Culvert Calculations Report

Ameresco
Sturbridge Site Proposed Solar Array
Sturbridge, MA

Official: June 4, 2018

Harrisburg, PA

INTRODUCTION

The purpose of this submittal is to provide watershed and hydraulic calculations for two proposed culverts for the Ameresco - Sturbridge solar array site. The site is located between Charleton Road (MA Route 20) and Interstate 84 in Sturbridge, Massachusetts. The project will consist of the installation of a $36^{\prime \prime}$ CMP culvert and a 13'x3' concrete box culvert for two separate stream crossings.

Culv-1

Culv-1 is a proposed 36 " CMP. At a 1.0% pipe slope the pipe has a carrying capacity of 26 cfs. The watershed for Culv-1, as calculated by Streamstats, has a 100-year surface runoff of 13.6 cfs. Therefore, the proposed culvert is adequate to carry the flow.

SD-1

SD-1 is a proposed $13^{\prime} \times 3$ ' concrete box culvert with a natural stream bottom. At a 0.5% slope, the culvert has a carrying capacity of 549 cfs . The watershed for SD-1, as calculated by StreamStats, has a 100-year surface runoff of 487 cfs . Therefore, the proposed culvert is adequate to carry the flow.

Official: June 4, 2018

CULV-1 CALCULATIONS

StreamStats Report - Structure Culv 1

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.0365	square miles
ELEV	Mean Basin Elevation	647	feet
LCO6STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	15.34	percent

Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0365	square miles	0.16	
ELEV	Mean Basin Elevation	647	feet		
LCO6STOR	Percent Storage from NLCD2006	15.34	percent	19	8

Peak-Flow Statistics Disclaimers [Peak Statewide 2016 5156]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors	
Peak-Flow Statistics Flow Report Peak Statewide 2016 5156]	
Statistic	Value
2 Year Peak Flood	2.64
5 Year Peak Flood	4.67
10 Year Peak Flood	6.4
25 Year Peak Flood	9
50 Year Peak Flood	11.2
100 Year Peak Flood	13.6
200 Year Peak Flood	16.3
500 Year Peak Flood	20.2
$\mathrm{ft}^{\wedge} 3 / \mathrm{s} 3 / \mathrm{s}$	
Peak-Flow Statistics Citations	
$\mathrm{ft}^{\wedge} 3 / \mathrm{s}$	
$\mathrm{ft}^{\wedge} 3 / \mathrm{s}$	
$\mathrm{ft}^{\wedge} 3 / \mathrm{s}$	

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Official: June 4, 2018

StreamStats Report - Structure SD-1

| Basin Characteristics | | | |
| :--- | :--- | :--- | :--- | :--- |
| Parameter Code | Parameter Description | Value | Unit |
| DRNAREA | Area that drains to a point on a stream | 4.14 | square miles |
| ELEV | Mean Basin Elevation | 687 | feet |
| LCO6STOR | Percentage of water bodies and wetlands determined from the NLCD 2006 | 18.2 | percent |

Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	0.16
DRNAREA	Drainage Area	4.14	square miles	512		
ELEV	Mean Basin Elevation	687	feet	8		
LCO6STOR	Percent Storage from NLCD2006	18.2	percent	1948		

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

Statistic	Value	Unit	PII	Plu	SEp
2 Year Peak Flood	110	$f t^{\wedge} 3 / \mathrm{s}$	56	216	42.3
5 Year Peak Flood	185	$\mathrm{ft}^{\wedge} 3 / \mathrm{s}$	92.6	368	43.4
10 Year Peak Flood	245	$f t^{\wedge} 3 / \mathrm{s}$	120	500	44.7
25 Year Peak Flood	334	$f t^{\wedge} 3 / \mathrm{s}$	158	705	47.1
50 Year Peak Flood	408	$f t^{\wedge} 3 / \mathrm{s}$	187	890	49.4
100 Year Peak Flood	487	$\mathrm{ft}^{\wedge} 3 / \mathrm{s}$	216	1100	51.8
200 Year Peak Flood	573	$f t^{\wedge} 3 / \mathrm{s}$	247	1330	54.1
500 Year Peak Flood	698	$f t^{\wedge} 3 / \mathrm{s}$	287	1700	57.6

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

