal Components

Inspection

Procedure

Floatables

A visual inspection can be conducted for floatables by removing the cover/grate and looking down into the separator.

TSS/Sediment

Inspection for TSS build-up can be conducted using a Sludge Judge®, Core Pro®, AccuSludge® or equivalent sampling device that allows the measurement of the depth of TSS/sediment in the unit. These devices typically have a ball valve at the bottom of the tube that allows water and TSS to flow into the tube when lowering the tube into the unit. Once the unit touches the bottom of the device, it is quickly pulled upward such that the water and TSS in the tube forces the ball valve closed allowing the user to see a full core of water/TSS in the unit. Several readings (2 or 3) should be made at different locations of the structure to ensure that an accurate TSS depth measurement is recorded.

Operation

The water level during periods without rain should be near the outlet invert of the structure. If the water level remains near the top of the HydroDome this may suggest that there is an obstruction downstream of the HydroDome or that the inlet protection at the HydroDome may need to be cleaned.

Frequency

Construction Period

The HydroDome separator should be inspected every four weeks and after every large storm (over 0.5" (12.5 mm) of rain) during the construction period.

Post-Construction Period

The Hydroworks HydroDome separator should be inspected during the first year of operation for normal stabilized sites (grassed or paved areas). If the unit is subject to oil spills or runoff from unstabilized areas (storage piles, exposed soils), the HydroDome separator should be inspected more frequently (4 times per year). The initial annual inspection will indicate the required frequency of inspection and maintenance if the unit was maintained after the construction period.

Reporting

Reports should be prepared as part of each inspection and include the following information:

- 1. Date of inspection
- 2. GPS coordinates of Hydroworks unit
- 3. Time since last rainfall
- 4. Date of last inspection
- 5. Installation deficiencies (missing parts, incorrect installation of parts)
- 6. Structural deficiencies (concrete cracks, broken parts)
- 7. Operational deficiencies (leaks, elevated water level)
- 8. Presence of oil sheen or depth of oil layer
- 9. Estimate of depth/volume of floatables (trash, leaves) captured
- 10. Sediment depth measured
- 11. Recommendations for any repairs and/or maintenance for the unit
- 12. Estimation of time before maintenance is required if not required at time of inspection

A sample inspection checklist is provided at the end of this manual.

Maintenance

Procedure

The Hydroworks HydroDome unit is typically maintained using a vacuum truck. There are numerous companies that can maintain the HydroDome separator. Maintenance with a vacuum truck involves removing all of the water and sediment together. The water is then separated from the sediment on the truck or at the disposal facility.

The area around the HydroDome provides clear access to the bottom of the structure (Figure 3). This is the area where a vacuum hose would be lowered to clean the unit.

In instances where a vacuum truck is not available other maintenance methods (i.e. clamshell bucket) can be used, but they will be less effective. If a clamshell bucket is used the water must be decanted prior to cleaning since the sediment is under water and typically fine in nature.

The local municipality should be consulted for the allowable disposal options for both water and sediments prior to any maintenance operation. Once the water is decanted the sediment can be removed with the clamshell bucket.

Maintenance of a Hydroworks HydroDome unit will typically take 1 to 2 hours depending on size of unit and using a vacuum truck. Cleaning may take longer for other cleaning methods (i.e. clamshell bucket).

Inlet protection (Figure 2) is located at the inlet to the low flow opening in the HydroDome to ensure the opening does not become clogged. Although it is not anticipated that the inlet protection will have to be replaced on a regular (i.e. annual) basis since the inlet protection is protected by the submerged entrance to the HydroDome, the inlet protection should be checked each time the HydroDome is inspected or maintained. The inlet protection is removable and should be rinsed with water to ensure any debris caught on the protection is discarded. Unless damaged, the inlet protection can be reinstalled. A replacement piece can be bought through Hydroworks and/or retail stores. Hydroworks can provide information on the inlet protection and where it can be bought. A sign that the inlet protection needs cleaning/replacement would be a water level near the crown of the outlet pipe in the structure during periods with no flow (i.e. unit does not drain down to the pipe invert).

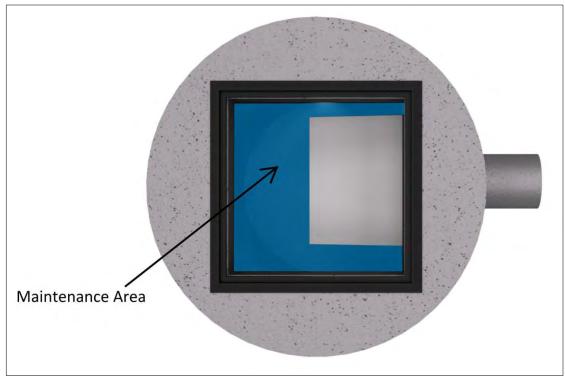


Figure 3. HydroDome Maintenance Access

Frequency

Construction Period

A HydroDome separator can fill with construction sediment quickly during the construction period. The HydroDome must be maintained during the construction period when the depth of TSS/sediment reaches 24" (600 mm). It must also be maintained during the construction period if there is an appreciable depth of oil in the unit (more than a sheen) or if floatables other than oil cover over 50% of the area of the separator

The HydroDome separator should be maintained at the end of the construction period, prior to operation for the post-construction period.

Post-Construction Period

The maintenance for sediment accumulation is required if the depth of sediment is 1 ft or greater in separators with standard water (sump) depths (Table 1).

There will be designs with increased sediment storage based on specifications or site-specific criteria. Please contact Hydroworks at 888-290-7900 to inquire whether your HydroDome was designed with extra sump depth to extend the frequency of maintenance.

The HydroDome separator must also be maintained if there is an appreciable depth of oil in the unit (more than a sheen) or if floatables other than oil cover over 75% of the water surface of the separator.

Model	Diameter ft (mm)	Maintenance Sediment Depth in (mm)
HD 3	3 (900)	12 (300)
HD 4	4 (1200)	12 (300)
HD 5	5 (1500)	12 (300)
HD 6	6 (1800)	12 (300)
HD 7	7 (2100)	12 (300)
HD 8	8 (2400)	12 (300)
HD 10	10 (3000)	12 (300)
HD 12	12 (3600)	12 (300)

 Table 1 Standard Dimensions for Hydroworks HydroDome Models

HYDRODOME INSPECTION SHEET

Date Date of Last Inspection			-	
Site City State Owner			-	
GPS Coordinates			-	
Date of last rainfall			-	
Site Characteristics Soil erosion evident Exposed material storage Large exposure to leaf little High traffic (vehicle) area			Yes	No
Improperly installed outlet Internal component damage Floating debris in the sepa Large debris visible in the Concrete cracks/deficience Exposed rebar	ge (cracked, broken, loose piece rator (oil, leaves, trash) separator es evel close to top of HydroDome not at outlet pipe invert)		Yes * * ** ** ** ** ** ** ** ** ** ** **	No
Routine Measurements Floating debris depth Floating debris coverage Sludge depth	< 0.5" (13mm) < 75% of surface area < 12" (300mm)	>0.5" 1 > 75% s > 12" (3	surface area	□ * □ * □ *

- * Maintenance required
- ** Repairs required
- *** Further investigation is required

Note: Inspections should not be made within 24 hours of a storm to allow the water to drain from the structure to assess a raised water level or water level seepage

Other Comments:	
	Hydroworks

Hydroworks[®] HydroDome

One Year Limited Warranty

Hydroworks, LLC warrants, to the purchaser and subsequent owner(s) during the warranty period subject to the terms and conditions hereof, the Hydroworks HydroDome to be free from defects in material and workmanship under normal use and service, when properly installed, used, inspected and maintained in accordance with Hydroworks written instructions, for the period of the warranty. The standard warranty period is 1 year.

The warranty period begins once the separator has been manufactured and is available for delivery. Any components determined to be defective, either by failure or by inspection, in material and workmanship will be repaired, replaced or remanufactured at Hydroworks' option provided, however, that by doing so Hydroworks, LLC will not be obligated to replace an entire insert or concrete section, or the complete unit. This warranty does not cover shipping charges, damages, labor, any costs incurred to obtain access to the unit, any costs to repair/replace any surface treatment/cover after repair/replacement, or other charges that may occur due to product failure, repair or replacement.

This warranty does not apply to any material that has been disassembled or modified without prior approval of Hydroworks, LLC, that has been subjected to misuse, misapplication, neglect, alteration, accident or act of God, or that has not been installed, inspected, operated or maintained in accordance with Hydroworks, LLC instructions and is in lieu of all other warranties expressed or implied. Hydroworks, LLC does not authorize any representative or other person to expand or otherwise modify this limited warranty.

The owner shall provide Hydroworks, LLC with written notice of any alleged defect in material or workmanship including a detailed description of the alleged defect upon discovery of the defect. Hydroworks, LLC should be contacted at 136 Central Ave., Clark, NJ 07066 or any other address as supplied by Hydroworks, LLC. (888-290-7900).

This limited warranty is exclusive. There are no other warranties, express or implied, or merchantability or fitness for a particular purpose and none shall be created whether under the uniform commercial code, custom or usage in the industry or the course of dealings between the parties. Hydroworks, LLC will replace any goods that are defective under this warranty as the sole and exclusive remedy for breach of this warranty.

Subject to the foregoing, all conditions, warranties, terms, undertakings or liabilities (including liability as to negligence), expressed or implied, and howsoever arising, as to the condition, suitability, fitness, safety, or title to the Hydroworks HydroDome are hereby negated and excluded and Hydroworks, LLC gives and makes no such representation, warranty or undertaking except as expressly set forth herein. Under no circumstances shall Hydroworks, LLC be liable to the Purchaser or to any third party for product liability claims; claims arising from the design, shipment, or installation of the HydroDome, or the cost of other goods or services related to the purchase and installation of the HydroDome. For this Limited Warranty to apply, the HydroDome must be installed in accordance with all site conditions required by state and local codes; all other applicable laws; and Hydroworks' written installation instructions.

Hydroworks, LLC expressly disclaims liability for special, consequential or incidental damages (even if it has been advised of the possibility of the same) or breach of expressed or implied warranty. Hydroworks, LLC shall not be liable for penalties or liquidated damages, including loss of production and profits; labor and materials; overhead costs; or other loss or expense incurred by the purchaser or any third party. Specifically excluded from limited warranty coverage are damages to the HydroDome arising from ordinary wear and tear; alteration, accident, misuse, abuse or neglect; improper maintenance, failure of the product due to improper installation of the concrete sections or improper sizing; or any other event not caused by Hydroworks, LLC. This limited warranty represents Hydroworks' sole liability to the purchaser for claims related to the HydroDome, whether the claim is based upon contract, tort, or other legal basis.

Attachment #3

Stormwater Management System Quarterly Inspection Form

-	Int	terstate	ater Management System Towing ridge, Massachusetts	
<i>QUARTERLY INSPECTION AND MAINTENANCE REPORT</i> JanMar. AprJun. July-Sep. Oct. – Dec. <u>Note:</u> This Log should be copied prior to use. Note Additional Comments on back of Form.				
Inspector's Name: Date: Time: am/pm				
Inspector's Qualifications:				
Days Since Last Rainfall:	Days Since Last Rainfall: inches			
Item/Condition to be Checked	Maintenance Required Corrective Action & Dat		Corrective Action & Date	
	No	Yes		
HYDROSTORM WATER QUALITY UNIT #1			*Clean when sediment Depth > 24 in. or sheen present	
HYDROSTORM WATER QUALITY UNIT #2			Clean Unit Twice /Year or After Spill Event	
Catch Basins			Clean Unit Twice /Year or After Spill Event	
OIL / GRIT SEPARATOR 4,500 GAL. CAPACITY				
Underground Infiltration Chambers				
Infiltration Basin				
Rip-Rap Aprons				
SPILL KIT				
Parking Lot / Driveway Sweeping			*Sweep Seasonally – As Needed	
Landscaping / Trash Removal				
Snow Removal (seasonal)			*All De-icing chemical storage to be inside building	

Additional Comments: